mirror of
https://github.com/iNavFlight/inav.git
synced 2025-07-25 01:05:21 +03:00
Merge remote-tracking branch 'origin/development' into dzikuvx-d-boost
This commit is contained in:
commit
b62f5748ed
40 changed files with 686 additions and 239 deletions
10
docs/Cli.md
10
docs/Cli.md
|
@ -329,6 +329,9 @@ A shorter form is also supported to enable and disable functions using `serial <
|
|||
| osd_dist_alarm | 1000 | Value above which to make the OSD distance from home indicator blink (meters) |
|
||||
| osd_alt_alarm | 100 | Value above which to make the OSD relative altitude indicator blink (meters) |
|
||||
| osd_neg_alt_alarm | 5 | Value bellow which (negative altitude) to make the OSD relative altitude indicator blink (meters) |
|
||||
| osd_gforce_alarm | 5 | Value above which the OSD g force indicator will blink (g) |
|
||||
| osd_gforce_axis_alarm_min | -5 | Value under which the OSD axis g force indicators will blink (g) |
|
||||
| osd_gforce_axis_alarm_max | 5 | Value above which the OSD axis g force indicators will blink (g) |
|
||||
| osd_imu_temp_alarm_min | -200 | Temperature under which the IMU temperature OSD element will start blinking (decidegrees centigrade) |
|
||||
| osd_imu_temp_alarm_max | 600 | Temperature above which the IMU temperature OSD element will start blinking (decidegrees centigrade) |
|
||||
| osd_baro_temp_alarm_min | -200 | Temperature under which the baro temperature OSD element will start blinking (decidegrees centigrade) |
|
||||
|
@ -409,8 +412,8 @@ A shorter form is also supported to enable and disable functions using `serial <
|
|||
| gyro_lpf_type | BIQUAD | Specifies the type of the software LPF of the gyro signals. BIQUAD gives better filtering and more delay, PT1 less filtering and less delay, so use only on clean builds. |
|
||||
| acc_lpf_hz | 15 | Software-based filter to remove mechanical vibrations from the accelerometer measurements. Value is cutoff frequency (Hz). For larger frames with bigger props set to lower value. |
|
||||
| acc_lpf_type | BIQUAD | Specifies the type of the software LPF of the acc signals. BIQUAD gives better filtering and more delay, PT1 less filtering and less delay, so use only on clean builds. |
|
||||
| dterm_lpf_hz | 40 | |
|
||||
| yaw_lpf_hz | 30 | |
|
||||
| dterm_lpf_hz | 40 | Dterm low pass filter cutoff frequency. Default setting is very conservative and small multirotors should use higher value between 80 and 100Hz. 80 seems like a gold spot for 7-inch builds while 100 should work best with 5-inch machines. If motors are getting too hot, lower the value |
|
||||
| yaw_lpf_hz | 30 | Yaw low pass filter cutoff frequency. Should be disabled (set to `0`) on small multirotors (7 inches and below) |
|
||||
| gyro_stage2_lowpass_hz | 0 | Software based second stage lowpass filter for gyro. Value is cutoff frequency (Hz). Currently experimental |
|
||||
| pidsum_limit | 500 | A limitation to overall amount of correction Flight PID can request on each axis (Roll/Pitch/Yaw). If when doing a hard maneuver on one axis machine looses orientation on other axis - reducing this parameter may help |
|
||||
| yaw_p_limit | 300 | |
|
||||
|
@ -471,3 +474,6 @@ A shorter form is also supported to enable and disable functions using `serial <
|
|||
| nav_mc_pos_expo | 10 | Expo for PosHold control |
|
||||
| osd_artificial_horizon_max_pitch | 20 | Max pitch, in degrees, for OSD artificial horizon |
|
||||
| baro_cal_tolerance | 150 | Baro calibration tolerance in cm. The default should allow the noisiest baro to complete calibration [cm]. |
|
||||
| mc_airmode_type | STICK_CENTER | Defines the Airmode state handling type for Multirotors. Default **STICK_CENTER** is the classical approach in which Airmode is always active if enabled, but when the throttle is low and ROLL/PITCH/YAW sticks are centered, Iterms is not allowed to grow (ANTI_WINDUP). **THROTTLE_THRESHOLD** is the Airmode behavior known from Betaflight. In this mode, Airmode is active as soon THROTTLE position is above `mc_airmode_threshold` and stays active until disarm. ANTI_WINDUP is never triggered. For small Multirotors (up to 7-inch propellers) it is suggested to switch to **THROTTLE_THRESHOLD** since it keeps full stabilization no matter what pilot does with the sticks. Fixed Wings always use **STICK_CENTER** mode. |
|
||||
| mc_airmode_threshold | 1300 | Defines airmode THROTTLE activation threshold when `mc_airmode_type` **THROTTLE_THRESHOLD** is used |
|
||||
| use_dterm_fir_filter | ON | Setting to **OFF** disabled extra filter on Dterm. **OFF** offers faster Dterm and better inflight performance with a cost of being more sensitive to gyro noise. Small and relatively clean multirotors (7 inches and below) are suggested to use **OFF** setting. If motors are getting too hot, switch back to **ON** |
|
||||
|
|
|
@ -93,6 +93,7 @@ COMMON_SRC = \
|
|||
io/beeper.c \
|
||||
io/lights.c \
|
||||
io/pwmdriver_i2c.c \
|
||||
io/esc_serialshot.c \
|
||||
io/piniobox.c \
|
||||
io/serial.c \
|
||||
io/serial_4way.c \
|
||||
|
|
|
@ -360,9 +360,9 @@ static const blackboxSimpleFieldDefinition_t blackboxSlowFields[] = {
|
|||
{"hwHealthStatus", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
|
||||
{"powerSupplyImpedance", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
|
||||
{"sagCompensatedVBat", -1, UNSIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
|
||||
{"wind", 0, SIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
|
||||
{"wind", 1, SIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
|
||||
{"wind", 2, SIGNED, PREDICT(0), ENCODING(UNSIGNED_VB)},
|
||||
{"wind", 0, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)},
|
||||
{"wind", 1, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)},
|
||||
{"wind", 2, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)},
|
||||
{"IMUTemperature", -1, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)},
|
||||
#ifdef USE_BARO
|
||||
{"baroTemperature", -1, SIGNED, PREDICT(0), ENCODING(SIGNED_VB)},
|
||||
|
|
|
@ -61,7 +61,6 @@ typedef enum {
|
|||
DEBUG_FPORT,
|
||||
DEBUG_ALWAYS,
|
||||
DEBUG_STAGE2,
|
||||
DEBUG_WIND_ESTIMATOR,
|
||||
DEBUG_SAG_COMP_VOLTAGE,
|
||||
DEBUG_VIBE,
|
||||
DEBUG_CRUISE,
|
||||
|
|
|
@ -244,6 +244,11 @@ static const OSD_Entry menuOsdElemsEntries[] =
|
|||
OSD_ELEMENT_ENTRY("WIND HOR", OSD_WIND_SPEED_HORIZONTAL),
|
||||
OSD_ELEMENT_ENTRY("WIND VERT", OSD_WIND_SPEED_VERTICAL),
|
||||
|
||||
OSD_ELEMENT_ENTRY("G-FORCE", OSD_GFORCE),
|
||||
OSD_ELEMENT_ENTRY("G-FORCE X", OSD_GFORCE),
|
||||
OSD_ELEMENT_ENTRY("G-FORCE Y", OSD_GFORCE),
|
||||
OSD_ELEMENT_ENTRY("G-FORCE Z", OSD_GFORCE),
|
||||
|
||||
OSD_ELEMENT_ENTRY("IMU TEMP", OSD_IMU_TEMPERATURE),
|
||||
#ifdef USE_BARO
|
||||
OSD_ELEMENT_ENTRY("BARO TEMP", OSD_BARO_TEMPERATURE),
|
||||
|
|
|
@ -55,6 +55,10 @@
|
|||
#define RADIANS_TO_CENTIDEGREES(angle) (((angle) * 100.0f) / RAD)
|
||||
#define CENTIDEGREES_TO_RADIANS(angle) (((angle) / 100.0f) * RAD)
|
||||
|
||||
#define CENTIMETERS_TO_CENTIFEET(cm) (cm * (328 / 100.0))
|
||||
#define CENTIMETERS_TO_FEET(cm) (cm * (328 / 10000.0))
|
||||
#define CENTIMETERS_TO_METERS(cm) (cm / 100)
|
||||
|
||||
// copied from https://code.google.com/p/cxutil/source/browse/include/cxutil/utility.h#70
|
||||
#define _CHOOSE2(binoper, lexpr, lvar, rexpr, rvar) \
|
||||
( __extension__ ({ \
|
||||
|
|
|
@ -63,7 +63,8 @@
|
|||
|
||||
// 0x21 // 033 ASCII !
