1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-20 23:05:17 +03:00

Merge remote-tracking branch 'origin/development' into failsafe-stage1-mods

This commit is contained in:
Konstantin Sharlaimov (DigitalEntity) 2017-01-29 19:17:42 +10:00
commit 6802606724
53 changed files with 498 additions and 283 deletions

View file

@ -0,0 +1,540 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <math.h>
#include "platform.h"
#if defined(NAV)
#include "build/build_config.h"
#include "build/debug.h"
#include "common/axis.h"
#include "common/maths.h"
#include "common/filter.h"
#include "drivers/system.h"
#include "sensors/sensors.h"
#include "sensors/acceleration.h"
#include "sensors/boardalignment.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/mixer.h"
#include "fc/config.h"
#include "fc/controlrate_profile.h"
#include "fc/rc_controls.h"
#include "fc/runtime_config.h"
#include "navigation/navigation.h"
#include "navigation/navigation_private.h"
// If we are going slower than NAV_FW_MIN_VEL_SPEED_BOOST - boost throttle to fight against the wind
#define NAV_FW_THROTTLE_SPEED_BOOST_GAIN 1.5f
#define NAV_FW_MIN_VEL_SPEED_BOOST 700.0f // 7 m/s
// If this is enabled navigation won't be applied if velocity is below 3 m/s
//#define NAV_FW_LIMIT_MIN_FLY_VELOCITY
static bool isPitchAdjustmentValid = false;
static bool isRollAdjustmentValid = false;
static float throttleSpeedAdjustment = 0;
/*-----------------------------------------------------------
* Altitude controller
*-----------------------------------------------------------*/
void setupFixedWingAltitudeController(void)
{
// TODO
}
void resetFixedWingAltitudeController()
{
navPidReset(&posControl.pids.fw_alt);
posControl.rcAdjustment[PITCH] = 0;
isPitchAdjustmentValid = false;
throttleSpeedAdjustment = 0;
}
bool adjustFixedWingAltitudeFromRCInput(void)
{
int16_t rcAdjustment = applyDeadband(rcCommand[PITCH], rcControlsConfig()->alt_hold_deadband);
if (rcAdjustment) {
// set velocity proportional to stick movement
float rcClimbRate = -rcAdjustment * navConfig()->general.max_manual_climb_rate / (500.0f - rcControlsConfig()->alt_hold_deadband);
updateAltitudeTargetFromClimbRate(rcClimbRate, CLIMB_RATE_RESET_SURFACE_TARGET);
return true;
}
else {
return false;
}
}
// Position to velocity controller for Z axis
static void updateAltitudeVelocityAndPitchController_FW(timeDelta_t deltaMicros)
{
static pt1Filter_t velzFilterState;
// On a fixed wing we might not have a reliable climb rate source (if no BARO available), so we can't apply PID controller to
// velocity error. We use PID controller on altitude error and calculate desired pitch angle from desired climb rate and forward velocity
// FIXME: Use airspeed here
float forwardVelocity = MAX(posControl.actualState.velXY, 300.0f); // Limit min velocity for PID controller at about 10 km/h
// Calculate max climb rate from current forward velocity and maximum pitch angle (climb angle is fairly small, approximate tan=sin)
float maxVelocityClimb = forwardVelocity * sin_approx(DEGREES_TO_RADIANS(navConfig()->fw.max_climb_angle));
float maxVelocityDive = -forwardVelocity * sin_approx(DEGREES_TO_RADIANS(navConfig()->fw.max_dive_angle));
posControl.desiredState.vel.V.Z = navPidApply2(&posControl.pids.fw_alt, posControl.desiredState.pos.V.Z, posControl.actualState.pos.V.Z, US2S(deltaMicros), maxVelocityDive, maxVelocityClimb, 0);
