1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-24 08:45:31 +03:00

First cut on telemetry

This commit is contained in:
Pawel Spychalski (DzikuVx) 2021-07-15 09:46:43 +02:00
parent 0ab0174e81
commit a3aff38ce3
6 changed files with 640 additions and 387 deletions

View file

@ -581,6 +581,8 @@ main_sources(COMMON_SRC
telemetry/ghst.h
telemetry/hott.c
telemetry/hott.h
telemetry/jetiexbus.c
telemetry/jetiexbus.h
telemetry/ibus_shared.c
telemetry/ibus_shared.h
telemetry/ibus.c

View file

@ -1,19 +1,24 @@
/*
* This file is part of Cleanflight.
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Authors:
* Thomas Miric - marv-t
*
@ -28,15 +33,12 @@
* Number of channels: 16
*
* Connect as follows:
* Jeti EX Bus -> Serial RX (connect directly)
* Serial TX -> Resistor(2k4) ->Serial RX
* In jeti pdf it is different, but if the resistor breaks, the receiver continues to operate.
*
* Jeti EX Bus -> Serial TX (connect directly)
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
@ -47,8 +49,6 @@
#include "common/utils.h"
#include "drivers/serial.h"
#include "drivers/serial_uart.h"
#include "drivers/time.h"
#include "io/serial.h"
@ -56,176 +56,49 @@
#include "rx/rx.h"
#include "rx/jetiexbus.h"
#ifdef USE_TELEMETRY
#include "sensors/sensors.h"
#include "sensors/battery.h"
#include "sensors/barometer.h"
#include "telemetry/telemetry.h"
#include "telemetry/jetiexbus.h"
#endif // TELEMETRY
//
// Serial driver for Jeti EX Bus receiver
//
#define JETIEXBUS_BAUDRATE 125000 // EX Bus 125000; EX Bus HS 250000 not supported
#define JETIEXBUS_OPTIONS (SERIAL_STOPBITS_1 | SERIAL_PARITY_NO | SERIAL_NOT_INVERTED)
#define JETIEXBUS_OPTIONS (SERIAL_STOPBITS_1 | SERIAL_PARITY_NO)
#define JETIEXBUS_MIN_FRAME_GAP 1000
#define JETIEXBUS_CHANNEL_COUNT 16 // most Jeti TX transmit 16 channels
#define EXBUS_HEADER_LEN 6
#define EXBUS_CRC_LEN 2
#define EXBUS_OVERHEAD (EXBUS_HEADER_LEN + EXBUS_CRC_LEN)
#define EXBUS_MAX_CHANNEL_FRAME_SIZE (EXBUS_HEADER_LEN + JETIEXBUS_CHANNEL_COUNT*2 + EXBUS_CRC_LEN)
#define EXBUS_MAX_REQUEST_FRAME_SIZE 9
#define EXBUS_START_CHANNEL_FRAME (0x3E)
#define EXBUS_START_REQUEST_FRAME (0x3D)
#define EXBUS_EX_REQUEST (0x3A)
#define EXBUS_JETIBOX_REQUEST (0x3B)
#define EXBUS_CHANNELDATA (0x3E03) // Frame contains Channel Data
#define EXBUS_CHANNELDATA_DATA_REQUEST (0x3E01) // Frame contains Channel Data, but with a request for data
#define EXBUS_TELEMETRY_REQUEST (0x3D01) // Frame is a request Frame
enum {
EXBUS_STATE_ZERO = 0,
EXBUS_STATE_IN_PROGRESS,
EXBUS_STATE_RECEIVED,
EXBUS_STATE_PROCESSED
};
enum {
EXBUS_TRANS_ZERO = 0,
EXBUS_TRANS_RX_READY,
EXBUS_TRANS_RX,
EXBUS_TRANS_IS_TX_COMPLETED,
EXBUS_TRANS_TX
};
enum exBusHeader_e {
EXBUS_HEADER_SYNC = 0,
EXBUS_HEADER_REQ,
EXBUS_HEADER_MSG_LEN,
EXBUS_HEADER_PACKET_ID,
EXBUS_HEADER_DATA_ID,
EXBUS_HEADER_SUBLEN,
EXBUS_HEADER_DATA
};
#ifdef USE_TELEMETRY
#define EXTEL_DATA_MSG (0x40)
#define EXTEL_UNMASK_TYPE (0x3F)
#define EXTEL_SYNC_LEN 1
#define EXTEL_CRC_LEN 1
#define EXTEL_HEADER_LEN 6
#define EXTEL_MAX_LEN 29
#define EXTEL_OVERHEAD (EXTEL_SYNC_LEN + EXTEL_HEADER_LEN + EXTEL_CRC_LEN)
#define EXTEL_MAX_PAYLOAD (EXTEL_MAX_LEN - EXTEL_OVERHEAD)
#define EXBUS_MAX_REQUEST_BUFFER_SIZE (EXBUS_OVERHEAD + EXTEL_MAX_LEN)
enum exTelHeader_e {
EXTEL_HEADER_SYNC = 0,
EXTEL_HEADER_TYPE_LEN,
EXTEL_HEADER_USN_LB,
EXTEL_HEADER_USN_HB,
EXTEL_HEADER_LSN_LB,
EXTEL_HEADER_LSN_HB,
EXTEL_HEADER_RES,
EXTEL_HEADER_ID,
EXTEL_HEADER_DATA
};
enum exDataType_e {
EX_TYPE_6b = 0, // int6_t Data type 6b (-31 ¸31)
EX_TYPE_14b = 1, // int14_t Data type 14b (-8191 ¸8191)
EX_TYPE_22b = 4, // int22_t Data type 22b (-2097151 ¸2097151)
EX_TYPE_DT = 5, // int22_t Special data type time and date
EX_TYPE_30b = 8, // int30_t Data type 30b (-536870911 ¸536870911)
EX_TYPE_GPS = 9 // int30_t Special data type GPS coordinates: lo/hi minute - lo/hi degree.