|
||||
|
||||
#define SYM_TRIP_DIST 0x22 // 034 Icon total distance
|
||||
#define SYM_TRIP_DIST 0x22 // 034 Trip distance
|
||||
#define SYM_TOTAL 0x22 // 034 Total
|
||||
|
||||
// 0x23 // 035 ASCII #
|
||||
|
||||
|
|
|
@ -205,15 +205,8 @@ pwmIOConfiguration_t *pwmInit(drv_pwm_config_t *init)
|
|||
continue;
|
||||
}
|
||||
|
||||
if (pwmMotorConfig(timerHardwarePtr, pwmIOConfiguration.motorCount, init->motorPwmRate, init->pwmProtocolType, init->enablePWMOutput)) {
|
||||
if (init->useFastPwm) {
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].flags = PWM_PF_MOTOR | PWM_PF_OUTPUT_PROTOCOL_FASTPWM | PWM_PF_OUTPUT_PROTOCOL_PWM;
|
||||
} else if (init->pwmProtocolType == PWM_TYPE_BRUSHED) {
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].flags = PWM_PF_MOTOR | PWM_PF_MOTOR_MODE_BRUSHED | PWM_PF_OUTPUT_PROTOCOL_PWM;
|
||||
} else {
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].flags = PWM_PF_MOTOR | PWM_PF_OUTPUT_PROTOCOL_PWM ;
|
||||
}
|
||||
|
||||
if (pwmMotorConfig(timerHardwarePtr, pwmIOConfiguration.motorCount, motorConfig()->motorPwmRate, init->enablePWMOutput)) {
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].flags = PWM_PF_MOTOR;
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].index = pwmIOConfiguration.motorCount;
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].timerHardware = timerHardwarePtr;
|
||||
|
||||
|
@ -232,7 +225,7 @@ pwmIOConfiguration_t *pwmInit(drv_pwm_config_t *init)
|
|||
}
|
||||
|
||||
if (pwmServoConfig(timerHardwarePtr, pwmIOConfiguration.servoCount, init->servoPwmRate, init->servoCenterPulse, init->enablePWMOutput)) {
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].flags = PWM_PF_SERVO | PWM_PF_OUTPUT_PROTOCOL_PWM;
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].flags = PWM_PF_SERVO;
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].index = pwmIOConfiguration.servoCount;
|
||||
pwmIOConfiguration.ioConfigurations[pwmIOConfiguration.ioCount].timerHardware = timerHardwarePtr;
|
||||
|
||||
|
|
|
@ -57,7 +57,6 @@ typedef struct drv_pwm_config_s {
|
|||
bool useUART3;
|
||||
bool useUART6;
|
||||
bool useVbat;
|
||||
bool useFastPwm;
|
||||
bool useSoftSerial;
|
||||
bool useLEDStrip;
|
||||
#ifdef USE_RANGEFINDER
|
||||
|
@ -66,8 +65,6 @@ typedef struct drv_pwm_config_s {
|
|||
bool useServoOutputs;
|
||||
uint16_t servoPwmRate;
|
||||
uint16_t servoCenterPulse;
|
||||
uint8_t pwmProtocolType;
|
||||
uint16_t motorPwmRate;
|
||||
rangefinderIOConfig_t rangefinderIOConfig;
|
||||
} drv_pwm_config_t;
|
||||
|
||||
|
@ -75,9 +72,6 @@ typedef enum {
|
|||
PWM_PF_NONE = 0,
|
||||
PWM_PF_MOTOR = (1 << 0),
|
||||
PWM_PF_SERVO = (1 << 1),
|
||||
PWM_PF_MOTOR_MODE_BRUSHED = (1 << 2),
|
||||
PWM_PF_OUTPUT_PROTOCOL_PWM = (1 << 3),
|
||||
PWM_PF_OUTPUT_PROTOCOL_FASTPWM = (1 << 4),
|
||||
PWM_PF_PPM = (1 << 5),
|
||||
PWM_PF_PWM = (1 << 6)
|
||||
} pwmPortFlags_e;
|
||||
|
|
|
@ -22,6 +22,8 @@
|
|||
|
||||
#include "platform.h"
|
||||
|
||||
#include "build/debug.h"
|
||||
|
||||
#include "common/log.h"
|
||||
#include "common/maths.h"
|
||||
|
||||
|
@ -32,6 +34,7 @@
|
|||
#include "drivers/io_pca9685.h"
|
||||
|
||||
#include "io/pwmdriver_i2c.h"
|
||||
#include "io/esc_serialshot.h"
|
||||
|
||||
#include "config/feature.h"
|
||||
|
||||
|
@ -59,9 +62,8 @@ typedef void (*pwmWriteFuncPtr)(uint8_t index, uint16_t value); // function poi
|
|||
|
||||
typedef struct {
|
||||
TCH_t * tch;
|
||||
pwmWriteFuncPtr pwmWritePtr;
|
||||
bool configured;
|
||||
uint16_t value; // Used to keep track of last motor value
|
||||
uint16_t value;
|
||||
|
||||
// PWM parameters
|
||||
volatile timCCR_t *ccr; // Shortcut for timer CCR register
|
||||
|
@ -74,16 +76,23 @@ typedef struct {
|
|||
#endif
|
||||
} pwmOutputPort_t;
|
||||
|
||||
typedef struct {
|
||||
pwmOutputPort_t * pwmPort; // May be NULL if motor doesn't use the PWM port
|
||||
uint16_t value; // Used to keep track of last motor value
|
||||
} pwmOutputMotor_t;
|
||||
|
||||
static pwmOutputPort_t pwmOutputPorts[MAX_PWM_OUTPUT_PORTS];
|
||||
|
||||
static pwmOutputPort_t *motors[MAX_PWM_MOTORS];
|
||||
static pwmOutputMotor_t motors[MAX_PWM_MOTORS];
|
||||
static pwmOutputPort_t *servos[MAX_PWM_SERVOS];
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
static motorPwmProtocolTypes_e initMotorProtocol;
|
||||
static pwmWriteFuncPtr motorWritePtr = NULL; // Function to write value to motors
|
||||
|
||||
static bool isProtocolDshot = false;
|
||||
static timeUs_t dshotMotorUpdateIntervalUs = 0;
|
||||
static timeUs_t dshotMotorLastUpdateUs;
|
||||
|
||||
#if defined(USE_DSHOT) || defined(USE_SERIALSHOT)
|
||||
static timeUs_t digitalMotorUpdateIntervalUs = 0;
|
||||
static timeUs_t digitalMotorLastUpdateUs;
|
||||
#endif
|
||||
|
||||
#ifdef BEEPER_PWM
|
||||
|
@ -110,20 +119,34 @@ static void pwmOutConfigTimer(pwmOutputPort_t * p, TCH_t * tch, uint32_t hz, uin
|
|||
*p->ccr = 0;
|
||||
}
|
||||
|
||||
static pwmOutputPort_t *pwmOutConfigMotor(const timerHardware_t *timHw, uint32_t hz, uint16_t period, uint16_t value, bool enableOutput)
|
||||
static pwmOutputPort_t *pwmOutAllocatePort(void)
|
||||
{
|
||||
if (allocatedOutputPortCount >= MAX_PWM_OUTPUT_PORTS) {
|
||||
LOG_E(PWM, "Attempt to allocate PWM output beyond MAX_PWM_OUTPUT_PORTS");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
pwmOutputPort_t *p = &pwmOutputPorts[allocatedOutputPortCount++];
|
||||
|
||||
p->tch = NULL;
|
||||
p->configured = false;
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static pwmOutputPort_t *pwmOutConfigMotor(const timerHardware_t *timHw, uint32_t hz, uint16_t period, uint16_t value, bool enableOutput)
|
||||
{
|
||||
// Attempt to allocate TCH
|
||||
TCH_t * tch = timerGetTCH(timHw);
|
||||
if (tch == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
pwmOutputPort_t *p = &pwmOutputPorts[allocatedOutputPortCount++];
|
||||
// Allocate motor output port
|
||||
pwmOutputPort_t *p = pwmOutAllocatePort();
|
||||
if (p == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
const IO_t io = IOGetByTag(timHw->tag);
|
||||
IOInit(io, OWNER_MOTOR, RESOURCE_OUTPUT, allocatedOutputPortCount);
|
||||
|
@ -143,13 +166,15 @@ static pwmOutputPort_t *pwmOutConfigMotor(const timerHardware_t *timHw, uint32_t
|
|||
|
||||
static void pwmWriteStandard(uint8_t index, uint16_t value)
|
||||
{
|
||||