posControl.desiredState.vel.V.Z = pt1FilterApply4(&velzFilterState, posControl.desiredState.vel.V.Z, NAV_FW_VEL_CUTOFF_FREQENCY_HZ, US2S(deltaMicros));
// Calculate climb angle ( >0 - climb, <0 - dive)
int16_t climbAngleDeciDeg = RADIANS_TO_DECIDEGREES(atan2_approx(posControl.desiredState.vel.V.Z, forwardVelocity));
climbAngleDeciDeg = constrain(climbAngleDeciDeg, -navConfig()->fw.max_dive_angle * 10, navConfig()->fw.max_climb_angle * 10);
posControl.rcAdjustment[PITCH] = climbAngleDeciDeg;
#if defined(NAV_BLACKBOX)
navDesiredVelocity[Z] = constrain(posControl.desiredState.vel.V.Z, -32678, 32767);
navTargetPosition[Z] = constrain(posControl.desiredState.pos.V.Z, -32678, 32767);
#endif
}
void applyFixedWingAltitudeController(timeUs_t currentTimeUs)
{
static timeUs_t previousTimePositionUpdate; // Occurs @ altitude sensor update rate (max MAX_ALTITUDE_UPDATE_RATE_HZ)
static timeUs_t previousTimeUpdate; // Occurs @ looptime rate
const timeDelta_t deltaMicros = currentTimeUs - previousTimeUpdate;
previousTimeUpdate = currentTimeUs;
// If last time Z-controller was called is too far in the past - ignore it (likely restarting altitude controller)
if (deltaMicros > HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
previousTimeUpdate = currentTimeUs;
previousTimePositionUpdate = currentTimeUs;
resetFixedWingAltitudeController();
return;
}
if (posControl.flags.hasValidPositionSensor) {
// If we have an update on vertical position data - update velocity and accel targets
if (posControl.flags.verticalPositionDataNew) {
const timeDelta_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
previousTimePositionUpdate = currentTimeUs;
// Check if last correction was too log ago - ignore this update
if (deltaMicrosPositionUpdate < HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
updateAltitudeVelocityAndPitchController_FW(deltaMicrosPositionUpdate);
}
else {
// due to some glitch position update has not occurred in time, reset altitude controller
resetFixedWingAltitudeController();
}
// Indicate that information is no longer usable
posControl.flags.verticalPositionDataConsumed = 1;
}
isPitchAdjustmentValid = true;
}
else {
// No valid altitude sensor data, don't adjust pitch automatically, rcCommand[PITCH] is passed through to PID controller
isPitchAdjustmentValid = false;
}
}
/*-----------------------------------------------------------
* Adjusts desired heading from pilot's input
*-----------------------------------------------------------*/
bool adjustFixedWingHeadingFromRCInput(void)
{
return false;
}
/*-----------------------------------------------------------
* XY-position controller for multicopter aircraft
*-----------------------------------------------------------*/
static t_fp_vector virtualDesiredPosition;
static pt1Filter_t fwPosControllerCorrectionFilterState;
void resetFixedWingPositionController(void)
{
virtualDesiredPosition.V.X = 0;
virtualDesiredPosition.V.Y = 0;
virtualDesiredPosition.V.Z = 0;
navPidReset(&posControl.pids.fw_nav);
posControl.rcAdjustment[ROLL] = 0;
isRollAdjustmentValid = false;
pt1FilterReset(&fwPosControllerCorrectionFilterState, 0.0f);
}
static void calculateVirtualPositionTarget_FW(float trackingPeriod)
{
float posErrorX = posControl.desiredState.pos.V.X - posControl.actualState.pos.V.X;
float posErrorY = posControl.desiredState.pos.V.Y - posControl.actualState.pos.V.Y;
float distanceToActualTarget = sqrtf(sq(posErrorX) + sq(posErrorY));
// Limit minimum forward velocity to 1 m/s