};
const uint8_t exDataTypeLen[]={
[EX_TYPE_6b] = 1,
[EX_TYPE_14b] = 2,
[EX_TYPE_22b] = 3,
[EX_TYPE_DT] = 3,
[EX_TYPE_30b] = 4,
[EX_TYPE_GPS] = 4
};
typedef struct exBusSensor_s{
const char *label;
const char *unit;
int32_t value;
const uint8_t exDataType;
const uint8_t decimals;
} exBusSensor_t;
#define DECIMAL_MASK(decimals) (decimals << 5)
// list of telemetry messages
// after every 15 sensors a new header has to be inserted (e.g. "CF-Dev 1.12 S2")
exBusSensor_t jetiExSensors[] = {
{ "CF-Dev 1.12 S1", "", 0, 0, 0 }, // device descripton
{ "Voltage", "V", 0, EX_TYPE_14b, DECIMAL_MASK(1) },
{ "Current", "A", 0, EX_TYPE_14b, DECIMAL_MASK(2) },
{ "Altitude", "m", 0, EX_TYPE_14b, DECIMAL_MASK(1) },
{ "Capacity", "mAh", 0, EX_TYPE_22b, DECIMAL_MASK(0) },
{ "frames lost", " ", 0, EX_TYPE_22b, DECIMAL_MASK(0) }, // for debug only
{ "time Diff", "us", 0, EX_TYPE_14b, DECIMAL_MASK(0) } // for debug only
};
// after every 15 sensors increment the step by 2 (e.g. ...EX_VAL15, EX_VAL16 = 17) to skip the device description
enum exSensors_e {
EX_VOLTAGE = 1,
EX_CURRENT,
EX_ALTITUDE,
EX_CAPACITY,
EX_FRAMES_LOST, // for debug only
EX_TIME_DIFF // for debug only
};
serialPort_t *jetiExBusPort;
#define JETI_EX_SENSOR_COUNT (ARRAYLEN(jetiExSensors))
#endif //TELEMETRY
static serialPort_t *jetiExBusPort;
static uint32_t jetiTimeStampRequest = 0;
uint32_t jetiTimeStampRequest = 0;
static uint8_t jetiExBusFramePosition;
static uint8_t jetiExBusFrameLength;
static uint8_t jetiExBusFrameState = EXBUS_STATE_ZERO;
static uint8_t jetiExBusRequestState = EXBUS_STATE_ZERO;
uint8_t jetiExBusRequestState = EXBUS_STATE_ZERO;
// Use max values for ram areas
static uint8_t jetiExBusChannelFrame[EXBUS_MAX_CHANNEL_FRAME_SIZE];
static uint8_t jetiExBusRequestFrame[EXBUS_MAX_REQUEST_FRAME_SIZE];
uint8_t jetiExBusRequestFrame[EXBUS_MAX_REQUEST_FRAME_SIZE];
static uint16_t jetiExBusChannelData[JETIEXBUS_CHANNEL_COUNT];
#ifdef USE_TELEMETRY
static uint8_t jetiExBusTelemetryFrame[40];
static uint8_t jetiExBusTransceiveState = EXBUS_TRANS_RX;
static void sendJetiExBusTelemetry(uint8_t packetID);
uint8_t calcCRC8(uint8_t *pt, uint8_t msgLen);
#endif //TELEMETRY
// Jeti Ex Bus CRC calculations for a frame
uint16_t calcCRC16(uint8_t *pt, uint8_t msgLen)
uint16_t jetiExBusCalcCRC16(uint8_t *pt, uint8_t msgLen)
{
uint16_t crc16_data = 0;
uint8_t data=0;
for (uint8_t mlen = 0; mlen < msgLen; mlen++){
for (uint8_t mlen = 0; mlen < msgLen; mlen++) {
data = pt[mlen] ^ ((uint8_t)(crc16_data) & (uint8_t)(0xFF));
data ^= data << 4;
crc16_data = ((((uint16_t)data << 8) | ((crc16_data & 0xFF00) >> 8))
@ -235,31 +108,13 @@ uint16_t calcCRC16(uint8_t *pt, uint8_t msgLen)
return(crc16_data);
}
#ifdef USE_TELEMETRY
// Jeti Ex Telemetry CRC calculations for a frame
uint8_t calcCRC8(uint8_t *pt, uint8_t msgLen)
{
uint8_t crc=0;
for (uint8_t mlen = 0; mlen < msgLen; mlen++) {
crc ^= pt[mlen];
crc = crc ^ (crc << 1) ^ (crc << 2) ^ (0x0e090700 >> ((crc >> 3) & 0x18));
}
return(crc);
}
#endif //TELEMETRY
void jetiExBusDecodeChannelFrame(uint8_t *exBusFrame)
{
uint16_t value;
uint8_t frameAddr;
// Decode header
switch (((uint16_t)exBusFrame[EXBUS_HEADER_SYNC] << 8) | ((uint16_t)exBusFrame[EXBUS_HEADER_REQ])){
switch (((uint16_t)exBusFrame[EXBUS_HEADER_SYNC] << 8) | ((uint16_t)exBusFrame[EXBUS_HEADER_REQ])) {
case EXBUS_CHANNELDATA_DATA_REQUEST: // not yet specified
case EXBUS_CHANNELDATA:
@ -274,14 +129,12 @@ void jetiExBusDecodeChannelFrame(uint8_t *exBusFrame)
}
}
void jetiExBusFrameReset(void)
{
jetiExBusFramePosition = 0;
jetiExBusFrameLength = EXBUS_MAX_CHANNEL_FRAME_SIZE;
}
/*
supported:
0x3E 0x01 LEN Packet_ID 0x31 SUB_LEN Data_array CRC16 // Channel Data with telemetry request (2nd byte 0x01)
@ -294,31 +147,25 @@ void jetiExBusFrameReset(void)
*/
// Receive ISR callback
static void jetiExBusDataReceive(uint16_t c, void *rxCallbackData)
static void jetiExBusDataReceive(uint16_t c, void *data)
{
UNUSED(rxCallbackData);
UNUSED(data);
timeUs_t now;
static timeUs_t jetiExBusTimeLast = 0;
static timeDelta_t jetiExBusTimeInterval;
static uint8_t *jetiExBusFrame;
const timeUs_t now = microsISR();
// Check if we shall reset frame position due to time
now = micros();
jetiExBusTimeInterval = cmpTimeUs(now, jetiExBusTimeLast);
jetiExBusTimeLast = now;
if (jetiExBusTimeInterval > JETIEXBUS_MIN_FRAME_GAP) {
if (cmpTimeUs(now, jetiExBusTimeLast) > JETIEXBUS_MIN_FRAME_GAP) {
jetiExBusFrameReset();
jetiExBusFrameState = EXBUS_STATE_ZERO;
jetiExBusRequestState = EXBUS_STATE_ZERO;
}
jetiExBusTimeLast = now;
// Check if we shall start a frame?