*motors[index]->ccr = lrintf((value * motors[index]->pulseScale) + motors[index]->pulseOffset);
|
||||
if (motors[index].pwmPort) {
|
||||
*(motors[index].pwmPort->ccr) = lrintf((value * motors[index].pwmPort->pulseScale) + motors[index].pwmPort->pulseOffset);
|
||||
}
|
||||
}
|
||||
|
||||
void pwmWriteMotor(uint8_t index, uint16_t value)
|
||||
{
|
||||
if (motors[index] && index < MAX_MOTORS && pwmMotorsEnabled) {
|
||||
motors[index]->pwmWritePtr(index, value);
|
||||
if (motorWritePtr && index < MAX_MOTORS && pwmMotorsEnabled) {
|
||||
motorWritePtr(index, value);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -157,7 +182,9 @@ void pwmShutdownPulsesForAllMotors(uint8_t motorCount)
|
|||
{
|
||||
for (int index = 0; index < motorCount; index++) {
|
||||
// Set the compare register to 0, which stops the output pulsing if the timer overflows
|
||||
*motors[index]->ccr = 0;
|
||||
if (motors[index].pwmPort) {
|
||||
*(motors[index].pwmPort->ccr) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -221,7 +248,7 @@ static pwmOutputPort_t * motorConfigDshot(const timerHardware_t * timerHardware,
|
|||
|
||||
// Keep track of motor update interval
|
||||
const timeUs_t motorIntervalUs = 1000000 / motorPwmRateHz;
|
||||
dshotMotorUpdateIntervalUs = MAX(dshotMotorUpdateIntervalUs, motorIntervalUs);
|
||||
digitalMotorUpdateIntervalUs = MAX(digitalMotorUpdateIntervalUs, motorIntervalUs);
|
||||
|
||||
// Configure timer DMA
|
||||
if (timerPWMConfigChannelDMA(port->tch, port->dmaBuffer, sizeof(port->dmaBuffer[0]), DSHOT_DMA_BUFFER_SIZE)) {
|
||||
|
@ -233,12 +260,6 @@ static pwmOutputPort_t * motorConfigDshot(const timerHardware_t * timerHardware,
|
|||
return port;
|
||||
}
|
||||
|
||||
static void pwmWriteDshot(uint8_t index, uint16_t value)
|
||||
{
|
||||
// DMA operation might still be running. Cache value for future use
|
||||
motors[index]->value = value;
|
||||
}
|
||||
|
||||
static void loadDmaBufferDshot(timerDMASafeType_t *dmaBuffer, uint16_t packet)
|
||||
{
|
||||
for (int i = 0; i < 16; i++) {
|
||||
|
@ -265,71 +286,125 @@ static uint16_t prepareDshotPacket(const uint16_t value, bool requestTelemetry)
|
|||
|
||||
return packet;
|
||||
}
|
||||
#endif
|
||||
|
||||
void pwmCompleteDshotUpdate(uint8_t motorCount)
|
||||
#ifdef USE_SERIALSHOT
|
||||
static void motorConfigSerialShot(uint16_t motorPwmRateHz)
|
||||
{
|
||||
// Keep track of motor update interval
|
||||
const timeUs_t motorIntervalUs = 1000000 / motorPwmRateHz;
|
||||
digitalMotorUpdateIntervalUs = MAX(digitalMotorUpdateIntervalUs, motorIntervalUs);
|
||||
|
||||
// Kick off SerialShot driver initalization
|
||||
serialshotInitialize();
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(USE_DSHOT) || defined(USE_SERIALSHOT)
|
||||
static void pwmWriteDigital(uint8_t index, uint16_t value)
|
||||
{
|
||||
// Just keep track of motor value, actual update happens in pwmCompleteMotorUpdate()
|
||||
// DSHOT and some other digital protocols use 11-bit throttle range [0;2047]
|
||||
motors[index].value = constrain(value, 0, 2047);
|
||||
}
|
||||
|
||||
bool FAST_CODE NOINLINE isMotorProtocolDshot(void)
|
||||
{
|
||||
// We look at cached `initMotorProtocol` to make sure we are consistent with the initialized config
|
||||
// motorConfig()->motorPwmProtocol may change at run time which will cause uninitialized structures to be used
|
||||
return (initMotorProtocol == PWM_TYPE_DSHOT150) ||
|
||||
(initMotorProtocol == PWM_TYPE_DSHOT300) ||
|
||||
(initMotorProtocol == PWM_TYPE_DSHOT600) ||
|
||||
(initMotorProtocol == PWM_TYPE_DSHOT1200);
|
||||
}
|
||||
|
||||
bool FAST_CODE NOINLINE isMotorProtocolSerialShot(void)
|
||||
{
|
||||
return (initMotorProtocol == PWM_TYPE_SERIALSHOT);
|
||||
}
|
||||
|
||||
bool FAST_CODE NOINLINE isMotorProtocolDigital(void)
|
||||
{
|
||||
return isMotorProtocolDshot() || isMotorProtocolSerialShot();
|
||||
}
|
||||
|
||||
void pwmCompleteMotorUpdate(void)
|
||||
{
|
||||
// Get motor count from mixer
|
||||
int motorCount = getMotorCount();
|
||||
|
||||
// Get latest REAL time
|
||||
timeUs_t currentTimeUs = micros();
|
||||
|
||||
// Enforce motor update rate
|
||||
if (!isProtocolDshot || (dshotMotorUpdateIntervalUs == 0) || ((currentTimeUs - dshotMotorLastUpdateUs) <= dshotMotorUpdateIntervalUs)) {
|
||||
if (!isMotorProtocolDigital() || (digitalMotorUpdateIntervalUs == 0) || ((currentTimeUs - digitalMotorLastUpdateUs) <= digitalMotorUpdateIntervalUs)) {
|
||||
return;
|
||||
}
|
||||
|
||||
dshotMotorLastUpdateUs = currentTimeUs;
|
||||
digitalMotorLastUpdateUs = currentTimeUs;
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
if (isMotorProtocolDshot()) {
|
||||
// Generate DMA buffers
|
||||
for (int index = 0; index < motorCount; index++) {
|
||||
if (motors[index] && motors[index]->configured) {
|
||||
if (motors[index].pwmPort && motors[index].pwmPort->configured) {
|
||||
// TODO: ESC telemetry
|
||||
uint16_t packet = prepareDshotPacket(motors[index]->value, false);
|
||||
uint16_t packet = prepareDshotPacket(motors[index].value, false);
|
||||
|
||||
loadDmaBufferDshot(motors[index]->dmaBuffer, packet);
|
||||
timerPWMPrepareDMA(motors[index]->tch, DSHOT_DMA_BUFFER_SIZE);
|
||||
loadDmaBufferDshot(motors[index].pwmPort->dmaBuffer, packet);
|
||||
timerPWMPrepareDMA(motors[index].pwmPort->tch, DSHOT_DMA_BUFFER_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
// Start DMA on all timers
|
||||
for (int index = 0; index < motorCount; index++) {
|
||||
if (motors[index] && motors[index]->configured) {
|
||||
timerPWMStartDMA(motors[index]->tch);
|
||||
if (motors[index].pwmPort && motors[index].pwmPort->configured) {
|
||||
timerPWMStartDMA(motors[index].pwmPort->tch);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
bool FAST_CODE NOINLINE isMotorProtocolDshot(void)
|
||||
{
|
||||
return isProtocolDshot;
|
||||
#ifdef USE_SERIALSHOT
|
||||
if (isMotorProtocolSerialShot()) {
|
||||
for (int index = 0; index < motorCount; index++) {
|
||||
serialshotUpdateMotor(index, motors[index].value);
|
||||
}
|
||||
|
||||
serialshotSendUpdate();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
bool pwmMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRateHz, motorPwmProtocolTypes_e proto, bool enableOutput)
|
||||
bool pwmMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, uint16_t motorPwmRateHz, bool enableOutput)