float trackingDistance = trackingPeriod * MAX(posControl.actualState.velXY, 100.0f);
// If angular visibility of a waypoint is less than 30deg, don't calculate circular loiter, go straight to the target
#define TAN_15DEG 0.26795f
bool needToCalculateCircularLoiter = isApproachingLastWaypoint()
&& (distanceToActualTarget <= (navConfig()->fw.loiter_radius / TAN_15DEG))
&& (distanceToActualTarget > 50.0f);
// Calculate virtual position for straight movement
if (needToCalculateCircularLoiter) {
// We are closing in on a waypoint, calculate circular loiter
float loiterAngle = atan2_approx(-posErrorY, -posErrorX) + DEGREES_TO_RADIANS(45.0f);
float loiterTargetX = posControl.desiredState.pos.V.X + navConfig()->fw.loiter_radius * cos_approx(loiterAngle);
float loiterTargetY = posControl.desiredState.pos.V.Y + navConfig()->fw.loiter_radius * sin_approx(loiterAngle);
// We have temporary loiter target. Recalculate distance and position error
posErrorX = loiterTargetX - posControl.actualState.pos.V.X;
posErrorY = loiterTargetY - posControl.actualState.pos.V.Y;
distanceToActualTarget = sqrtf(sq(posErrorX) + sq(posErrorY));
}
// Calculate virtual waypoint
virtualDesiredPosition.V.X = posControl.actualState.pos.V.X + posErrorX * (trackingDistance / distanceToActualTarget);
virtualDesiredPosition.V.Y = posControl.actualState.pos.V.Y + posErrorY * (trackingDistance / distanceToActualTarget);
// Shift position according to pilot's ROLL input (up to max_manual_speed velocity)
if (posControl.flags.isAdjustingPosition) {
int16_t rcRollAdjustment = applyDeadband(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband);
if (rcRollAdjustment) {
float rcShiftY = rcRollAdjustment * navConfig()->general.max_manual_speed / 500.0f * trackingPeriod;
// Rotate this target shift from body frame to to earth frame and apply to position target
virtualDesiredPosition.V.X += -rcShiftY * posControl.actualState.sinYaw;
virtualDesiredPosition.V.Y += rcShiftY * posControl.actualState.cosYaw;
posControl.flags.isAdjustingPosition = true;
}
}
}
bool adjustFixedWingPositionFromRCInput(void)
{
int16_t rcRollAdjustment = applyDeadband(rcCommand[ROLL], rcControlsConfig()->pos_hold_deadband);
return (rcRollAdjustment);
}
static void updatePositionHeadingController_FW(timeUs_t currentTimeUs, timeDelta_t deltaMicros)
{
static timeUs_t previousTimeMonitoringUpdate;
static float previousHeadingError;
static bool errorIsDecreasing;
static bool forceTurnDirection = false;
// We have virtual position target, calculate heading error
int32_t virtualTargetBearing = calculateBearingToDestination(&virtualDesiredPosition);
// Calculate NAV heading error
int32_t headingError = wrap_18000(virtualTargetBearing - posControl.actualState.yaw);
// Forced turn direction
// If heading error is close to 180 deg we initiate forced turn and only disable it when heading error goes below 90 deg
if (ABS(headingError) > 17000) {
forceTurnDirection = true;
}
else if (ABS(headingError) < 9000 && forceTurnDirection) {
forceTurnDirection = false;
}
// If forced turn direction flag is enabled we fix the sign of the direction
if (forceTurnDirection) {
headingError = ABS(headingError);
}
// Slow error monitoring (2Hz rate)
if ((currentTimeUs - previousTimeMonitoringUpdate) >= HZ2US(NAV_FW_CONTROL_MONITORING_RATE)) {
// Check if error is decreasing over time
errorIsDecreasing = (ABS(previousHeadingError) > ABS(headingError));
// Save values for next iteration