if (jetiExBusFramePosition == 0) {
switch (c){
switch (c) {
case EXBUS_START_CHANNEL_FRAME:
jetiExBusFrameState = EXBUS_STATE_IN_PROGRESS;
jetiExBusFrame = jetiExBusChannelFrame;
@ -363,32 +210,30 @@ static void jetiExBusDataReceive(uint16_t c, void *rxCallbackData)
jetiExBusFrameState = EXBUS_STATE_RECEIVED;
if (jetiExBusRequestState == EXBUS_STATE_IN_PROGRESS) {
jetiExBusRequestState = EXBUS_STATE_RECEIVED;
jetiTimeStampRequest = micros();
jetiTimeStampRequest = now;
}
jetiExBusFrameReset();
}
}
// Check if it is time to read a frame from the data...
static uint8_t jetiExBusFrameStatus(rxRuntimeConfig_t *rxRuntimeConfig)
{
UNUSED(rxRuntimeConfig);
if (jetiExBusFrameState != EXBUS_STATE_RECEIVED)
return RX_FRAME_PENDING;
uint8_t frameStatus = RX_FRAME_PENDING;
if (calcCRC16(jetiExBusChannelFrame, jetiExBusChannelFrame[EXBUS_HEADER_MSG_LEN]) == 0) {
jetiExBusDecodeChannelFrame(jetiExBusChannelFrame);
if (jetiExBusFrameState == EXBUS_STATE_RECEIVED) {
if (jetiExBusCalcCRC16(jetiExBusChannelFrame, jetiExBusChannelFrame[EXBUS_HEADER_MSG_LEN]) == 0) {
jetiExBusDecodeChannelFrame(jetiExBusChannelFrame);
frameStatus = RX_FRAME_COMPLETE;
}
jetiExBusFrameState = EXBUS_STATE_ZERO;
return RX_FRAME_COMPLETE;
} else {
jetiExBusFrameState = EXBUS_STATE_ZERO;
return RX_FRAME_PENDING;
}
}
return frameStatus;
}
static uint16_t jetiExBusReadRawRC(const rxRuntimeConfig_t *rxRuntimeConfig, uint8_t chan)
{
@ -398,191 +243,6 @@ static uint16_t jetiExBusReadRawRC(const rxRuntimeConfig_t *rxRuntimeConfig, uin
return (jetiExBusChannelData[chan]);
}
#ifdef USE_TELEMETRY
/*
-----------------------------------------------
Jeti Ex Bus Telemetry
-----------------------------------------------
*/
void initJetiExBusTelemetry(void)
{
// Init Ex Bus Frame header
jetiExBusTelemetryFrame[EXBUS_HEADER_SYNC] = 0x3B; // Startbytes
jetiExBusTelemetryFrame[EXBUS_HEADER_REQ] = 0x01;
jetiExBusTelemetryFrame[EXBUS_HEADER_DATA_ID] = 0x3A; // Ex Telemetry
// Init Ex Telemetry header
uint8_t *jetiExTelemetryFrame = &jetiExBusTelemetryFrame[EXBUS_HEADER_DATA];
jetiExTelemetryFrame[EXTEL_HEADER_SYNC] = 0x9F; // Startbyte
jetiExTelemetryFrame[EXTEL_HEADER_USN_LB] = 0x1E; // Serial Number 4 Byte
jetiExTelemetryFrame[EXTEL_HEADER_USN_HB] = 0xA4;
jetiExTelemetryFrame[EXTEL_HEADER_LSN_LB] = 0x00; // increment by telemetry count (%16) > only 15 values per device possible
jetiExTelemetryFrame[EXTEL_HEADER_LSN_HB] = 0x00;
jetiExTelemetryFrame[EXTEL_HEADER_RES] = 0x00; // reserved, by default 0x00
}
void createExTelemetrieTextMessage(uint8_t *exMessage, uint8_t messageID, const exBusSensor_t *sensor)
{
uint8_t labelLength = strlen(sensor->label);
uint8_t unitLength = strlen(sensor->unit);
exMessage[EXTEL_HEADER_TYPE_LEN] = EXTEL_OVERHEAD + labelLength + unitLength;
exMessage[EXTEL_HEADER_LSN_LB] = messageID & 0xF0; // Device ID
exMessage[EXTEL_HEADER_ID] = messageID & 0x0F; // Sensor ID (%16)
exMessage[EXTEL_HEADER_DATA] = (labelLength << 3) + unitLength;
memcpy(&exMessage[EXTEL_HEADER_DATA + 1], sensor->label, labelLength);
memcpy(&exMessage[EXTEL_HEADER_DATA + 1 + labelLength], sensor->unit, unitLength);
exMessage[exMessage[EXTEL_HEADER_TYPE_LEN] + EXTEL_CRC_LEN] = calcCRC8(&exMessage[EXTEL_HEADER_TYPE_LEN], exMessage[EXTEL_HEADER_TYPE_LEN]);
}
uint8_t createExTelemetrieValueMessage(uint8_t *exMessage, uint8_t itemStart)
{
uint8_t item = itemStart;
uint8_t iCount;
uint8_t messageSize;
uint32_t sensorValue;
if ((item & 0x0F) == 0)
item++;
if (item >= JETI_EX_SENSOR_COUNT)
item = 1;
exMessage[EXTEL_HEADER_LSN_LB] = item & 0xF0; // Device ID
uint8_t *p = &exMessage[EXTEL_HEADER_ID];
while (item <= (itemStart | 0x0F)) {
*p++ = ((item & 0x0F) << 4) | jetiExSensors[item].exDataType; // Sensor ID (%16) | EX Data Type