|
||||
{
|
||||
pwmOutputPort_t * port = NULL;
|
||||
pwmWriteFuncPtr pwmWritePtr;
|
||||
// Keep track of initial motor protocol
|
||||
initMotorProtocol = motorConfig()->motorPwmProtocol;
|
||||
|
||||
#ifdef BRUSHED_MOTORS
|
||||
proto = PWM_TYPE_BRUSHED; // Override proto
|
||||
initMotorProtocol = PWM_TYPE_BRUSHED; // Override proto
|
||||
#endif
|
||||
|
||||
switch (proto) {
|
||||
switch (initMotorProtocol) {
|
||||
case PWM_TYPE_BRUSHED:
|
||||
port = motorConfigPwm(timerHardware, 0.0f, 0.0f, motorPwmRateHz, enableOutput);
|
||||
pwmWritePtr = pwmWriteStandard;
|
||||
motors[motorIndex].pwmPort = motorConfigPwm(timerHardware, 0.0f, 0.0f, motorPwmRateHz, enableOutput);
|
||||
motorWritePtr = pwmWriteStandard;
|
||||
break;
|
||||
|
||||
case PWM_TYPE_ONESHOT125:
|
||||
port = motorConfigPwm(timerHardware, 125e-6f, 125e-6f, motorPwmRateHz, enableOutput);
|
||||
pwmWritePtr = pwmWriteStandard;
|
||||
motors[motorIndex].pwmPort = motorConfigPwm(timerHardware, 125e-6f, 125e-6f, motorPwmRateHz, enableOutput);
|
||||
motorWritePtr = pwmWriteStandard;
|
||||
break;
|
||||
|
||||
case PWM_TYPE_ONESHOT42:
|
||||
port = motorConfigPwm(timerHardware, 42e-6f, 42e-6f, motorPwmRateHz, enableOutput);
|
||||
pwmWritePtr = pwmWriteStandard;
|
||||
motors[motorIndex].pwmPort = motorConfigPwm(timerHardware, 42e-6f, 42e-6f, motorPwmRateHz, enableOutput);
|
||||
motorWritePtr = pwmWriteStandard;
|
||||
break;
|
||||
|
||||
case PWM_TYPE_MULTISHOT:
|
||||
port = motorConfigPwm(timerHardware, 5e-6f, 20e-6f, motorPwmRateHz, enableOutput);
|
||||
pwmWritePtr = pwmWriteStandard;
|
||||
motors[motorIndex].pwmPort = motorConfigPwm(timerHardware, 5e-6f, 20e-6f, motorPwmRateHz, enableOutput);
|
||||
motorWritePtr = pwmWriteStandard;
|
||||
break;
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
|
@ -337,28 +412,33 @@ bool pwmMotorConfig(const timerHardware_t *timerHardware, uint8_t motorIndex, ui
|
|||
case PWM_TYPE_DSHOT600:
|
||||
case PWM_TYPE_DSHOT300:
|
||||
case PWM_TYPE_DSHOT150:
|
||||
port = motorConfigDshot(timerHardware, proto, motorPwmRateHz, enableOutput);
|
||||
if (port) {
|
||||
isProtocolDshot = true;
|
||||
pwmWritePtr = pwmWriteDshot;
|
||||
}
|
||||
motors[motorIndex].pwmPort = motorConfigDshot(timerHardware, initMotorProtocol, motorPwmRateHz, enableOutput);
|
||||
motorWritePtr = pwmWriteDigital;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#ifdef USE_SERIALSHOT
|
||||
case PWM_TYPE_SERIALSHOT:
|
||||
// This is hacky. Our motor output flow is: init() -> pwmInit() -> pwmMotorConfig()
|
||||
// This is decoupled from mixer, so if the board doesn't define any PWM motor output the pwmMotorConfig() won't get called
|
||||
// We rely on the fact that all FCs define hardware PWM motor outputs. To make this bullet-proof we need to change the
|
||||
// init sequence to originate from the mixer and allocate timers only if necessary
|
||||
motorConfigSerialShot(motorPwmRateHz);
|
||||
// Make sure pwmMotorConfig fails and doesn't mark timer as occupied by a motor
|
||||
motors[motorIndex].pwmPort = NULL;
|
||||
// Serialshot uses the same throttle interpretation as DSHOT, so we use the same write function here
|
||||
motorWritePtr = pwmWriteDigital;
|
||||
break;
|
||||
#endif
|
||||
|
||||
default:
|
||||
case PWM_TYPE_STANDARD:
|
||||
port = motorConfigPwm(timerHardware, 1e-3f, 1e-3f, motorPwmRateHz, enableOutput);
|
||||
pwmWritePtr = pwmWriteStandard;
|
||||
motors[motorIndex].pwmPort = motorConfigPwm(timerHardware, 1e-3f, 1e-3f, motorPwmRateHz, enableOutput);
|
||||
motorWritePtr = pwmWriteStandard;
|
||||
break;
|
||||
}
|
||||
|
||||
if (port) {
|
||||
port->pwmWritePtr = pwmWritePtr;
|
||||
motors[motorIndex] = port;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
return (motors[motorIndex].pwmPort != NULL);
|
||||
}
|
||||
|
||||
bool pwmServoConfig(const timerHardware_t *timerHardware, uint8_t servoIndex, uint16_t servoPwmRate, uint16_t servoCenterPulse, bool enableOutput)
|
||||
|
|
|
@ -30,19 +30,20 @@ typedef enum {
|
|||
PWM_TYPE_DSHOT300,
|
||||
PWM_TYPE_DSHOT600,
|
||||
PWM_TYPE_DSHOT1200,
|
||||
PWM_TYPE_SERIALSHOT,
|
||||
} motorPwmProtocolTypes_e;
|
||||
|
||||
void pwmWriteMotor(uint8_t index, uint16_t value);
|
||||
void pwmShutdownPulsesForAllMotors(uint8_t motorCount);
|
||||
void pwmCompleteDshotUpdate(uint8_t motorCount);
|
||||
bool isMotorProtocolDshot(void);
|
||||
void pwmCompleteMotorUpdate(void);
|
||||
bool isMotorProtocolDigital(void);
|
||||
|
||||
void pwmWriteServo(uint8_t index, uint16_t value);
|
||||
|
||||
void pwmDisableMotors(void);
|
||||
void pwmEnableMotors(void);
|
||||
struct timerHardware_s;
|
||||
bool pwmMotorConfig(const struct timerHardware_s *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate, motorPwmProtocolTypes_e proto, bool enableOutput);
|
||||
bool pwmMotorConfig(const struct timerHardware_s *timerHardware, uint8_t motorIndex, uint16_t motorPwmRate, bool enableOutput);
|
||||
bool pwmServoConfig(const struct timerHardware_s *timerHardware, uint8_t servoIndex, uint16_t servoPwmRate, uint16_t servoCenterPulse, bool enableOutput);
|
||||
void pwmWriteBeeper(bool onoffBeep);
|
||||
void beeperPwmInit(ioTag_t tag, uint16_t frequency);
|
|
@ -17,7 +17,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#define timerDMASafeType_t uint16_t
|
||||
#define timerDMASafeType_t uint32_t
|
||||
|
||||
#define DEF_TIM_DMAMAP__D(dma, stream, channel) DMA_TAG(dma, stream, channel)
|
||||
#define DEF_TIM_DMAMAP__NONE DMA_NONE
|
||||
|
|
|
@ -297,6 +297,11 @@ void validateAndFixConfig(void)
|
|||
case PWM_TYPE_DSHOT1200:
|
||||
motorConfigMutable()->motorPwmRate = MIN(motorConfig()->motorPwmRate, 32000);
|
||||
break;
|
||||
#endif
|
||||
#ifdef USE_SERIALSHOT
|
||||
case PWM_TYPE_SERIALSHOT: // 2-4 kHz
|
||||
motorConfigMutable()->motorPwmRate = constrain(motorConfig()->motorPwmRate, 2000, 4000);
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -659,6 +659,7 @@ void taskMainPidLoop(timeUs_t currentTimeUs)
|
|||
|
||||
if (ARMING_FLAG(ARMED) && (!STATE(FIXED_WING) || !isNavLaunchEnabled() || (isNavLaunchEnabled() && (isFixedWingLaunchDetected() || isFixedWingLaunchFinishedOrAborted())))) {
|
||||
flightTime += cycleTime;
|
||||
updateAccExtremes();
|
||||
}
|
||||
|
||||
taskGyro(currentTimeUs);
|
||||
|