previousHeadingError = headingError;
previousTimeMonitoringUpdate = currentTimeUs;
}
// Only allow PID integrator to shrink if error is decreasing over time
const pidControllerFlags_e pidFlags = PID_DTERM_FROM_ERROR | (errorIsDecreasing ? PID_SHRINK_INTEGRATOR : 0);
// Input error in (deg*100), output pitch angle (deg*100)
float rollAdjustment = navPidApply2(&posControl.pids.fw_nav, posControl.actualState.yaw + headingError, posControl.actualState.yaw, US2S(deltaMicros),
-DEGREES_TO_CENTIDEGREES(navConfig()->fw.max_bank_angle),
DEGREES_TO_CENTIDEGREES(navConfig()->fw.max_bank_angle),
pidFlags);
// Apply low-pass filter to prevent rapid correction
rollAdjustment = pt1FilterApply4(&fwPosControllerCorrectionFilterState, rollAdjustment, NAV_FW_ROLL_CUTOFF_FREQUENCY_HZ, US2S(deltaMicros));
// Convert rollAdjustment to decidegrees (rcAdjustment holds decidegrees)
posControl.rcAdjustment[ROLL] = CENTIDEGREES_TO_DECIDEGREES(rollAdjustment);
// Update magHold heading lock in case pilot is using MAG mode (prevent MAGHOLD to fight navigation)
posControl.desiredState.yaw = wrap_36000(posControl.actualState.yaw + headingError);
updateMagHoldHeading(CENTIDEGREES_TO_DEGREES(posControl.desiredState.yaw));
// Add pitch compensation
//posControl.rcAdjustment[PITCH] = -CENTIDEGREES_TO_DECIDEGREES(ABS(rollAdjustment)) * 0.50f;
}
void applyFixedWingPositionController(timeUs_t currentTimeUs)
{
static timeUs_t previousTimePositionUpdate; // Occurs @ GPS update rate
static timeUs_t previousTimeUpdate; // Occurs @ looptime rate
const timeDelta_t deltaMicros = currentTimeUs - previousTimeUpdate;
previousTimeUpdate = currentTimeUs;
// If last position update was too long in the past - ignore it (likely restarting altitude controller)
if (deltaMicros > HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
previousTimeUpdate = currentTimeUs;
previousTimePositionUpdate = currentTimeUs;
resetFixedWingPositionController();
return;
}
// Apply controller only if position source is valid. In absence of valid pos sensor (GPS loss), we'd stick in forced ANGLE mode
if (posControl.flags.hasValidPositionSensor) {
// If we have new position - update velocity and acceleration controllers
if (posControl.flags.horizontalPositionDataNew) {
const timeDelta_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
previousTimePositionUpdate = currentTimeUs;
if (deltaMicrosPositionUpdate < HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
// Calculate virtual position target at a distance of forwardVelocity * HZ2S(POSITION_TARGET_UPDATE_RATE_HZ)
// Account for pilot's roll input (move position target left/right at max of max_manual_speed)
// POSITION_TARGET_UPDATE_RATE_HZ should be chosen keeping in mind that position target shouldn't be reached until next pos update occurs
// FIXME: verify the above
calculateVirtualPositionTarget_FW(HZ2S(MIN_POSITION_UPDATE_RATE_HZ) * 2);
updatePositionHeadingController_FW(currentTimeUs, deltaMicrosPositionUpdate);
}
else {
resetFixedWingPositionController();
}
// Indicate that information is no longer usable
posControl.flags.horizontalPositionDataConsumed = 1;
}
isRollAdjustmentValid = true;
}
else {
// No valid pos sensor data, don't adjust pitch automatically, rcCommand[ROLL] is passed through to PID controller
isRollAdjustmentValid = false;
}
}
int16_t applyFixedWingMinSpeedController(timeUs_t currentTimeUs)
{
static timeUs_t previousTimePositionUpdate; // Occurs @ GPS update rate