sensorValue = jetiExSensors[item].value;
iCount = exDataTypeLen[jetiExSensors[item].exDataType];
while (iCount > 1) {
*p++ = sensorValue;
sensorValue = sensorValue >> 8;
iCount--;
}
*p++ = (sensorValue & 0x9F) | jetiExSensors[item].decimals;
item++;
if (item >= JETI_EX_SENSOR_COUNT)
break;
if (EXTEL_MAX_PAYLOAD <= ((p-&exMessage[EXTEL_HEADER_ID]) + exDataTypeLen[jetiExSensors[item].exDataType]) + 1)
break;
}
messageSize = (EXTEL_HEADER_LEN + (p-&exMessage[EXTEL_HEADER_ID]));
exMessage[EXTEL_HEADER_TYPE_LEN] = EXTEL_DATA_MSG | messageSize;
exMessage[messageSize + EXTEL_CRC_LEN] = calcCRC8(&exMessage[EXTEL_HEADER_TYPE_LEN], messageSize);
return item; // return the next item
}
void createExBusMessage(uint8_t *exBusMessage, uint8_t *exMessage, uint8_t packetID)
{
uint16_t crc16;
exBusMessage[EXBUS_HEADER_PACKET_ID] = packetID;
exBusMessage[EXBUS_HEADER_SUBLEN] = (exMessage[EXTEL_HEADER_TYPE_LEN] & EXTEL_UNMASK_TYPE) + 2; // +2: startbyte & CRC8
exBusMessage[EXBUS_HEADER_MSG_LEN] = EXBUS_OVERHEAD + exBusMessage[EXBUS_HEADER_SUBLEN];
crc16 = calcCRC16(exBusMessage, exBusMessage[EXBUS_HEADER_MSG_LEN] - EXBUS_CRC_LEN);
exBusMessage[exBusMessage[EXBUS_HEADER_MSG_LEN] - 2] = crc16;
exBusMessage[exBusMessage[EXBUS_HEADER_MSG_LEN] - 1] = crc16 >> 8;
}
void checkJetiExBusTelemetryState(void)
{
return;
}
void handleJetiExBusTelemetry(void)
{
static uint16_t framesLost = 0; // only for debug
uint32_t timeDiff;
// Check if we shall reset frame position due to time
if (jetiExBusRequestState == EXBUS_STATE_RECEIVED) {
// to prevent timing issues from request to answer - max. 4ms
timeDiff = micros() - jetiTimeStampRequest;
if (timeDiff > 3000) { // include reserved time
jetiExBusRequestState = EXBUS_STATE_ZERO;
framesLost++;
return;
}
if ((jetiExBusRequestFrame[EXBUS_HEADER_DATA_ID] == EXBUS_EX_REQUEST) && (calcCRC16(jetiExBusRequestFrame, jetiExBusRequestFrame[EXBUS_HEADER_MSG_LEN]) == 0)) {
jetiExSensors[EX_VOLTAGE].value = getBatteryVoltage() / 10;
jetiExSensors[EX_CURRENT].value = getAmperage();
jetiExSensors[EX_ALTITUDE].value = baro.BaroAlt;
jetiExSensors[EX_CAPACITY].value = getMAhDrawn();
jetiExSensors[EX_FRAMES_LOST].value = framesLost;
jetiExSensors[EX_TIME_DIFF].value = timeDiff;
// switch to TX mode
if (uartTotalRxBytesWaiting(jetiExBusPort) == 0) {
serialSetMode(jetiExBusPort, MODE_TX);
jetiExBusTransceiveState = EXBUS_TRANS_TX;
sendJetiExBusTelemetry(jetiExBusRequestFrame[EXBUS_HEADER_PACKET_ID]);
jetiExBusRequestState = EXBUS_STATE_PROCESSED;
}
} else {
jetiExBusRequestState = EXBUS_STATE_ZERO;
return;
}
}
// check the state if transmit is ready
if (jetiExBusTransceiveState == EXBUS_TRANS_IS_TX_COMPLETED) {
if (isSerialTransmitBufferEmpty(jetiExBusPort)) {
serialSetMode(jetiExBusPort, MODE_RX);
jetiExBusTransceiveState = EXBUS_TRANS_RX;
jetiExBusRequestState = EXBUS_STATE_ZERO;
}
}
}
void sendJetiExBusTelemetry(uint8_t packetID)
{
static uint8_t sensorDescriptionCounter = 0;
static uint8_t sensorValueCounter = 1;
static uint8_t requestLoop = 0;
uint8_t *jetiExTelemetryFrame = &jetiExBusTelemetryFrame[EXBUS_HEADER_DATA];
if (requestLoop == 100){ //every nth request send the name of a value
if (sensorDescriptionCounter == JETI_EX_SENSOR_COUNT )
sensorDescriptionCounter = 0;
createExTelemetrieTextMessage(jetiExTelemetryFrame, sensorDescriptionCounter, &jetiExSensors[sensorDescriptionCounter]);
createExBusMessage(jetiExBusTelemetryFrame, jetiExTelemetryFrame, packetID);
requestLoop = 0;
sensorDescriptionCounter++;
} else {
sensorValueCounter = createExTelemetrieValueMessage(jetiExTelemetryFrame, sensorValueCounter);
createExBusMessage(jetiExBusTelemetryFrame, jetiExTelemetryFrame, packetID);
}
for (uint8_t iCount = 0; iCount < jetiExBusTelemetryFrame[EXBUS_HEADER_MSG_LEN]; iCount++) {
