1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-15 04:15:38 +03:00

Minor changes to directory structure to reflect changes in Cleanflight and betaflight

This commit is contained in:
Martin Budden 2016-08-08 18:08:18 +01:00
parent 9e214889c9
commit 944adb06f8
106 changed files with 357 additions and 216 deletions

708
src/main/fc/rc_controls.c Normal file
View file

@ -0,0 +1,708 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "platform.h"
#include "build/build_config.h"
#include "common/axis.h"
#include "common/maths.h"
#include "drivers/system.h"
#include "drivers/sensor.h"
#include "drivers/accgyro.h"
#include "sensors/barometer.h"
#include "sensors/battery.h"
#include "sensors/sensors.h"
#include "sensors/gyro.h"
#include "sensors/acceleration.h"
#include "rx/rx.h"
#include "io/gps.h"
#include "io/beeper.h"
#include "io/escservo.h"
#include "fc/rc_controls.h"
#include "fc/rc_curves.h"
#include "fc/runtime_config.h"
#include "io/display.h"
#include "flight/pid.h"
#include "flight/navigation_rewrite.h"
#include "flight/failsafe.h"
#include "config/config.h"
#include "blackbox/blackbox.h"
#include "mw.h"
#define AIRMODE_DEADBAND 25
static escAndServoConfig_t *escAndServoConfig;
static pidProfile_t *pidProfile;
// true if arming is done via the sticks (as opposed to a switch)
static bool isUsingSticksToArm = true;
#ifdef NAV
// true if pilot has any of GPS modes configured
static bool isUsingNAVModes = false;
#endif
int16_t rcCommand[4]; // interval [1000;2000] for THROTTLE and [-500;+500] for ROLL/PITCH/YAW
uint32_t rcModeActivationMask; // one bit per mode defined in boxId_e
void blackboxLogInflightAdjustmentEvent(adjustmentFunction_e adjustmentFunction, int32_t newValue) {
#ifndef BLACKBOX
UNUSED(adjustmentFunction);
UNUSED(newValue);
#else
if (feature(FEATURE_BLACKBOX)) {
flightLogEvent_inflightAdjustment_t eventData;
eventData.adjustmentFunction = adjustmentFunction;
eventData.newValue = newValue;
eventData.floatFlag = false;
blackboxLogEvent(FLIGHT_LOG_EVENT_INFLIGHT_ADJUSTMENT, (flightLogEventData_t*)&eventData);
}
#endif
}
void blackboxLogInflightAdjustmentEventFloat(adjustmentFunction_e adjustmentFunction, float newFloatValue) {
#ifndef BLACKBOX
UNUSED(adjustmentFunction);
UNUSED(newFloatValue);
#else
if (feature(FEATURE_BLACKBOX)) {
flightLogEvent_inflightAdjustment_t eventData;
eventData.adjustmentFunction = adjustmentFunction;
eventData.newFloatValue = newFloatValue;
eventData.floatFlag = true;
blackboxLogEvent(FLIGHT_LOG_EVENT_INFLIGHT_ADJUSTMENT, (flightLogEventData_t*)&eventData);
}
#endif
}
bool isUsingSticksForArming(void)
{
return isUsingSticksToArm;
}
#if defined(NAV)
bool isUsingNavigationModes(void)
{
return isUsingNAVModes;
}
#endif
bool areSticksInApModePosition(uint16_t ap_mode)
{
return ABS(rcCommand[ROLL]) < ap_mode && ABS(rcCommand[PITCH]) < ap_mode;
}
throttleStatus_e calculateThrottleStatus(rxConfig_t *rxConfig, uint16_t deadband3d_throttle)
{