static timeUs_t previousTimeUpdate; // Occurs @ looptime rate
const timeDelta_t deltaMicros = currentTimeUs - previousTimeUpdate;
previousTimeUpdate = currentTimeUs;
// If last position update was too long in the past - ignore it (likely restarting altitude controller)
if (deltaMicros > HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
previousTimeUpdate = currentTimeUs;
previousTimePositionUpdate = currentTimeUs;
throttleSpeedAdjustment = 0;
return 0;
}
// Apply controller only if position source is valid
if (posControl.flags.hasValidPositionSensor) {
// If we have new position - update velocity and acceleration controllers
if (posControl.flags.horizontalPositionDataNew) {
const timeDelta_t deltaMicrosPositionUpdate = currentTimeUs - previousTimePositionUpdate;
previousTimePositionUpdate = currentTimeUs;
if (deltaMicrosPositionUpdate < HZ2US(MIN_POSITION_UPDATE_RATE_HZ)) {
float velThrottleBoost = (NAV_FW_MIN_VEL_SPEED_BOOST - posControl.actualState.velXY) * NAV_FW_THROTTLE_SPEED_BOOST_GAIN * US2S(deltaMicrosPositionUpdate);
// If we are in the deadband of 50cm/s - don't update speed boost
if (ABS(posControl.actualState.velXY - NAV_FW_MIN_VEL_SPEED_BOOST) > 50) {
throttleSpeedAdjustment += velThrottleBoost;
}
throttleSpeedAdjustment = constrainf(throttleSpeedAdjustment, 0.0f, 500.0f);
}
else {
throttleSpeedAdjustment = 0;
}
// Indicate that information is no longer usable
posControl.flags.horizontalPositionDataConsumed = 1;
}
}
else {
// No valid pos sensor data, we can't calculate speed
throttleSpeedAdjustment = 0;
}
return throttleSpeedAdjustment;
}
void applyFixedWingPitchRollThrottleController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
{
int16_t pitchCorrection = 0; // >0 climb, <0 dive
int16_t rollCorrection = 0; // >0 right, <0 left
int16_t throttleCorrection = 0; // raw throttle
int16_t minThrottleCorrection = navConfig()->fw.min_throttle - navConfig()->fw.cruise_throttle;
int16_t maxThrottleCorrection = navConfig()->fw.max_throttle - navConfig()->fw.cruise_throttle;
// Mix Pitch/Roll/Throttle
if (isRollAdjustmentValid && (navStateFlags & NAV_CTL_POS)) {
pitchCorrection += ABS(posControl.rcAdjustment[ROLL]) * (navConfig()->fw.roll_to_pitch / 100.0f);
rollCorrection += posControl.rcAdjustment[ROLL];
}
if (isPitchAdjustmentValid && (navStateFlags & NAV_CTL_ALT)) {
pitchCorrection += posControl.rcAdjustment[PITCH];
throttleCorrection += DECIDEGREES_TO_DEGREES(pitchCorrection) * navConfig()->fw.pitch_to_throttle;
throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, maxThrottleCorrection);
}
// Speed controller - only apply in POS mode
if (navStateFlags & NAV_CTL_POS) {
throttleCorrection += applyFixedWingMinSpeedController(currentTimeUs);
throttleCorrection = constrain(throttleCorrection, minThrottleCorrection, maxThrottleCorrection);
}
// Limit and apply
if (isPitchAdjustmentValid && (navStateFlags & NAV_CTL_ALT)) {
// PITCH angle is measured in opposite direction ( >0 - dive, <0 - climb)
pitchCorrection = constrain(pitchCorrection, -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle));
rcCommand[PITCH] = -pidAngleToRcCommand(pitchCorrection, pidProfile()->max_angle_inclination[FD_PITCH]);
}
if (isRollAdjustmentValid && (navStateFlags & NAV_CTL_POS)) {
rollCorrection = constrain(rollCorrection, -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_bank_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_bank_angle));