serialWrite(jetiExBusPort, jetiExBusTelemetryFrame[iCount]);
}
jetiExBusTransceiveState = EXBUS_TRANS_IS_TX_COMPLETED;
requestLoop++;
}
#endif // TELEMETRY
bool jetiExBusInit(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig)
{
UNUSED(rxConfig);
@ -607,10 +267,8 @@ bool jetiExBusInit(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfi
NULL,
JETIEXBUS_BAUDRATE,
MODE_RXTX,
JETIEXBUS_OPTIONS | (tristateWithDefaultOffIsActive(rxConfig->halfDuplex) ? SERIAL_BIDIR : 0)
JETIEXBUS_OPTIONS | (rxConfig->serialrx_inverted ? SERIAL_INVERTED : 0) | SERIAL_BIDIR
);
serialSetMode(jetiExBusPort, MODE_RX);
return jetiExBusPort != NULL;
}
#endif // USE_SERIALRX_JETIEXBUS
#endif // SERIAL_RX

View file

@ -17,4 +17,36 @@
#pragma once
#define EXBUS_HEADER_LEN 6
#define EXBUS_CRC_LEN 2
#define EXBUS_OVERHEAD (EXBUS_HEADER_LEN + EXBUS_CRC_LEN)
#define EXBUS_MAX_CHANNEL_FRAME_SIZE (EXBUS_HEADER_LEN + JETIEXBUS_CHANNEL_COUNT*2 + EXBUS_CRC_LEN)
#define EXBUS_MAX_REQUEST_FRAME_SIZE 9
#define EXBUS_EX_REQUEST (0x3A)
enum exBusHeader_e {
EXBUS_HEADER_SYNC = 0,
EXBUS_HEADER_REQ,
EXBUS_HEADER_MSG_LEN,
EXBUS_HEADER_PACKET_ID,
EXBUS_HEADER_DATA_ID,
EXBUS_HEADER_SUBLEN,
EXBUS_HEADER_DATA
};
enum {
EXBUS_STATE_ZERO = 0,
EXBUS_STATE_IN_PROGRESS,
EXBUS_STATE_RECEIVED,
EXBUS_STATE_PROCESSED
};
extern uint8_t jetiExBusRequestState;
extern uint32_t jetiTimeStampRequest;
extern uint8_t jetiExBusRequestFrame[EXBUS_MAX_REQUEST_FRAME_SIZE];
struct serialPort_s;
extern struct serialPort_s *jetiExBusPort;
uint16_t jetiExBusCalcCRC16(uint8_t *pt, uint8_t msgLen);
bool jetiExBusInit(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxRuntimeConfig);

View file

@ -187,6 +187,7 @@
#define USE_TELEMETRY_IBUS
#define USE_TELEMETRY_SMARTPORT
#define USE_TELEMETRY_CRSF
#define USE_TELEMETRY_JETIEXBUS
// These are rather exotic serial protocols
#define USE_RX_MSP
//#define USE_MSP_RC_OVERRIDE

View file

@ -0,0 +1,560 @@
/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "platform.h"
#if defined(USE_TELEMETRY_JETIEXBUS)
#include "build/build_config.h"
#include "build/debug.h"
#include "fc/runtime_config.h"
#include "fc/config.h"
#include "config/feature.h"
#include "common/utils.h"
#include "common/bitarray.h"
#include "drivers/serial.h"
#include "drivers/serial_uart.h"
#include "drivers/time.h"
#include "flight/imu.h"
#include "io/serial.h"
#include "io/gps.h"
#include "rx/rx.h"
#include "rx/jetiexbus.h"
#include "sensors/battery.h"
#include "sensors/sensors.h"
#include "sensors/acceleration.h"
#include "telemetry/jetiexbus.h"
#include "telemetry/telemetry.h"
#include "navigation/navigation.h"
#define EXTEL_DATA_MSG (0x40)
#define EXTEL_UNMASK_TYPE (0x3F)
#define EXTEL_SYNC_LEN 1
#define EXTEL_CRC_LEN 1
#define EXTEL_HEADER_LEN 6
#define EXTEL_MAX_LEN 26
#define EXTEL_OVERHEAD (EXTEL_SYNC_LEN + EXTEL_HEADER_LEN + EXTEL_CRC_LEN)
#define EXTEL_MAX_PAYLOAD (EXTEL_MAX_LEN - EXTEL_OVERHEAD)
#define EXBUS_MAX_REQUEST_BUFFER_SIZE (EXBUS_OVERHEAD + EXTEL_MAX_LEN)
enum exTelHeader_e {
EXTEL_HEADER_SYNC = 0,
EXTEL_HEADER_TYPE_LEN,
EXTEL_HEADER_USN_LB,
EXTEL_HEADER_USN_HB,
EXTEL_HEADER_LSN_LB,
EXTEL_HEADER_LSN_HB,
EXTEL_HEADER_RES,
EXTEL_HEADER_ID,
EXTEL_HEADER_DATA
};
enum {
EXBUS_TRANS_ZERO = 0,
EXBUS_TRANS_RX_READY,
EXBUS_TRANS_RX,
EXBUS_TRANS_IS_TX_COMPLETED,
EXBUS_TRANS_TX
};
enum exDataType_e {
EX_TYPE_6b = 0, // int6_t Data type 6b (-31 ¸31)
EX_TYPE_14b = 1, // int14_t Data type 14b (-8191 ¸8191)
EX_TYPE_22b = 4, // int22_t Data type 22b (-2097151 ¸2097151)
EX_TYPE_DT = 5, // int22_t Special data type time and date
EX_TYPE_30b = 8, // int30_t Data type 30b (-536870911 ¸536870911)
EX_TYPE_GPS = 9, // int30_t Special data type GPS coordinates: lo/hi minute - lo/hi degree.
