1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-24 00:35:34 +03:00

added USE_GPS_FIX_ESTIMATION

fixed indentation
This commit is contained in:
Roman Lut 2023-08-09 09:48:46 +02:00
parent 2b9a5a6a8d
commit 599e45c48f
29 changed files with 626 additions and 397 deletions

View file

@ -3492,8 +3492,8 @@ bool mspFCProcessInOutCommand(uint16_t cmdMSP, sbuf_t *dst, sbuf_t *src, mspResu
if (!SIMULATOR_HAS_OPTION(HITL_ENABLE)) {
if (ARMING_FLAG(SIMULATOR_MODE_HITL)) { // Just once
DISABLE_ARMING_FLAG(SIMULATOR_MODE_HITL);
if (ARMING_FLAG(SIMULATOR_MODE_HITL)) { // Just once
DISABLE_ARMING_FLAG(SIMULATOR_MODE_HITL);
#ifdef USE_BARO
if ( requestedSensors[SENSOR_INDEX_BARO] != BARO_NONE ) {
@ -3508,15 +3508,15 @@ bool mspFCProcessInOutCommand(uint16_t cmdMSP, sbuf_t *dst, sbuf_t *src, mspResu
// Review: Many states were affected. Reboot?
disarm(DISARM_SWITCH); // Disarm to prevent motor output!!!
}
}
} else {
if (!ARMING_FLAG(SIMULATOR_MODE_HITL)) { // Just once
if (!ARMING_FLAG(SIMULATOR_MODE_HITL)) { // Just once
#ifdef USE_BARO
if ( requestedSensors[SENSOR_INDEX_BARO] != BARO_NONE ) {
sensorsSet(SENSOR_BARO);
setTaskEnabled(TASK_BARO, true);
DISABLE_ARMING_FLAG(ARMING_DISABLED_HARDWARE_FAILURE);
baroStartCalibration();
baroStartCalibration();
}
#endif
@ -3530,80 +3530,80 @@ bool mspFCProcessInOutCommand(uint16_t cmdMSP, sbuf_t *dst, sbuf_t *src, mspResu
mag.magADC[Z] = 0;
}
#endif
ENABLE_ARMING_FLAG(SIMULATOR_MODE_HITL);
ENABLE_ARMING_FLAG(SIMULATOR_MODE_HITL);
LOG_DEBUG(SYSTEM, "Simulator enabled");
}
if (dataSize >= 14) {
if (dataSize >= 14) {
if (feature(FEATURE_GPS) && SIMULATOR_HAS_OPTION(HITL_HAS_NEW_GPS_DATA)) {
gpsSolDRV.fixType = sbufReadU8(src);
gpsSolDRV.hdop = gpsSolDRV.fixType == GPS_NO_FIX ? 9999 : 100;
gpsSolDRV.numSat = sbufReadU8(src);
if (feature(FEATURE_GPS) && SIMULATOR_HAS_OPTION(HITL_HAS_NEW_GPS_DATA)) {
gpsSolDRV.fixType = sbufReadU8(src);
gpsSolDRV.hdop = gpsSolDRV.fixType == GPS_NO_FIX ? 9999 : 100;
gpsSolDRV.numSat = sbufReadU8(src);
if (gpsSolDRV.fixType != GPS_NO_FIX) {
gpsSolDRV.flags.validVelNE = true;
gpsSolDRV.flags.validVelD = true;
gpsSolDRV.flags.validEPE = true;
gpsSolDRV.flags.validTime = false;
if (gpsSolDRV.fixType != GPS_NO_FIX) {
gpsSolDRV.flags.validVelNE = true;
gpsSolDRV.flags.validVelD = true;
gpsSolDRV.flags.validEPE = true;
gpsSolDRV.flags.validTime = false;
gpsSolDRV.llh.lat = sbufReadU32(src);
gpsSolDRV.llh.lon = sbufReadU32(src);
gpsSolDRV.llh.alt = sbufReadU32(src);
gpsSolDRV.groundSpeed = (int16_t)sbufReadU16(src);
gpsSolDRV.groundCourse = (int16_t)sbufReadU16(src);
gpsSolDRV.llh.lat = sbufReadU32(src);
gpsSolDRV.llh.lon = sbufReadU32(src);
gpsSolDRV.llh.alt = sbufReadU32(src);
gpsSolDRV.groundSpeed = (int16_t)sbufReadU16(src);
gpsSolDRV.groundCourse = (int16_t)sbufReadU16(src);
gpsSolDRV.velNED[X] = (int16_t)sbufReadU16(src);
gpsSolDRV.velNED[Y] = (int16_t)sbufReadU16(src);