@ -753,7 +754,7 @@ void taskRunRealtimeCallbacks(timeUs_t currentTimeUs)
|
|||
#endif
|
||||
|
||||
#ifdef USE_DSHOT
|
||||
pwmCompleteDshotUpdate(getMotorCount());
|
||||
pwmCompleteMotorUpdate();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -317,16 +317,7 @@ void init(void)
|
|||
pwm_params.servoCenterPulse = servoConfig()->servoCenterPulse;
|
||||
pwm_params.servoPwmRate = servoConfig()->servoPwmRate;
|
||||
|
||||
pwm_params.pwmProtocolType = motorConfig()->motorPwmProtocol;
|
||||
#ifndef BRUSHED_MOTORS
|
||||
pwm_params.useFastPwm = (motorConfig()->motorPwmProtocol == PWM_TYPE_ONESHOT125) ||
|
||||
(motorConfig()->motorPwmProtocol == PWM_TYPE_ONESHOT42) ||
|
||||
(motorConfig()->motorPwmProtocol == PWM_TYPE_MULTISHOT);
|
||||
#endif
|
||||
pwm_params.motorPwmRate = motorConfig()->motorPwmRate;
|
||||
|
||||
if (motorConfig()->motorPwmProtocol == PWM_TYPE_BRUSHED) {
|
||||
pwm_params.useFastPwm = false;
|
||||
featureClear(FEATURE_3D);
|
||||
}
|
||||
|
||||
|
@ -351,9 +342,6 @@ void init(void)
|
|||
|
||||
mixerPrepare();
|
||||
|
||||
if (!pwm_params.useFastPwm)
|
||||
motorControlEnable = true;
|
||||
|
||||
addBootlogEvent2(BOOT_EVENT_PWM_INIT_DONE, BOOT_EVENT_FLAGS_NONE);
|
||||
systemState |= SYSTEM_STATE_MOTORS_READY;
|
||||
|
||||
|
|
|
@ -153,8 +153,6 @@ void taskUpdateCompass(timeUs_t currentTimeUs)
|
|||
#ifdef USE_BARO
|
||||
void taskUpdateBaro(timeUs_t currentTimeUs)
|
||||
{
|
||||
UNUSED(currentTimeUs);
|
||||
|
||||
if (!sensors(SENSOR_BARO)) {
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -32,7 +32,7 @@ tables:
|
|||
- name: blackbox_device
|
||||
values: ["SERIAL", "SPIFLASH", "SDCARD"]
|
||||
- name: motor_pwm_protocol
|
||||
values: ["STANDARD", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED", "DSHOT150", "DSHOT300", "DSHOT600", "DSHOT1200"]
|
||||
values: ["STANDARD", "ONESHOT125", "ONESHOT42", "MULTISHOT", "BRUSHED", "DSHOT150", "DSHOT300", "DSHOT600", "DSHOT1200", "SERIALSHOT"]
|
||||
- name: failsafe_procedure
|
||||
values: ["SET-THR", "DROP", "RTH", "NONE"]
|
||||
- name: current_sensor
|
||||
|
@ -54,7 +54,7 @@ tables:
|
|||
- name: nav_user_control_mode
|
||||
values: ["ATTI", "CRUISE"]
|
||||
- name: nav_rth_alt_mode
|
||||
values: ["CURRENT", "EXTRA", "FIXED", "MAX", "AT_LEAST"]
|
||||
values: ["CURRENT", "EXTRA", "FIXED", "MAX", "AT_LEAST", "AT_LEAST_LINEAR_DESCENT"]
|
||||
- name: osd_unit
|
||||
values: ["IMPERIAL", "METRIC", "UK"]
|
||||
enum: osd_unit_e
|
||||
|
@ -76,7 +76,7 @@ tables:
|
|||
values: ["400KHZ", "800KHZ", "100KHZ", "200KHZ"]
|
||||
- name: debug_modes
|
||||
values: ["NONE", "GYRO", "NOTCH", "NAV_LANDING", "FW_ALTITUDE", "AGL", "FLOW_RAW",
|
||||
"FLOW", "SBUS", "FPORT", "ALWAYS", "STAGE2", "WIND_ESTIMATOR", "SAG_COMP_VOLTAGE",
|
||||
"FLOW", "SBUS", "FPORT", "ALWAYS", "STAGE2", "SAG_COMP_VOLTAGE",
|
||||
"VIBE", "CRUISE", "REM_FLIGHT_TIME", "SMARTAUDIO", "ACC", "GENERIC", "ITERM_RELAX", "D_BOOST"]
|
||||
- name: async_mode
|
||||
values: ["NONE", "GYRO", "ALL"]
|
||||
|
@ -1656,6 +1656,18 @@ groups:
|
|||
field: neg_alt_alarm
|
||||
min: 0
|
||||
max: 10000
|
||||
- name: osd_gforce_alarm
|
||||
field: gforce_alarm
|
||||
min: -20
|
||||
max: 20
|
||||
- name: osd_gforce_axis_alarm_min
|
||||
field: gforce_axis_alarm_min
|
||||
min: -20
|
||||
max: 20
|
||||
- name: osd_gforce_axis_alarm_max
|
||||
field: gforce_axis_alarm_max
|
||||
min: -20
|
||||
max: 20
|
||||
- name: osd_imu_temp_alarm_min
|
||||
field: imu_temp_alarm_min
|
||||
min: -550
|
||||
|
|
|
@ -580,6 +580,7 @@ void imuCheckVibrationLevels(void)
|
|||
DEBUG_SET(DEBUG_VIBE, 1, accVibeLevels.y * 100);
|
||||
DEBUG_SET(DEBUG_VIBE, 2, accVibeLevels.z * 100);
|
||||
DEBUG_SET(DEBUG_VIBE, 3, accClipCount);
|
||||
// DEBUG_VIBE values 4-7 are used by NAV estimator
|
||||
}
|
||||
|
||||
void FAST_CODE NOINLINE imuUpdateAttitude(timeUs_t currentTimeUs)
|
||||
|
|
|
@ -175,7 +175,7 @@ void FAST_CODE NOINLINE writeMotors(void)
|
|||
|
||||
#ifdef USE_DSHOT
|
||||
// If we use DSHOT we need to convert motorValue to DSHOT ranges
|
||||
if (isMotorProtocolDshot()) {
|
||||
if (isMotorProtocolDigital()) {
|
||||
const float dshotMinThrottleOffset = (DSHOT_MAX_THROTTLE - DSHOT_MIN_THROTTLE) / 10000.0f * motorConfig()->digitalIdleOffsetValue;
|
||||
|
||||
if (feature(FEATURE_3D)) {
|
||||
|
|
|
@ -20,6 +20,18 @@
|
|||
|
||||
#if defined(USE_ADC) && defined(USE_GPS)
|
||||
|
||||
/* INPUTS:
|
||||
* - heading degrees
|
||||
* - horizontalWindSpeed
|
||||
* - windHeading degrees
|
||||
* OUTPUT:
|
||||
* returns same unit as horizontalWindSpeed
|
||||
*/
|
||||
static float forwardWindSpeed(float heading, float horizontalWindSpeed, float windHeading) {
|
||||
return horizontalWindSpeed * cos_approx(DEGREES_TO_RADIANS(windHeading - heading));
|
||||
}
|
||||
|
||||
#ifdef USE_WIND_ESTIMATOR
|
||||
/* INPUTS:
|
||||
* - forwardSpeed (same unit as horizontalWindSpeed)
|
||||
* - heading degrees
|
||||
|
@ -44,17 +56,6 @@ static float windDriftCorrectedForwardSpeed(float forwardSpeed, float heading, f
|
|||
return forwardSpeed * cos_approx(DEGREES_TO_RADIANS(windDriftCompensationAngle(forwardSpeed, heading, horizontalWindSpeed, windHeading)));
|
||||
}
|
||||
|
||||
/* INPUTS:
|
||||
* - heading degrees
|
||||
* - horizontalWindSpeed
|
||||
* - windHeading degrees
|
||||
* OUTPUT:
|
||||
* returns same unit as horizontalWindSpeed
|
||||
*/
|
||||
static float forwardWindSpeed(float heading, float horizontalWindSpeed, float windHeading) {
|
||||
return horizontalWindSpeed * cos_approx(DEGREES_TO_RADIANS(windHeading - heading));
|
||||
}
|
||||
|
||||
/* INPUTS:
|
||||
* - forwardSpeed (same unit as horizontalWindSpeed)
|
||||
* - heading degrees
|
||||
|
@ -66,17 +67,17 @@ static float forwardWindSpeed(float heading, float horizontalWindSpeed, float wi
|
|||
static float windCompensatedForwardSpeed(float forwardSpeed, float heading, float horizontalWindSpeed, float windHeading) {
|
||||
return windDriftCorrectedForwardSpeed(forwardSpeed, heading, horizontalWindSpeed, windHeading) + forwardWindSpeed(heading, horizontalWindSpeed, windHeading);
|
||||
}
|
||||
#endif
|
||||
|
||||
// returns degrees
|
||||
static int8_t RTHAltitudeChangePitchAngle(float altitudeChange) {
|
||||
static int8_t RTHInitialAltitudeChangePitchAngle(float altitudeChange) {
|
||||
return altitudeChange < 0 ? navConfig()->fw.max_dive_angle : -navConfig()->fw.max_climb_angle;