if (feature(FEATURE_3D) && (rcData[THROTTLE] > (rxConfig->midrc - deadband3d_throttle) && rcData[THROTTLE] < (rxConfig->midrc + deadband3d_throttle)))
return THROTTLE_LOW;
else if (!feature(FEATURE_3D) && (rcData[THROTTLE] < rxConfig->mincheck))
return THROTTLE_LOW;
return THROTTLE_HIGH;
}
rollPitchStatus_e calculateRollPitchCenterStatus(rxConfig_t *rxConfig)
{
if (((rcData[PITCH] < (rxConfig->midrc + AIRMODE_DEADBAND)) && (rcData[PITCH] > (rxConfig->midrc -AIRMODE_DEADBAND)))
&& ((rcData[ROLL] < (rxConfig->midrc + AIRMODE_DEADBAND)) && (rcData[ROLL] > (rxConfig->midrc -AIRMODE_DEADBAND))))
return CENTERED;
return NOT_CENTERED;
}
void processRcStickPositions(rxConfig_t *rxConfig, throttleStatus_e throttleStatus, bool disarm_kill_switch)
{
static uint8_t rcDelayCommand; // this indicates the number of time (multiple of RC measurement at 50Hz) the sticks must be maintained to run or switch off motors
static uint8_t rcSticks; // this hold sticks position for command combos
uint8_t stTmp = 0;
int i;
// ------------------ STICKS COMMAND HANDLER --------------------
// checking sticks positions
for (i = 0; i < 4; i++) {
stTmp >>= 2;
if (rcData[i] > rxConfig->mincheck)
stTmp |= 0x80; // check for MIN
if (rcData[i] < rxConfig->maxcheck)
stTmp |= 0x40; // check for MAX
}
if (stTmp == rcSticks) {
if (rcDelayCommand < 250)
rcDelayCommand++;
} else
rcDelayCommand = 0;
rcSticks = stTmp;
// perform actions
if (!isUsingSticksToArm) {
if (IS_RC_MODE_ACTIVE(BOXARM)) {
// Arming via ARM BOX
if (throttleStatus == THROTTLE_LOW) {
if (ARMING_FLAG(OK_TO_ARM)) {
mwArm();
}
}
} else {
// Disarming via ARM BOX
if (ARMING_FLAG(ARMED) && rxIsReceivingSignal() && !failsafeIsActive() ) {
if (disarm_kill_switch) {
mwDisarm();
} else if (throttleStatus == THROTTLE_LOW) {
mwDisarm();
}
}
}
}
if (rcDelayCommand != 20) {
return;
}
if (isUsingSticksToArm) {
// Disarm on throttle down + yaw
if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_CE) {
if (ARMING_FLAG(ARMED))
mwDisarm();
else {
beeper(BEEPER_DISARM_REPEAT); // sound tone while stick held
rcDelayCommand = 0; // reset so disarm tone will repeat
}
}
}
if (ARMING_FLAG(ARMED)) {
// actions during armed
return;
}
// actions during not armed
i = 0;
if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_CE) {
// GYRO calibration
gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
return;
}
// Multiple configuration profiles
if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_LO) // ROLL left -> Profile 1
i = 1;
else if (rcSticks == THR_LO + YAW_LO + PIT_HI + ROL_CE) // PITCH up -> Profile 2
i = 2;
else if (rcSticks == THR_LO + YAW_LO + PIT_CE + ROL_HI) // ROLL right -> Profile 3
i = 3;
if (i) {
changeProfile(i - 1);
return;
}
if (rcSticks == THR_LO + YAW_LO + PIT_LO + ROL_HI) {
saveConfigAndNotify();
}
if (isUsingSticksToArm) {
if (rcSticks == THR_LO + YAW_HI + PIT_CE + ROL_CE) {
// Arm via YAW
mwArm();
return;
}
}
if (rcSticks == THR_HI + YAW_LO + PIT_LO + ROL_CE) {
// Calibrating Acc
accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