gpsSolDRV.velNED[Z] = (int16_t)sbufReadU16(src);
gpsSolDRV.velNED[X] = (int16_t)sbufReadU16(src);
gpsSolDRV.velNED[Y] = (int16_t)sbufReadU16(src);
gpsSolDRV.velNED[Z] = (int16_t)sbufReadU16(src);
gpsSolDRV.eph = 100;
gpsSolDRV.epv = 100;
} else {
sbufAdvance(src, sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) * 3);
}
gpsSolDRV.eph = 100;
gpsSolDRV.epv = 100;
} else {
sbufAdvance(src, sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) * 3);
}
// Feed data to navigation
gpsProcessNewDriverData();
gpsProcessNewSolutionData(false);
} else {
sbufAdvance(src, sizeof(uint8_t) + sizeof(uint8_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) * 3);
}
gpsProcessNewDriverData();
gpsProcessNewSolutionData(false);
} else {
sbufAdvance(src, sizeof(uint8_t) + sizeof(uint8_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) * 3);
}
if (!SIMULATOR_HAS_OPTION(HITL_USE_IMU)) {
attitude.values.roll = (int16_t)sbufReadU16(src);
attitude.values.pitch = (int16_t)sbufReadU16(src);
attitude.values.yaw = (int16_t)sbufReadU16(src);
} else {
sbufAdvance(src, sizeof(uint16_t) * XYZ_AXIS_COUNT);
}
if (!SIMULATOR_HAS_OPTION(HITL_USE_IMU)) {
attitude.values.roll = (int16_t)sbufReadU16(src);
attitude.values.pitch = (int16_t)sbufReadU16(src);
attitude.values.yaw = (int16_t)sbufReadU16(src);
} else {
sbufAdvance(src, sizeof(uint16_t) * XYZ_AXIS_COUNT);
}
// Get the acceleration in 1G units
acc.accADCf[X] = ((int16_t)sbufReadU16(src)) / 1000.0f;
acc.accADCf[Y] = ((int16_t)sbufReadU16(src)) / 1000.0f;
acc.accADCf[Z] = ((int16_t)sbufReadU16(src)) / 1000.0f;
acc.accVibeSq[X] = 0.0f;
acc.accVibeSq[Y] = 0.0f;
acc.accVibeSq[Z] = 0.0f;
acc.accADCf[X] = ((int16_t)sbufReadU16(src)) / 1000.0f;
acc.accADCf[Y] = ((int16_t)sbufReadU16(src)) / 1000.0f;
acc.accADCf[Z] = ((int16_t)sbufReadU16(src)) / 1000.0f;
acc.accVibeSq[X] = 0.0f;
acc.accVibeSq[Y] = 0.0f;
acc.accVibeSq[Z] = 0.0f;
// Get the angular velocity in DPS
gyro.gyroADCf[X] = ((int16_t)sbufReadU16(src)) / 16.0f;
gyro.gyroADCf[Y] = ((int16_t)sbufReadU16(src)) / 16.0f;
gyro.gyroADCf[Z] = ((int16_t)sbufReadU16(src)) / 16.0f;
gyro.gyroADCf[X] = ((int16_t)sbufReadU16(src)) / 16.0f;
gyro.gyroADCf[Y] = ((int16_t)sbufReadU16(src)) / 16.0f;
gyro.gyroADCf[Z] = ((int16_t)sbufReadU16(src)) / 16.0f;
if (sensors(SENSOR_BARO)) {
baro.baroPressure = (int32_t)sbufReadU32(src);
baro.baroTemperature = DEGREES_TO_CENTIDEGREES(SIMULATOR_BARO_TEMP);
} else {
sbufAdvance(src, sizeof(uint32_t));
}
if (sensors(SENSOR_BARO)) {
baro.baroPressure = (int32_t)sbufReadU32(src);
baro.baroTemperature = DEGREES_TO_CENTIDEGREES(SIMULATOR_BARO_TEMP);
} else {
sbufAdvance(src, sizeof(uint32_t));
}
if (sensors(SENSOR_MAG)) {
mag.magADC[X] = ((int16_t)sbufReadU16(src)) / 20; // 16000 / 20 = 800uT
mag.magADC[Y] = ((int16_t)sbufReadU16(src)) / 20; //note that mag failure is simulated by setting all readings to zero