|
||||
}
|
||||
|
||||
// altitudeChange is in meters
|
||||
// idle_power and cruise_power are in deciWatt
|
||||
// output is in Watt
|
||||
static float estimateRTHAltitudeChangePower(float altitudeChange) {
|
||||
uint16_t altitudeChangeThrottle = navConfig()->fw.cruise_throttle - RTHAltitudeChangePitchAngle(altitudeChange) * navConfig()->fw.pitch_to_throttle;
|
||||
// pitch in degrees
|
||||
// output in Watt
|
||||
static float estimatePitchPower(float pitch) {
|
||||
int16_t altitudeChangeThrottle = fixedWingPitchToThrottleCorrection(DEGREES_TO_DECIDEGREES(pitch));
|
||||
altitudeChangeThrottle = constrain(altitudeChangeThrottle, navConfig()->fw.min_throttle, navConfig()->fw.max_throttle);
|
||||
const float altitudeChangeThrToCruiseThrRatio = (float)(altitudeChangeThrottle - motorConfig()->minthrottle) / (navConfig()->fw.cruise_throttle - motorConfig()->minthrottle);
|
||||
return (float)heatLossesCompensatedPower(batteryMetersConfig()->idle_power + batteryMetersConfig()->cruise_power * altitudeChangeThrToCruiseThrRatio) / 100;
|
||||
|
@ -88,7 +89,7 @@ static float estimateRTHAltitudeChangePower(float altitudeChange) {
|
|||
// output is in seconds
|
||||
static float estimateRTHAltitudeChangeTime(float altitudeChange, float verticalWindSpeed) {
|
||||
// Assuming increase in throttle keeps air speed at cruise speed
|
||||
const float estimatedVerticalSpeed = (float)navConfig()->fw.cruise_speed / 100 * sin_approx(DEGREES_TO_RADIANS(RTHAltitudeChangePitchAngle(altitudeChange))) + verticalWindSpeed;
|
||||
const float estimatedVerticalSpeed = (float)navConfig()->fw.cruise_speed / 100 * sin_approx(DEGREES_TO_RADIANS(RTHInitialAltitudeChangePitchAngle(altitudeChange))) + verticalWindSpeed;
|
||||
return altitudeChange / estimatedVerticalSpeed;
|
||||
}
|
||||
|
||||
|
@ -100,17 +101,22 @@ static float estimateRTHAltitudeChangeTime(float altitudeChange, float verticalW
|
|||
// output is in meters
|
||||
static float estimateRTHAltitudeChangeGroundDistance(float altitudeChange, float horizontalWindSpeed, float windHeading, float verticalWindSpeed) {
|
||||
// Assuming increase in throttle keeps air speed at cruise speed
|
||||
float estimatedHorizontalSpeed = (float)navConfig()->fw.cruise_speed / 100 * cos_approx(DEGREES_TO_RADIANS(RTHAltitudeChangePitchAngle(altitudeChange))) + forwardWindSpeed(DECIDEGREES_TO_DEGREES((float)attitude.values.yaw), horizontalWindSpeed, windHeading);
|
||||
const float estimatedHorizontalSpeed = (float)navConfig()->fw.cruise_speed / 100 * cos_approx(DEGREES_TO_RADIANS(RTHInitialAltitudeChangePitchAngle(altitudeChange))) + forwardWindSpeed(DECIDEGREES_TO_DEGREES((float)attitude.values.yaw), horizontalWindSpeed, windHeading);
|
||||
return estimateRTHAltitudeChangeTime(altitudeChange, verticalWindSpeed) * estimatedHorizontalSpeed;
|
||||
}
|
||||
|
||||
// altitudeChange is in m
|
||||
// verticalWindSpeed is in m/s
|
||||
// output is in Wh
|
||||
static uint16_t estimateRTHAltitudeChangeEnergy(float altitudeChange, float verticalWindSpeed) {
|
||||
return estimateRTHAltitudeChangePower(altitudeChange) * estimateRTHAltitudeChangeTime(altitudeChange, verticalWindSpeed) / 3600;
|
||||
static float estimateRTHInitialAltitudeChangeEnergy(float altitudeChange, float verticalWindSpeed) {
|
||||
const float RTHInitialAltitudeChangePower = estimatePitchPower(altitudeChange < 0 ? navConfig()->fw.max_dive_angle : -navConfig()->fw.max_climb_angle);
|
||||
return RTHInitialAltitudeChangePower * estimateRTHAltitudeChangeTime(altitudeChange, verticalWindSpeed) / 3600;
|
||||
}
|
||||
|
||||
// horizontalWindSpeed is in m/s
|
||||
// windHeading is in degrees
|
||||
// verticalWindSpeed is in m/s
|
||||
// altitudeChange is in m
|
||||
// returns distance in m
|
||||
// *heading is in degrees
|
||||
static float estimateRTHDistanceAndHeadingAfterAltitudeChange(float altitudeChange, float horizontalWindSpeed, float windHeading, float verticalWindSpeed, float *heading) {
|
||||
|
@ -128,8 +134,17 @@ static float estimateRTHDistanceAndHeadingAfterAltitudeChange(float altitudeChan
|
|||
}
|
||||
}
|
||||
|
||||
// returns mWh
|
||||
static int32_t calculateRemainingEnergyBeforeRTH(bool takeWindIntoAccount) {
|
||||
// distanceToHome is in meters
|
||||
// output in Watt
|
||||
static float estimateRTHEnergyAfterInitialClimb(float distanceToHome, float speedToHome) {
|
||||
const float timeToHome = distanceToHome / speedToHome; // seconds
|
||||
const float altitudeChangeDescentToHome = CENTIMETERS_TO_METERS(navConfig()->general.flags.rth_alt_control_mode == NAV_RTH_AT_LEAST_ALT_LINEAR_DESCENT ? MAX(0, getEstimatedActualPosition(Z) - RTHAltitude()) : 0);
|
||||
const float pitchToHome = MIN(RADIANS_TO_DEGREES(atan2_approx(altitudeChangeDescentToHome, distanceToHome)), navConfig()->fw.max_dive_angle);
|
||||
return estimatePitchPower(pitchToHome) * timeToHome / 3600;
|
||||
}
|
||||
|
||||
// returns Wh
|
||||
static float calculateRemainingEnergyBeforeRTH(bool takeWindIntoAccount) {
|
||||
// Fixed wing only for now
|
||||
if (!STATE(FIXED_WING))
|
||||
return -1;
|
||||
|
@ -141,35 +156,40 @@ static int32_t calculateRemainingEnergyBeforeRTH(bool takeWindIntoAccount) {
|
|||
))
|
||||
return -1;
|
||||
|
||||
const float RTH_initial_altitude_change = MAX(0, (RTHAltitude() - getEstimatedActualPosition(Z)) / 100);
|
||||
|
||||
float RTH_heading; // degrees
|
||||
#ifdef USE_WIND_ESTIMATOR
|
||||
uint16_t windHeading; // centidegrees
|
||||
const float horizontalWindSpeed = takeWindIntoAccount ? getEstimatedHorizontalWindSpeed(&windHeading) / 100 : 0; // m/s
|
||||
const float windHeadingDegrees = CENTIDEGREES_TO_DEGREES((float)windHeading);
|
||||
const float verticalWindSpeed = getEstimatedWindSpeed(Z) / 100;
|
||||
|
||||
const float RTH_distance = estimateRTHDistanceAndHeadingAfterAltitudeChange(RTH_initial_altitude_change, horizontalWindSpeed, windHeadingDegrees, verticalWindSpeed, &RTH_heading);
|
||||
const float RTH_speed = windCompensatedForwardSpeed((float)navConfig()->fw.cruise_speed / 100, RTH_heading, horizontalWindSpeed, windHeadingDegrees);
|
||||
#else
|
||||
UNUSED(takeWindIntoAccount);
|
||||
const float horizontalWindSpeed = 0; // m/s
|
||||
const float windHeadingDegrees = 0;
|
||||
const float verticalWindSpeed = 0;
|
||||