return;
}
if (rcSticks == THR_HI + YAW_HI + PIT_LO + ROL_CE) {
// Calibrating Mag
ENABLE_STATE(CALIBRATE_MAG);
return;
}
// Accelerometer Trim
if (rcSticks == THR_HI + YAW_CE + PIT_HI + ROL_CE) {
applyAndSaveBoardAlignmentDelta(0, -2);
rcDelayCommand = 10;
return;
} else if (rcSticks == THR_HI + YAW_CE + PIT_LO + ROL_CE) {
applyAndSaveBoardAlignmentDelta(0, 2);
rcDelayCommand = 10;
return;
} else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_HI) {
applyAndSaveBoardAlignmentDelta(-2, 0);
rcDelayCommand = 10;
return;
} else if (rcSticks == THR_HI + YAW_CE + PIT_CE + ROL_LO) {
applyAndSaveBoardAlignmentDelta(2, 0);
rcDelayCommand = 10;
return;
}
}
bool isModeActivationConditionPresent(modeActivationCondition_t *modeActivationConditions, boxId_e modeId)
{
uint8_t index;
for (index = 0; index < MAX_MODE_ACTIVATION_CONDITION_COUNT; index++) {
modeActivationCondition_t *modeActivationCondition = &modeActivationConditions[index];
if (modeActivationCondition->modeId == modeId && IS_RANGE_USABLE(&modeActivationCondition->range)) {
return true;
}
}
return false;
}
bool isRangeActive(uint8_t auxChannelIndex, channelRange_t *range) {
if (!IS_RANGE_USABLE(range)) {
return false;
}
uint16_t channelValue = constrain(rcData[auxChannelIndex + NON_AUX_CHANNEL_COUNT], CHANNEL_RANGE_MIN, CHANNEL_RANGE_MAX - 1);
return (channelValue >= 900 + (range->startStep * 25) &&
channelValue < 900 + (range->endStep * 25));
}
void updateActivatedModes(modeActivationCondition_t *modeActivationConditions, modeActivationOperator_e modeActivationOperator)
{
uint8_t modeIndex;
// Unfortunately for AND logic it's not enough to simply check if any of the specified channel range conditions are valid for a mode.
// We need to count the total number of conditions specified for each mode, and check that all those conditions are currently valid.
uint8_t specifiedConditionCountPerMode[CHECKBOX_ITEM_COUNT];
uint8_t validConditionCountPerMode[CHECKBOX_ITEM_COUNT];
memset(specifiedConditionCountPerMode, 0, CHECKBOX_ITEM_COUNT);
memset(validConditionCountPerMode, 0, CHECKBOX_ITEM_COUNT);
for (modeIndex = 0; modeIndex < MAX_MODE_ACTIVATION_CONDITION_COUNT; modeIndex++) {
modeActivationCondition_t *modeActivationCondition = &modeActivationConditions[modeIndex];
// Increment the number of specified conditions for this mode
specifiedConditionCountPerMode[modeActivationCondition->modeId]++;
if (isRangeActive(modeActivationCondition->auxChannelIndex, &modeActivationCondition->range)) {
// Increment the number of valid conditions for this mode
validConditionCountPerMode[modeActivationCondition->modeId]++;
}
}
// Disable all modes to begin with
rcModeActivationMask = 0;
// Now see which modes should be enabled
for (modeIndex = 0; modeIndex < CHECKBOX_ITEM_COUNT; modeIndex++) {
// only modes with conditions specified are considered
if (specifiedConditionCountPerMode[modeIndex] > 0) {
// For AND logic, the specified condition count and valid condition count must be the same.