mag.magADC[Z] = ((int16_t)sbufReadU16(src)) / 20;
} else {
sbufAdvance(src, sizeof(uint16_t) * XYZ_AXIS_COUNT);
}
if (sensors(SENSOR_MAG)) {
mag.magADC[X] = ((int16_t)sbufReadU16(src)) / 20; // 16000 / 20 = 800uT
mag.magADC[Y] = ((int16_t)sbufReadU16(src)) / 20; //note that mag failure is simulated by setting all readings to zero
mag.magADC[Z] = ((int16_t)sbufReadU16(src)) / 20;
} else {
sbufAdvance(src, sizeof(uint16_t) * XYZ_AXIS_COUNT);
}
#if defined(USE_FAKE_BATT_SENSOR)
if (SIMULATOR_HAS_OPTION(HITL_EXT_BATTERY_VOLTAGE)) {
@ -3617,7 +3617,7 @@ bool mspFCProcessInOutCommand(uint16_t cmdMSP, sbuf_t *dst, sbuf_t *src, mspResu
if (SIMULATOR_HAS_OPTION(HITL_AIRSPEED)) {
simulatorData.airSpeed = sbufReadU16(src);
} else {
} else {
if (SIMULATOR_HAS_OPTION(HITL_EXTENDED_FLAGS)) {
sbufReadU16(src);
}
@ -3626,35 +3626,35 @@ bool mspFCProcessInOutCommand(uint16_t cmdMSP, sbuf_t *dst, sbuf_t *src, mspResu
if (SIMULATOR_HAS_OPTION(HITL_EXTENDED_FLAGS)) {
simulatorData.flags |= ((uint16_t)sbufReadU8(src)) << 8;
}
} else {
DISABLE_STATE(GPS_FIX);
}
}
} else {
DISABLE_STATE(GPS_FIX);
}
}
sbufWriteU16(dst, (uint16_t)simulatorData.input[INPUT_STABILIZED_ROLL]);
sbufWriteU16(dst, (uint16_t)simulatorData.input[INPUT_STABILIZED_PITCH]);
sbufWriteU16(dst, (uint16_t)simulatorData.input[INPUT_STABILIZED_YAW]);
sbufWriteU16(dst, (uint16_t)(ARMING_FLAG(ARMED) ? simulatorData.input[INPUT_STABILIZED_THROTTLE] : -500));
sbufWriteU16(dst, (uint16_t)simulatorData.input[INPUT_STABILIZED_ROLL]);
sbufWriteU16(dst, (uint16_t)simulatorData.input[INPUT_STABILIZED_PITCH]);
sbufWriteU16(dst, (uint16_t)simulatorData.input[INPUT_STABILIZED_YAW]);
sbufWriteU16(dst, (uint16_t)(ARMING_FLAG(ARMED) ? simulatorData.input[INPUT_STABILIZED_THROTTLE] : -500));
simulatorData.debugIndex++;
if (simulatorData.debugIndex == 8) {
simulatorData.debugIndex = 0;
}
simulatorData.debugIndex++;
if (simulatorData.debugIndex == 8) {
simulatorData.debugIndex = 0;
}
tmp_u8 = simulatorData.debugIndex |
((mixerConfig()->platformType == PLATFORM_AIRPLANE) ? 128 : 0) |
(ARMING_FLAG(ARMED) ? 64 : 0) |
(!feature(FEATURE_OSD) ? 32: 0) |
(!isOSDTypeSupportedBySimulator() ? 16 : 0);
tmp_u8 = simulatorData.debugIndex |
((mixerConfig()->platformType == PLATFORM_AIRPLANE) ? 128 : 0) |
(ARMING_FLAG(ARMED) ? 64 : 0) |
(!feature(FEATURE_OSD) ? 32: 0) |
(!isOSDTypeSupportedBySimulator() ? 16 : 0);
sbufWriteU8(dst, tmp_u8);
sbufWriteU32(dst, debug[simulatorData.debugIndex]);
sbufWriteU8(dst, tmp_u8);
sbufWriteU32(dst, debug[simulatorData.debugIndex]);
sbufWriteU16(dst, attitude.values.roll);
sbufWriteU16(dst, attitude.values.pitch);
sbufWriteU16(dst, attitude.values.yaw);
sbufWriteU16(dst, attitude.values.roll);
sbufWriteU16(dst, attitude.values.pitch);
sbufWriteU16(dst, attitude.values.yaw);
mspWriteSimulatorOSD(dst);
mspWriteSimulatorOSD(dst);
*ret = MSP_RESULT_ACK;
break;