const float RTH_distance = estimateRTHDistanceAndHeadingAfterAltitudeChange(RTH_initial_altitude_change, 0, 0, 0, &RTH_heading);
|
||||
const float RTH_speed = (float)navConfig()->fw.cruise_speed / 100;
|
||||
#endif
|
||||
|
||||
const float RTH_altitude_change = (RTHAltitude() - getEstimatedActualPosition(Z)) / 100;
|
||||
float RTH_heading; // degrees
|
||||
const float RTH_distance = estimateRTHDistanceAndHeadingAfterAltitudeChange(RTH_altitude_change, horizontalWindSpeed, windHeadingDegrees, verticalWindSpeed, &RTH_heading);
|
||||
const float RTH_speed = windCompensatedForwardSpeed((float)navConfig()->fw.cruise_speed / 100, DECIDEGREES_TO_DEGREES(attitude.values.yaw), horizontalWindSpeed, windHeadingDegrees);
|
||||
|
||||
DEBUG_SET(DEBUG_REM_FLIGHT_TIME, 0, lrintf(RTH_altitude_change * 100));
|
||||
DEBUG_SET(DEBUG_REM_FLIGHT_TIME, 0, lrintf(RTH_initial_altitude_change * 100));
|
||||
DEBUG_SET(DEBUG_REM_FLIGHT_TIME, 1, lrintf(RTH_distance * 100));
|
||||
DEBUG_SET(DEBUG_REM_FLIGHT_TIME, 2, lrintf(RTH_speed * 100));
|
||||
#ifdef USE_WIND_ESTIMATOR
|
||||
DEBUG_SET(DEBUG_REM_FLIGHT_TIME, 3, lrintf(horizontalWindSpeed * 100));
|
||||
#endif
|
||||
|
||||
if (RTH_speed <= 0)
|
||||
return -2; // wind is too strong
|
||||
return -2; // wind is too strong to return at cruise throttle (TODO: might be possible to take into account min speed thr boost)
|
||||
|
||||
const uint32_t time_to_home = RTH_distance / RTH_speed; // seconds
|
||||
const uint32_t energy_to_home = estimateRTHAltitudeChangeEnergy(RTH_altitude_change, verticalWindSpeed) * 1000 + heatLossesCompensatedPower(batteryMetersConfig()->idle_power + batteryMetersConfig()->cruise_power) * time_to_home / 360; // mWh
|
||||
const uint32_t energy_margin_abs = (currentBatteryProfile->capacity.value - currentBatteryProfile->capacity.critical) * batteryMetersConfig()->rth_energy_margin / 100; // mWh
|
||||
const int32_t remaining_energy_before_rth = getBatteryRemainingCapacity() - energy_margin_abs - energy_to_home; // mWh
|
||||
#ifdef USE_WIND_ESTIMATOR
|
||||
const float energy_to_home = estimateRTHInitialAltitudeChangeEnergy(RTH_initial_altitude_change, verticalWindSpeed) + estimateRTHEnergyAfterInitialClimb(RTH_distance, RTH_speed); // Wh
|
||||
#else
|
||||
const float energy_to_home = estimateRTHInitialAltitudeChangeEnergy(RTH_initial_altitude_change, 0) + estimateRTHEnergyAfterInitialClimb(RTH_distance, RTH_speed); // Wh
|
||||
#endif
|
||||
const float energy_margin_abs = (currentBatteryProfile->capacity.value - currentBatteryProfile->capacity.critical) * batteryMetersConfig()->rth_energy_margin / 100000; // Wh
|
||||
const float remaining_energy_before_rth = getBatteryRemainingCapacity() / 1000 - energy_margin_abs - energy_to_home; // Wh
|
||||
|
||||
if (remaining_energy_before_rth < 0) // No energy left = No time left
|
||||
return 0;
|
||||
|
@ -178,31 +198,28 @@ static int32_t calculateRemainingEnergyBeforeRTH(bool takeWindIntoAccount) {
|
|||
}
|
||||
|
||||
// returns seconds
|
||||
int32_t calculateRemainingFlightTimeBeforeRTH(bool takeWindIntoAccount) {
|
||||
float calculateRemainingFlightTimeBeforeRTH(bool takeWindIntoAccount) {
|
||||
|
||||
const int32_t remainingEnergyBeforeRTH = calculateRemainingEnergyBeforeRTH(takeWindIntoAccount);
|
||||
const float remainingEnergyBeforeRTH = calculateRemainingEnergyBeforeRTH(takeWindIntoAccount);
|
||||
|
||||
// error: return error code directly
|
||||
if (remainingEnergyBeforeRTH < 0)
|
||||
return remainingEnergyBeforeRTH;
|
||||
|
||||
const int32_t averagePower = calculateAveragePower();
|
||||
const float averagePower = (float)calculateAveragePower() / 100;
|
||||
|
||||
if (averagePower == 0)
|
||||
return -1;
|
||||
|
||||
const uint32_t time_before_rth = remainingEnergyBeforeRTH * 360 / averagePower;
|
||||
|
||||
if (time_before_rth > 0x7FFFFFFF) // int32 overflow
|
||||
return -1;
|
||||
const float time_before_rth = remainingEnergyBeforeRTH * 3600 / averagePower;
|
||||
|
||||
return time_before_rth;
|
||||
}
|
||||
|
||||
// returns meters
|
||||
int32_t calculateRemainingDistanceBeforeRTH(bool takeWindIntoAccount) {
|
||||
float calculateRemainingDistanceBeforeRTH(bool takeWindIntoAccount) {
|
||||
|
||||
const int32_t remainingFlightTimeBeforeRTH = calculateRemainingFlightTimeBeforeRTH(takeWindIntoAccount);
|
||||
const float remainingFlightTimeBeforeRTH = calculateRemainingFlightTimeBeforeRTH(takeWindIntoAccount);
|
||||
|
||||
// error: return error code directly
|
||||
if (remainingFlightTimeBeforeRTH < 0)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
|
||||
#if defined(USE_ADC) && defined(USE_GPS)
|
||||
int32_t calculateRemainingFlightTimeBeforeRTH(bool takeWindIntoAccount);
|
||||
int32_t calculateRemainingDistanceBeforeRTH(bool takeWindIntoAccount);
|
||||
float calculateRemainingFlightTimeBeforeRTH(bool takeWindIntoAccount);
|
||||
float calculateRemainingDistanceBeforeRTH(bool takeWindIntoAccount);
|
||||
#endif
|
||||
|
|
|
@ -163,10 +163,6 @@ void updateWindEstimator(timeUs_t currentTimeUs)
|
|||
estimatedWind[X] = estimatedWind[X] * 0.95f + wind[X] * 0.05f;
|
||||
estimatedWind[Y] = estimatedWind[Y] * 0.95f + wind[Y] * 0.05f;
|
||||
estimatedWind[Z] = estimatedWind[Z] * 0.95f + wind[Z] * 0.05f;
|
||||
|
||||
DEBUG_SET(DEBUG_WIND_ESTIMATOR, 0, estimatedWind[X]);
|
||||
DEBUG_SET(DEBUG_WIND_ESTIMATOR, 1, estimatedWind[Y]);
|
||||
DEBUG_SET(DEBUG_WIND_ESTIMATOR, 2, estimatedWind[Z]);
|
||||
}
|
||||
lastUpdateUs = currentTimeUs;
|
||||
hasValidWindEstimate = true;
|
||||
|
|
116
src/main/io/esc_serialshot.c
Normal file
116
src/main/io/esc_serialshot.c
Normal file
|
@ -0,0 +1,116 @@
|
|||
/*
|
||||
* This file is part of INAV Project.
|
||||
*
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
||||
* You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
*
|
||||
* Alternatively, the contents of this file may be used under the terms
|
||||
* of the GNU General Public License Version 3, as described below:
|
||||
*
|
||||
* This file is free software: you may copy, redistribute and/or modify
|
||||
* it under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation, either version 3 of the License, or (at your
|
||||
* option) any later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
* Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see http://www.gnu.org/licenses/.