EX_TYPE_DES = 255 // only for devicedescription
};
const uint8_t exDataTypeLen[] = {
[EX_TYPE_6b] = 1,
[EX_TYPE_14b] = 2,
[EX_TYPE_22b] = 3,
[EX_TYPE_DT] = 3,
[EX_TYPE_30b] = 4,
[EX_TYPE_GPS] = 4
};
typedef struct exBusSensor_s {
const char *label;
const char *unit;
const uint8_t exDataType;
const uint8_t decimals;
} exBusSensor_t;
#define DECIMAL_MASK(decimals) (decimals << 5)
// list of telemetry messages
// after every 15 sensors a new header has to be inserted (e.g. "BF D2")
const exBusSensor_t jetiExSensors[] = {
{"INAV D1", "", EX_TYPE_DES, 0 }, // device descripton
{"Voltage", "V", EX_TYPE_22b, DECIMAL_MASK(1)},
{"Current", "A", EX_TYPE_22b, DECIMAL_MASK(2)},
{"Altitude", "m", EX_TYPE_22b, DECIMAL_MASK(2)},
{"Capacity", "mAh", EX_TYPE_22b, DECIMAL_MASK(0)},
{"Power", "W", EX_TYPE_22b, DECIMAL_MASK(1)},
{"Roll angle", "\xB0", EX_TYPE_22b, DECIMAL_MASK(1)},
{"Pitch angle", "\xB0", EX_TYPE_22b, DECIMAL_MASK(1)},
{"Heading", "\xB0", EX_TYPE_22b, DECIMAL_MASK(1)},
{"Vario", "m/s", EX_TYPE_22b, DECIMAL_MASK(2)},
{"GPS Sats", "", EX_TYPE_22b, DECIMAL_MASK(0)},
{"GPS Long", "", EX_TYPE_GPS, DECIMAL_MASK(0)},
{"GPS Lat", "", EX_TYPE_GPS, DECIMAL_MASK(0)},
{"GPS Speed", "m/s", EX_TYPE_22b, DECIMAL_MASK(2)},
{"GPS H-Distance", "m", EX_TYPE_22b, DECIMAL_MASK(0)},
{"GPS H-Direction", "\xB0", EX_TYPE_22b, DECIMAL_MASK(1)},
{"INAV D2", "", EX_TYPE_DES, 0 }, // device descripton
{"GPS Heading", "\xB0", EX_TYPE_22b, DECIMAL_MASK(1)},
{"GPS Altitude", "m", EX_TYPE_22b, DECIMAL_MASK(2)},
{"G-Force X", "", EX_TYPE_22b, DECIMAL_MASK(3)},
{"G-Force Y", "", EX_TYPE_22b, DECIMAL_MASK(3)},
{"G-Force Z", "", EX_TYPE_22b, DECIMAL_MASK(3)}
};
// after every 15 sensors increment the step by 2 (e.g. ...EX_VAL15, EX_VAL16 = 17) to skip the device description
enum exSensors_e {
EX_VOLTAGE = 1,
EX_CURRENT,
EX_ALTITUDE,
EX_CAPACITY,
EX_POWER,
EX_ROLL_ANGLE,
EX_PITCH_ANGLE,
EX_HEADING,
EX_VARIO,
EX_GPS_SATS,
EX_GPS_LONG,
EX_GPS_LAT,
EX_GPS_SPEED,
EX_GPS_DISTANCE_TO_HOME,
EX_GPS_DIRECTION_TO_HOME,
EX_GPS_HEADING = 17,
EX_GPS_ALTITUDE,
EX_GFORCE_X,
EX_GFORCE_Y,
EX_GFORCE_Z
};
union{
int32_t vInt;
uint16_t vWord[2];
char vBytes[4];
} exGps;
#define JETI_EX_SENSOR_COUNT (ARRAYLEN(jetiExSensors))
static uint8_t jetiExBusTelemetryFrame[40];
static uint8_t jetiExBusTransceiveState = EXBUS_TRANS_RX;
static uint8_t firstActiveSensor = 0;
static uint32_t exSensorEnabled = 0;
static uint8_t sendJetiExBusTelemetry(uint8_t packetID, uint8_t item);
static uint8_t getNextActiveSensor(uint8_t currentSensor);
// Jeti Ex Telemetry CRC calculations for a frame
uint8_t calcCRC8(uint8_t *pt, uint8_t msgLen)
{
uint8_t crc=0;
for (uint8_t mlen = 0; mlen < msgLen; mlen++) {
crc ^= pt[mlen];
crc = crc ^ (crc << 1) ^ (crc << 2) ^ (0x0e090700 >> ((crc >> 3) & 0x18));
}
return(crc);
}
void enableGpsTelemetry(bool enable)
{
if (enable) {
bitArraySet(&exSensorEnabled, EX_GPS_SATS);
bitArraySet(&exSensorEnabled, EX_GPS_LONG);
bitArraySet(&exSensorEnabled, EX_GPS_LAT);
bitArraySet(&exSensorEnabled, EX_GPS_SPEED);
bitArraySet(&exSensorEnabled, EX_GPS_DISTANCE_TO_HOME);
bitArraySet(&exSensorEnabled, EX_GPS_DIRECTION_TO_HOME);
bitArraySet(&exSensorEnabled, EX_GPS_HEADING);
bitArraySet(&exSensorEnabled, EX_GPS_ALTITUDE);
} else {
bitArrayClr(&exSensorEnabled, EX_GPS_SATS);
bitArrayClr(&exSensorEnabled, EX_GPS_LONG);
bitArrayClr(&exSensorEnabled, EX_GPS_LAT);
bitArrayClr(&exSensorEnabled, EX_GPS_SPEED);
bitArrayClr(&exSensorEnabled, EX_GPS_DISTANCE_TO_HOME);
bitArrayClr(&exSensorEnabled, EX_GPS_DIRECTION_TO_HOME);
bitArrayClr(&exSensorEnabled, EX_GPS_HEADING);
bitArrayClr(&exSensorEnabled, EX_GPS_ALTITUDE);
}
}
/*
* -----------------------------------------------
* Jeti Ex Bus Telemetry
* -----------------------------------------------
*/
void initJetiExBusTelemetry(void)
{
// Init Ex Bus Frame header
jetiExBusTelemetryFrame[EXBUS_HEADER_SYNC] = 0x3B; // Startbytes
jetiExBusTelemetryFrame[EXBUS_HEADER_REQ] = 0x01;
jetiExBusTelemetryFrame[EXBUS_HEADER_DATA_ID] = 0x3A; // Ex Telemetry
// Init Ex Telemetry header
uint8_t *jetiExTelemetryFrame = &jetiExBusTelemetryFrame[EXBUS_HEADER_DATA];
jetiExTelemetryFrame[EXTEL_HEADER_SYNC] = 0x9F; // Startbyte
jetiExTelemetryFrame[EXTEL_HEADER_USN_LB] = 0x1E; // Serial Number 4 Byte
jetiExTelemetryFrame[EXTEL_HEADER_USN_HB] = 0xA4;
jetiExTelemetryFrame[EXTEL_HEADER_LSN_LB] = 0x00; // increment by telemetry count (%16) > only 15 values per device possible
jetiExTelemetryFrame[EXTEL_HEADER_LSN_HB] = 0x00;