rcCommand[ROLL] = pidAngleToRcCommand(rollCorrection, pidProfile()->max_angle_inclination[FD_ROLL]);
// Calculate coordinated turn rate based on velocity and banking angle
if (posControl.actualState.velXY >= 300.0f) {
float targetYawRateDPS = RADIANS_TO_DEGREES(tan_approx(DECIDEGREES_TO_RADIANS(-rollCorrection)) * GRAVITY_CMSS / posControl.actualState.velXY);
rcCommand[YAW] = pidRateToRcCommand(targetYawRateDPS, currentControlRateProfile->rates[FD_YAW]);
}
else {
rcCommand[YAW] = 0;
}
}
if ((navStateFlags & NAV_CTL_ALT) || (navStateFlags & NAV_CTL_POS)) {
uint16_t correctedThrottleValue = constrain(navConfig()->fw.cruise_throttle + throttleCorrection, navConfig()->fw.min_throttle, navConfig()->fw.max_throttle);
rcCommand[THROTTLE] = constrain(correctedThrottleValue, motorConfig()->minthrottle, motorConfig()->maxthrottle);
}
}
/*-----------------------------------------------------------
* FixedWing land detector
*-----------------------------------------------------------*/
static timeUs_t landingTimerUs;
void resetFixedWingLandingDetector(void)
{
landingTimerUs = micros();
}
bool isFixedWingLandingDetected(void)
{
timeUs_t currentTimeUs = micros();
landingTimerUs = currentTimeUs;
return false;
}
/*-----------------------------------------------------------
* FixedWing emergency landing
*-----------------------------------------------------------*/
void applyFixedWingEmergencyLandingController(void)
{
// FIXME: Use altitude controller if available (similar to MC code)
rcCommand[ROLL] = pidAngleToRcCommand(failsafeConfig()->failsafe_fw_roll_angle, pidProfile()->max_angle_inclination[FD_ROLL]);
rcCommand[PITCH] = pidAngleToRcCommand(failsafeConfig()->failsafe_fw_pitch_angle, pidProfile()->max_angle_inclination[FD_PITCH]);
rcCommand[YAW] = pidRateToRcCommand(failsafeConfig()->failsafe_fw_yaw_rate, currentControlRateProfile->rates[FD_YAW]);
rcCommand[THROTTLE] = failsafeConfig()->failsafe_throttle;
}
/*-----------------------------------------------------------
* Calculate loiter target based on current position and velocity
*-----------------------------------------------------------*/
void calculateFixedWingInitialHoldPosition(t_fp_vector * pos)
{
// TODO: stub, this should account for velocity and target loiter radius
*pos = posControl.actualState.pos;
}
void resetFixedWingHeadingController(void)
{
updateMagHoldHeading(CENTIDEGREES_TO_DEGREES(posControl.actualState.yaw));
}
void applyFixedWingNavigationController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
{
if (navStateFlags & NAV_CTL_LAUNCH) {
applyFixedWingLaunchController(currentTimeUs);
}
else if (navStateFlags & NAV_CTL_EMERG) {
applyFixedWingEmergencyLandingController();
}
else {
#ifdef NAV_FW_LIMIT_MIN_FLY_VELOCITY
// Don't apply anything if ground speed is too low (<3m/s)
if (posControl.actualState.velXY > 300) {
if (navStateFlags & NAV_CTL_ALT)
applyFixedWingAltitudeController(currentTimeUs);
if (navStateFlags & NAV_CTL_POS)
applyFixedWingPositionController(currentTimeUs);
}
else {
posControl.rcAdjustment[PITCH] = 0;
posControl.rcAdjustment[ROLL] = 0;
}
#else
if (navStateFlags & NAV_CTL_ALT)
applyFixedWingAltitudeController(currentTimeUs);
if (navStateFlags & NAV_CTL_POS)
applyFixedWingPositionController(currentTimeUs);
#endif
//if (navStateFlags & NAV_CTL_YAW)
if ((navStateFlags & NAV_CTL_ALT) || (navStateFlags & NAV_CTL_POS))
applyFixedWingPitchRollThrottleController(navStateFlags, currentTimeUs);
}
}
#endif // NAV