// For OR logic, the valid condition count must be greater than zero.
if (modeActivationOperator == MODE_OPERATOR_AND) {
// AND the conditions
if (validConditionCountPerMode[modeIndex] == specifiedConditionCountPerMode[modeIndex]) {
ACTIVATE_RC_MODE(modeIndex);
}
}
else {
// OR the conditions
if (validConditionCountPerMode[modeIndex] > 0) {
ACTIVATE_RC_MODE(modeIndex);
}
}
}
}
}
uint8_t adjustmentStateMask = 0;
#define MARK_ADJUSTMENT_FUNCTION_AS_BUSY(adjustmentIndex) adjustmentStateMask |= (1 << adjustmentIndex)
#define MARK_ADJUSTMENT_FUNCTION_AS_READY(adjustmentIndex) adjustmentStateMask &= ~(1 << adjustmentIndex)
#define IS_ADJUSTMENT_FUNCTION_BUSY(adjustmentIndex) (adjustmentStateMask & (1 << adjustmentIndex))
// sync with adjustmentFunction_e
static const adjustmentConfig_t defaultAdjustmentConfigs[ADJUSTMENT_FUNCTION_COUNT - 1] = {
{
.adjustmentFunction = ADJUSTMENT_RC_RATE,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_RC_EXPO,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_THROTTLE_EXPO,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_ROLL_RATE,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_YAW_RATE,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_ROLL_P,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_ROLL_I,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_ROLL_D,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_YAW_P,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_YAW_I,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_YAW_D,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_RATE_PROFILE,
.mode = ADJUSTMENT_MODE_SELECT,
.data = { .selectConfig = { .switchPositions = 3 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_RATE,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_ROLL_RATE,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_P,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_I,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_PITCH_D,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_ROLL_P,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_ROLL_I,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
},
{
.adjustmentFunction = ADJUSTMENT_ROLL_D,
.mode = ADJUSTMENT_MODE_STEP,
.data = { .stepConfig = { .step = 1 }}
}
};
#define ADJUSTMENT_FUNCTION_CONFIG_INDEX_OFFSET 1
adjustmentState_t adjustmentStates[MAX_SIMULTANEOUS_ADJUSTMENT_COUNT];
void configureAdjustment(uint8_t index, uint8_t auxSwitchChannelIndex, const adjustmentConfig_t *adjustmentConfig) {
adjustmentState_t *adjustmentState = &adjustmentStates[index];
if (adjustmentState->config == adjustmentConfig) {
// already configured
return;
}
adjustmentState->auxChannelIndex = auxSwitchChannelIndex;
adjustmentState->config = adjustmentConfig;
adjustmentState->timeoutAt = 0;
MARK_ADJUSTMENT_FUNCTION_AS_READY(index);
}
void applyStepAdjustment(controlRateConfig_t *controlRateConfig, uint8_t adjustmentFunction, int delta) {
int newValue;
if (delta > 0) {
beeperConfirmationBeeps(2);
} else {
beeperConfirmationBeeps(1);
}
switch(adjustmentFunction) {
case ADJUSTMENT_RC_EXPO:
newValue = constrain((int)controlRateConfig->rcExpo8 + delta, 0, 100); // FIXME magic numbers repeated in serial_cli.c
controlRateConfig->rcExpo8 = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_RC_EXPO, newValue);
break;
case ADJUSTMENT_THROTTLE_EXPO:
newValue = constrain((int)controlRateConfig->thrExpo8 + delta, 0, 100); // FIXME magic numbers repeated in serial_cli.c
controlRateConfig->thrExpo8 = newValue;
generateThrottleCurve(controlRateConfig, escAndServoConfig);
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_THROTTLE_EXPO, newValue);