jetiExTelemetryFrame[EXTEL_HEADER_RES] = 0x00; // reserved, by default 0x00
// Check which sensors are available
if (isBatteryVoltageConfigured()) {
bitArraySet(&exSensorEnabled, EX_VOLTAGE);
}
if (isAmperageConfigured()) {
bitArraySet(&exSensorEnabled, EX_CURRENT);
}
if (isBatteryVoltageConfigured() && isAmperageConfigured()) {
bitArraySet(&exSensorEnabled, EX_POWER);
bitArraySet(&exSensorEnabled, EX_CAPACITY);
}
if (sensors(SENSOR_BARO)) {
bitArraySet(&exSensorEnabled, EX_ALTITUDE);
#ifdef USE_VARIO
bitArraySet(&exSensorEnabled, EX_VARIO);
#endif
}
if (sensors(SENSOR_ACC)) {
bitArraySet(&exSensorEnabled, EX_ROLL_ANGLE);
bitArraySet(&exSensorEnabled, EX_PITCH_ANGLE);
bitArraySet(&exSensorEnabled, EX_GFORCE_X);
bitArraySet(&exSensorEnabled, EX_GFORCE_Y);
bitArraySet(&exSensorEnabled, EX_GFORCE_Z);
}
if (sensors(SENSOR_MAG)) {
bitArraySet(&exSensorEnabled, EX_HEADING);
}
enableGpsTelemetry(feature(FEATURE_GPS));
firstActiveSensor = getNextActiveSensor(0); // find the first active sensor
}
void createExTelemetryTextMessage(uint8_t *exMessage, uint8_t messageID, const exBusSensor_t *sensor)
{
uint8_t labelLength = strlen(sensor->label);
uint8_t unitLength = strlen(sensor->unit);
exMessage[EXTEL_HEADER_TYPE_LEN] = EXTEL_OVERHEAD + labelLength + unitLength;
exMessage[EXTEL_HEADER_LSN_LB] = messageID & 0xF0; // Device ID
exMessage[EXTEL_HEADER_ID] = messageID & 0x0F; // Sensor ID (%16)
exMessage[EXTEL_HEADER_DATA] = (labelLength << 3) + unitLength;
memcpy(&exMessage[EXTEL_HEADER_DATA + 1], sensor->label, labelLength);
memcpy(&exMessage[EXTEL_HEADER_DATA + 1 + labelLength], sensor->unit, unitLength);
exMessage[exMessage[EXTEL_HEADER_TYPE_LEN] + EXTEL_CRC_LEN] = calcCRC8(&exMessage[EXTEL_HEADER_TYPE_LEN], exMessage[EXTEL_HEADER_TYPE_LEN]);
}
uint32_t calcGpsDDMMmmm(int32_t value, bool isLong)
{
uint32_t absValue = ABS(value);
uint16_t deg16 = absValue / GPS_DEGREES_DIVIDER;
uint16_t min16 = (absValue - deg16 * GPS_DEGREES_DIVIDER) * 6 / 1000;
exGps.vInt = 0;
exGps.vWord[0] = min16;
exGps.vWord[1] = deg16;
exGps.vWord[1] |= isLong ? 0x2000 : 0;
exGps.vWord[1] |= (value < 0) ? 0x4000 : 0;
return exGps.vInt;
}
int32_t getSensorValue(uint8_t sensor)
{
switch (sensor) {
case EX_VOLTAGE:
return telemetryConfig()->report_cell_voltage ? getBatteryAverageCellVoltage() : getBatteryVoltage();
break;
case EX_CURRENT:
return getAmperage();
break;
case EX_ALTITUDE:
return getEstimatedActualPosition(Z);
break;
case EX_CAPACITY:
return getMAhDrawn();
break;
case EX_POWER:
return (getBatteryVoltage() * getAmperage() / 1000);
break;
case EX_ROLL_ANGLE:
return attitude.values.roll;
break;
case EX_PITCH_ANGLE:
return attitude.values.pitch;
break;
case EX_HEADING:
return attitude.values.yaw;
break;
#ifdef USE_VARIO
case EX_VARIO:
return getEstimatedVario();
break;
#endif
#ifdef USE_GPS
case EX_GPS_SATS:
return gpsSol.numSat;
break;
case EX_GPS_LONG:
return calcGpsDDMMmmm(gpsSol.llh.lon, true);
break;
case EX_GPS_LAT:
return calcGpsDDMMmmm(gpsSol.llh.lat, false);
break;
case EX_GPS_SPEED:
return gpsSol.groundSpeed;
break;
case EX_GPS_DISTANCE_TO_HOME:
return GPS_distanceToHome;
break;
case EX_GPS_DIRECTION_TO_HOME:
return GPS_directionToHome;
break;
case EX_GPS_HEADING:
return gpsSol.groundCourse;
break;
case EX_GPS_ALTITUDE:
return getEstimatedActualPosition(Z);
break;
#endif
#if defined(USE_ACC)
case EX_GFORCE_X:
return (int16_t)(((float)acc.accADC[0] / acc.dev.acc_1G) * 1000);
break;
case EX_GFORCE_Y:
return (int16_t)(((float)acc.accADC[1] / acc.dev.acc_1G) * 1000);
break;
case EX_GFORCE_Z:
return (int16_t)(((float)acc.accADC[2] / acc.dev.acc_1G) * 1000);
break;
#endif
default:
return -1;
}
}
uint8_t getNextActiveSensor(uint8_t currentSensor)
{
while( ++currentSensor < JETI_EX_SENSOR_COUNT) {
if (bitArrayGet(&exSensorEnabled, currentSensor)) {
break;
}
}
if (currentSensor == JETI_EX_SENSOR_COUNT ) {
currentSensor = firstActiveSensor;
}
return currentSensor;
}
uint8_t createExTelemetryValueMessage(uint8_t *exMessage, uint8_t item)
{
uint8_t startItem = item;
uint8_t sensorItemMaxGroup = (item & 0xF0) + 0x10;
uint8_t iCount;
uint8_t messageSize;
uint32_t sensorValue;
exMessage[EXTEL_HEADER_LSN_LB] = item & 0xF0; // Device ID
uint8_t *p = &exMessage[EXTEL_HEADER_ID];
while (item < sensorItemMaxGroup) {
*p++ = ((item & 0x0F) << 4) | jetiExSensors[item].exDataType; // Sensor ID (%16) | EX Data Type
sensorValue = getSensorValue(item);
iCount = exDataTypeLen[jetiExSensors[item].exDataType];