break;
case ADJUSTMENT_PITCH_ROLL_RATE:
case ADJUSTMENT_PITCH_RATE:
newValue = constrain((int)controlRateConfig->rates[FD_PITCH] + delta, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MIN, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MAX);
controlRateConfig->rates[FD_PITCH] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_PITCH_RATE, newValue);
if (adjustmentFunction == ADJUSTMENT_PITCH_RATE) {
break;
}
// follow though for combined ADJUSTMENT_PITCH_ROLL_RATE
case ADJUSTMENT_ROLL_RATE:
newValue = constrain((int)controlRateConfig->rates[FD_ROLL] + delta, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MIN, CONTROL_RATE_CONFIG_ROLL_PITCH_RATE_MAX);
controlRateConfig->rates[FD_ROLL] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_ROLL_RATE, newValue);
break;
case ADJUSTMENT_YAW_RATE:
newValue = constrain((int)controlRateConfig->rates[FD_YAW] + delta, CONTROL_RATE_CONFIG_YAW_RATE_MIN, CONTROL_RATE_CONFIG_YAW_RATE_MAX);
controlRateConfig->rates[FD_YAW] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_YAW_RATE, newValue);
break;
case ADJUSTMENT_PITCH_ROLL_P:
case ADJUSTMENT_PITCH_P:
newValue = constrain((int)pidProfile->P8[PIDPITCH] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->P8[PIDPITCH] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_PITCH_P, newValue);
if (adjustmentFunction == ADJUSTMENT_PITCH_P) {
break;
}
// follow though for combined ADJUSTMENT_PITCH_ROLL_P
case ADJUSTMENT_ROLL_P:
newValue = constrain((int)pidProfile->P8[PIDROLL] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->P8[PIDROLL] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_ROLL_P, newValue);
break;
case ADJUSTMENT_PITCH_ROLL_I:
case ADJUSTMENT_PITCH_I:
newValue = constrain((int)pidProfile->I8[PIDPITCH] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->I8[PIDPITCH] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_PITCH_I, newValue);
if (adjustmentFunction == ADJUSTMENT_PITCH_I) {
break;
}
// follow though for combined ADJUSTMENT_PITCH_ROLL_I
case ADJUSTMENT_ROLL_I:
newValue = constrain((int)pidProfile->I8[PIDROLL] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->I8[PIDROLL] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_ROLL_I, newValue);
break;
case ADJUSTMENT_PITCH_ROLL_D:
case ADJUSTMENT_PITCH_D:
newValue = constrain((int)pidProfile->D8[PIDPITCH] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->D8[PIDPITCH] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_PITCH_D, newValue);
if (adjustmentFunction == ADJUSTMENT_PITCH_D) {
break;
}
// follow though for combined ADJUSTMENT_PITCH_ROLL_D
case ADJUSTMENT_ROLL_D:
newValue = constrain((int)pidProfile->D8[PIDROLL] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->D8[PIDROLL] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_ROLL_D, newValue);
break;
case ADJUSTMENT_YAW_P:
newValue = constrain((int)pidProfile->P8[PIDYAW] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->P8[PIDYAW] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_YAW_P, newValue);
break;
case ADJUSTMENT_YAW_I:
newValue = constrain((int)pidProfile->I8[PIDYAW] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->I8[PIDYAW] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_YAW_I, newValue);
break;
case ADJUSTMENT_YAW_D:
newValue = constrain((int)pidProfile->D8[PIDYAW] + delta, 0, 200); // FIXME magic numbers repeated in serial_cli.c
pidProfile->D8[PIDYAW] = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_YAW_D, newValue);
break;
default:
break;
};
}
void changeControlRateProfile(uint8_t profileIndex);
void applySelectAdjustment(uint8_t adjustmentFunction, uint8_t position)
{
bool applied = false;
switch(adjustmentFunction) {
case ADJUSTMENT_RATE_PROFILE:
if (getCurrentControlRateProfile() != position) {
changeControlRateProfile(position);
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_RATE_PROFILE, position);
applied = true;
}
break;
}
if (applied) {
beeperConfirmationBeeps(position + 1);
}
}
#define RESET_FREQUENCY_2HZ (1000 / 2)
void processRcAdjustments(controlRateConfig_t *controlRateConfig, rxConfig_t *rxConfig)
{
uint8_t adjustmentIndex;
uint32_t now = millis();
bool canUseRxData = rxIsReceivingSignal();
for (adjustmentIndex = 0; adjustmentIndex < MAX_SIMULTANEOUS_ADJUSTMENT_COUNT; adjustmentIndex++) {
adjustmentState_t *adjustmentState = &adjustmentStates[adjustmentIndex];
if (!adjustmentState->config) {
continue;
}
uint8_t adjustmentFunction = adjustmentState->config->adjustmentFunction;
if (adjustmentFunction == ADJUSTMENT_NONE) {
continue;
}
int32_t signedDiff = now - adjustmentState->timeoutAt;
bool canResetReadyStates = signedDiff >= 0L;
if (canResetReadyStates) {
adjustmentState->timeoutAt = now + RESET_FREQUENCY_2HZ;
MARK_ADJUSTMENT_FUNCTION_AS_READY(adjustmentIndex);
}
if (!canUseRxData) {
continue;
}
uint8_t channelIndex = NON_AUX_CHANNEL_COUNT + adjustmentState->auxChannelIndex;
if (adjustmentState->config->mode == ADJUSTMENT_MODE_STEP) {
int delta;
if (rcData[channelIndex] > rxConfig->midrc + 200) {
delta = adjustmentState->config->data.stepConfig.step;
} else if (rcData[channelIndex] < rxConfig->midrc - 200) {
delta = 0 - adjustmentState->config->data.stepConfig.step;
} else {
// returning the switch to the middle immediately resets the ready state
MARK_ADJUSTMENT_FUNCTION_AS_READY(adjustmentIndex);
adjustmentState->timeoutAt = now + RESET_FREQUENCY_2HZ;
continue;
}
if (IS_ADJUSTMENT_FUNCTION_BUSY(adjustmentIndex)) {
continue;
}
applyStepAdjustment(controlRateConfig, adjustmentFunction, delta);
} else if (adjustmentState->config->mode == ADJUSTMENT_MODE_SELECT) {
uint16_t rangeWidth = ((2100 - 900) / adjustmentState->config->data.selectConfig.switchPositions);
uint8_t position = (constrain(rcData[channelIndex], 900, 2100 - 1) - 900) / rangeWidth;
applySelectAdjustment(adjustmentFunction, position);
}
MARK_ADJUSTMENT_FUNCTION_AS_BUSY(adjustmentIndex);
}
}
void updateAdjustmentStates(adjustmentRange_t *adjustmentRanges)
{
uint8_t index;
for (index = 0; index < MAX_ADJUSTMENT_RANGE_COUNT; index++) {
adjustmentRange_t *adjustmentRange = &adjustmentRanges[index];
if (isRangeActive(adjustmentRange->auxChannelIndex, &adjustmentRange->range)) {
const adjustmentConfig_t *adjustmentConfig = &defaultAdjustmentConfigs[adjustmentRange->adjustmentFunction - ADJUSTMENT_FUNCTION_CONFIG_INDEX_OFFSET];
configureAdjustment(adjustmentRange->adjustmentIndex, adjustmentRange->auxSwitchChannelIndex, adjustmentConfig);
}
}
}
int32_t getRcStickDeflection(int32_t axis, uint16_t midrc) {
return MIN(ABS(rcData[axis] - midrc), 500);
}
void useRcControlsConfig(modeActivationCondition_t *modeActivationConditions, escAndServoConfig_t *escAndServoConfigToUse, pidProfile_t *pidProfileToUse)
{
escAndServoConfig = escAndServoConfigToUse;
pidProfile = pidProfileToUse;
isUsingSticksToArm = !isModeActivationConditionPresent(modeActivationConditions, BOXARM);
#ifdef NAV
isUsingNAVModes = isModeActivationConditionPresent(modeActivationConditions, BOXNAVPOSHOLD) ||
isModeActivationConditionPresent(modeActivationConditions, BOXNAVRTH) ||
isModeActivationConditionPresent(modeActivationConditions, BOXNAVWP);
#endif
}
void resetAdjustmentStates(void)
{
memset(adjustmentStates, 0, sizeof(adjustmentStates));
}