while (iCount > 1) {
*p++ = sensorValue;
sensorValue = sensorValue >> 8;
iCount--;
}
if (jetiExSensors[item].exDataType != EX_TYPE_GPS) {
*p++ = (sensorValue & 0x9F) | jetiExSensors[item].decimals;
} else {
*p++ = sensorValue;
}
item = getNextActiveSensor(item);
if (startItem >= item) {
break;
}
if ((p - &exMessage[EXTEL_HEADER_ID]) + exDataTypeLen[jetiExSensors[item].exDataType] + 1 >= EXTEL_MAX_PAYLOAD) {
break;
}
}
messageSize = (EXTEL_HEADER_LEN + (p-&exMessage[EXTEL_HEADER_ID]));
exMessage[EXTEL_HEADER_TYPE_LEN] = EXTEL_DATA_MSG | messageSize;
exMessage[messageSize + EXTEL_CRC_LEN] = calcCRC8(&exMessage[EXTEL_HEADER_TYPE_LEN], messageSize);
return item; // return the next item
}
void createExBusMessage(uint8_t *exBusMessage, uint8_t *exMessage, uint8_t packetID)
{
uint16_t crc16;
exBusMessage[EXBUS_HEADER_PACKET_ID] = packetID;
exBusMessage[EXBUS_HEADER_SUBLEN] = (exMessage[EXTEL_HEADER_TYPE_LEN] & EXTEL_UNMASK_TYPE) + 2; // +2: startbyte & CRC8
exBusMessage[EXBUS_HEADER_MSG_LEN] = EXBUS_OVERHEAD + exBusMessage[EXBUS_HEADER_SUBLEN];
crc16 = jetiExBusCalcCRC16(exBusMessage, exBusMessage[EXBUS_HEADER_MSG_LEN] - EXBUS_CRC_LEN);
exBusMessage[exBusMessage[EXBUS_HEADER_MSG_LEN] - 2] = crc16;
exBusMessage[exBusMessage[EXBUS_HEADER_MSG_LEN] - 1] = crc16 >> 8;
}
void checkJetiExBusTelemetryState(void)
{
return;
}
void handleJetiExBusTelemetry(void)
{
static uint16_t framesLost = 0; // only for debug
static uint8_t item = 0;
uint32_t timeDiff;
// Check if we shall reset frame position due to time
if (jetiExBusRequestState == EXBUS_STATE_RECEIVED) {
// to prevent timing issues from request to answer - max. 4ms
timeDiff = micros() - jetiTimeStampRequest;
if (timeDiff > 3000) { // include reserved time
jetiExBusRequestState = EXBUS_STATE_ZERO;
framesLost++;
return;
}
if ((jetiExBusRequestFrame[EXBUS_HEADER_DATA_ID] == EXBUS_EX_REQUEST) && (jetiExBusCalcCRC16(jetiExBusRequestFrame, jetiExBusRequestFrame[EXBUS_HEADER_MSG_LEN]) == 0)) {
if (serialRxBytesWaiting(jetiExBusPort) == 0) {
jetiExBusTransceiveState = EXBUS_TRANS_TX;
item = sendJetiExBusTelemetry(jetiExBusRequestFrame[EXBUS_HEADER_PACKET_ID], item);
jetiExBusRequestState = EXBUS_STATE_PROCESSED;
return;
}
} else {
jetiExBusRequestState = EXBUS_STATE_ZERO;
return;
}
}
// check the state if transmit is ready
if (jetiExBusTransceiveState == EXBUS_TRANS_IS_TX_COMPLETED) {
if (isSerialTransmitBufferEmpty(jetiExBusPort)) {
jetiExBusTransceiveState = EXBUS_TRANS_RX;
jetiExBusRequestState = EXBUS_STATE_ZERO;
}
}
}
uint8_t sendJetiExBusTelemetry(uint8_t packetID, uint8_t item)
{
static uint8_t sensorDescriptionCounter = 0xFF;
static uint8_t requestLoop = 0xFF;
static bool allSensorsActive = true;
uint8_t *jetiExTelemetryFrame = &jetiExBusTelemetryFrame[EXBUS_HEADER_DATA];
if (requestLoop) {
while( ++sensorDescriptionCounter < JETI_EX_SENSOR_COUNT) {
if (bitArrayGet(&exSensorEnabled, sensorDescriptionCounter) || (jetiExSensors[sensorDescriptionCounter].exDataType == EX_TYPE_DES)) {
break;
}
}
if (sensorDescriptionCounter == JETI_EX_SENSOR_COUNT ) {
sensorDescriptionCounter = 0;
}
createExTelemetryTextMessage(jetiExTelemetryFrame, sensorDescriptionCounter, &jetiExSensors[sensorDescriptionCounter]);
createExBusMessage(jetiExBusTelemetryFrame, jetiExTelemetryFrame, packetID);
requestLoop--;
if (requestLoop == 0) {
item = firstActiveSensor;
if (feature(FEATURE_GPS)) {
enableGpsTelemetry(false);
allSensorsActive = false;
}
}
} else {
item = createExTelemetryValueMessage(jetiExTelemetryFrame, item);
createExBusMessage(jetiExBusTelemetryFrame, jetiExTelemetryFrame, packetID);
if (!allSensorsActive) {
if (sensors(SENSOR_GPS)) {
enableGpsTelemetry(true);
allSensorsActive = true;
}
}
}
serialWriteBuf(jetiExBusPort, jetiExBusTelemetryFrame, jetiExBusTelemetryFrame[EXBUS_HEADER_MSG_LEN]);
jetiExBusTransceiveState = EXBUS_TRANS_IS_TX_COMPLETED;
return item;
}
#endif

View file

@ -117,7 +117,7 @@ void telemetryInit(void)
initMAVLinkTelemetry();
#endif
#if defined(TELEMETRY_JETIEXBUS)
#if defined(USE_TELEMETRY_JETIEXBUS)
initJetiExBusTelemetry();
#endif
@ -187,7 +187,7 @@ void telemetryCheckState(void)
checkMAVLinkTelemetryState();
#endif
#if defined(TELEMETRY_JETIEXBUS)
#if defined(USE_TELEMETRY_JETIEXBUS)
checkJetiExBusTelemetryState();
#endif
@ -235,7 +235,7 @@ void telemetryProcess(timeUs_t currentTimeUs)
handleMAVLinkTelemetry(currentTimeUs);
#endif
#if defined(TELEMETRY_JETIEXBUS)
#if defined(USE_TELEMETRY_JETIEXBUS)
handleJetiExBusTelemetry();
#endif