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <ctype.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "platform.h"
|
||||
|
||||
#include "build/build_config.h"
|
||||
#include "build/debug.h"
|
||||
|
||||
#include "common/maths.h"
|
||||
#include "common/crc.h"
|
||||
|
||||
#include "io/serial.h"
|
||||
#include "io/esc_serialshot.h"
|
||||
|
||||
#if defined(USE_SERIALSHOT)
|
||||
|
||||
#define SERIALSHOT_UART_BAUD 921600
|
||||
#define SERIALSHOT_PKT_DEFAULT_HEADER (0x00) // Default header (motors 1-4, regular 4-in-1 ESC)
|
||||
|
||||
|
||||
typedef struct __attribute__((packed)) {
|
||||
uint8_t hdr; // Header/version marker
|
||||
uint8_t motorData[6]; // 12 bit per motor
|
||||
uint8_t crc; // CRC8/DVB-T of hdr & motorData
|
||||
} serialShortPacket_t;
|
||||
|
||||
|
||||
static serialShortPacket_t txPkt;
|
||||
static uint16_t motorValues[4];
|
||||
static serialPort_t * escPort = NULL;
|
||||
static serialPortConfig_t * portConfig;
|
||||
|
||||
bool serialshotInitialize(void)
|
||||
{
|
||||
// Avoid double initialization
|
||||
if (escPort) {
|
||||
return true;
|
||||
}
|
||||
|
||||
portConfig = findSerialPortConfig(FUNCTION_SERIALSHOT);
|
||||
if (!portConfig) {
|
||||
return false;
|
||||
}
|
||||
|
||||
escPort = openSerialPort(portConfig->identifier, FUNCTION_SERIALSHOT, NULL, NULL, SERIALSHOT_UART_BAUD, MODE_RXTX, SERIAL_NOT_INVERTED | SERIAL_UNIDIR);
|
||||
if (!escPort) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void serialshotUpdateMotor(int index, uint16_t value)
|
||||
{
|
||||
if (index < 0 && index > 3) {
|
||||
return;
|
||||
}
|
||||
|
||||
motorValues[index] = value;
|
||||
}
|
||||
|
||||
void serialshotSendUpdate(void)
|
||||
{
|
||||
// Check if the port is initialized
|
||||
if (!escPort) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Skip update if previous one is not yet fully sent
|
||||
// This helps to avoid buffer overflow and evenyually the data corruption
|
||||
if (!isSerialTransmitBufferEmpty(escPort)) {
|
||||
return;
|
||||
}
|
||||
|
||||
txPkt.hdr = SERIALSHOT_PKT_DEFAULT_HEADER;
|
||||
|
||||
txPkt.motorData[0] = motorValues[0] & 0x00FF;
|
||||
txPkt.motorData[1] = motorValues[1] & 0x00FF;
|
||||
txPkt.motorData[2] = motorValues[2] & 0x00FF;
|
||||
txPkt.motorData[3] = motorValues[3] & 0x00FF;
|
||||
txPkt.motorData[4] = (((motorValues[0] & 0xF00) >> 8) << 0) | (((motorValues[1] & 0xF00) >> 8) << 4);
|
||||
txPkt.motorData[5] = (((motorValues[2] & 0xF00) >> 8) << 0) | (((motorValues[3] & 0xF00) >> 8) << 4);
|
||||
|
||||
txPkt.crc = crc8_dvb_s2(0x00, txPkt.hdr);
|
||||
txPkt.crc = crc8_dvb_s2_update(txPkt.crc, txPkt.motorData, sizeof(txPkt.motorData));
|
||||
|
||||
serialWriteBuf(escPort, (const uint8_t *)&txPkt, sizeof(txPkt));
|
||||
}
|
||||
|
||||
#endif
|
29
src/main/io/esc_serialshot.h
Normal file
29
src/main/io/esc_serialshot.h
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*
|
||||
* This file is part of INAV Project.
|
||||
*
|
||||
* This Source Code Form is subject to the terms of the Mozilla Public
|
||||
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
||||
* You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
*
|
||||
* Alternatively, the contents of this file may be used under the terms
|
||||
* of the GNU General Public License Version 3, as described below:
|
||||
*
|
||||
* This file is free software: you may copy, redistribute and/or modify
|
||||
* it under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation, either version 3 of the License, or (at your
|
||||
* option) any later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
* Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see http://www.gnu.org/licenses/.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
bool serialshotInitialize(void);
|
||||
void serialshotUpdateMotor(int index, uint16_t value);
|
||||
void serialshotSendUpdate(void);
|
|
@ -84,6 +84,7 @@
|
|||
|
||||
#include "rx/rx.h"
|
||||
|
||||
#include "sensors/acceleration.h"
|
||||
#include "sensors/battery.h"
|
||||
#include "sensors/boardalignment.h"
|
||||
#include "sensors/diagnostics.h"
|
||||
|
@ -98,14 +99,13 @@
|
|||
#define VIDEO_BUFFER_CHARS_PAL 480
|
||||
#define IS_DISPLAY_PAL (displayScreenSize(osdDisplayPort) == VIDEO_BUFFER_CHARS_PAL)
|
||||
|
||||
#define CENTIMETERS_TO_CENTIFEET(cm) (cm * (328 / 100.0))
|
||||
#define CENTIMETERS_TO_FEET(cm) (cm * (328 / 10000.0))
|
||||
#define CENTIMETERS_TO_METERS(cm) (cm / 100)
|
||||
#define FEET_PER_MILE 5280
|
||||
#define FEET_PER_KILOFEET 1000 // Used for altitude
|
||||
#define METERS_PER_KILOMETER 1000
|
||||
#define METERS_PER_MILE 1609
|
||||
|
||||
#define GFORCE_FILTER_TC 0.2
|
||||
|
||||
#define DELAYED_REFRESH_RESUME_COMMAND (checkStickPosition(THR_HI) || checkStickPosition(PIT_HI))
|
||||
|
||||
#define SPLASH_SCREEN_DISPLAY_TIME 4000 // ms
|
||||
|
@ -137,6 +137,8 @@ static unsigned currentLayout = 0;
|
|||
static int layoutOverride = -1;
|
||||
static bool hasExtendedFont = false; // Wether the font supports characters > 256
|
||||
static timeMs_t layoutOverrideUntil = 0;
|
||||
static pt1Filter_t GForceFilter, GForceFilterAxis[XYZ_AXIS_COUNT];
|
||||
static float GForce, GForceAxis[XYZ_AXIS_COUNT];
|
||||
|
||||
typedef struct statistic_s {
|
||||
uint16_t max_speed;
|
||||
|
@ -188,7 +190,7 @@ static displayPort_t *osdDisplayPort;
|
|||
#define AH_SIDEBAR_WIDTH_POS 7
|
||||
#define AH_SIDEBAR_HEIGHT_POS 3
|
||||
|
||||
PG_REGISTER_WITH_RESET_FN(osdConfig_t, osdConfig, PG_OSD_CONFIG, 7);
|
||||
PG_REGISTER_WITH_RESET_FN(osdConfig_t, osdConfig, PG_OSD_CONFIG, 8);
|
||||
|
||||
static int digitCount(int32_t value)
|
||||
{
|
||||
|
@ -294,20 +296,22 @@ static void osdFormatDistanceSymbol(char *buff, int32_t dist)
|
|||
{
|
||||
switch ((osd_unit_e)osdConfig()->units) {
|
||||
case OSD_UNIT_IMPERIAL:
|
||||
if (osdFormatCentiNumber(buff + 1, CENTIMETERS_TO_CENTIFEET(dist), FEET_PER_MILE, 0, 3, 3)) {
|
||||
buff[0] = SYM_DIST_MI;
|
||||
if (osdFormatCentiNumber(buff, CENTIMETERS_TO_CENTIFEET(dist), FEET_PER_MILE, 0, 3, 3)) {
|
||||
buff[3] = SYM_DIST_MI;
|
||||
} else {
|
||||
buff[0] = SYM_DIST_FT;
|
||||
buff[3] = SYM_DIST_FT;
|
||||
}
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
case OSD_UNIT_UK:
|
||||
FALLTHROUGH;
|
||||
case OSD_UNIT_METRIC:
|
||||
if (osdFormatCentiNumber(buff + 1, dist, METERS_PER_KILOMETER, 0, 3, 3)) {
|
||||
buff[0] = SYM_DIST_KM;
|
||||
if (osdFormatCentiNumber(buff, dist, METERS_PER_KILOMETER, 0, 3, 3)) {
|
||||
buff[3] = SYM_DIST_KM;
|
||||
} else {
|
||||
buff[0] = SYM_DIST_M;
|
||||
buff[3] = SYM_DIST_M;
|
||||
}
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -426,23 +430,25 @@ static void osdFormatAltitudeSymbol(char *buff, int32_t alt)
|
|||
case OSD_UNIT_UK:
|
||||
FALLTHROUGH;
|
||||
case OSD_UNIT_IMPERIAL:
|
||||
if (osdFormatCentiNumber(buff + 1, CENTIMETERS_TO_CENTIFEET(alt), 1000, 0, 2, 3)) {
|
||||
if (osdFormatCentiNumber(buff , CENTIMETERS_TO_CENTIFEET(alt), 1000, 0, 2, 3)) {
|
||||
// Scaled to kft
|
||||
buff[0] = SYM_ALT_KFT;
|
||||
buff[3] = SYM_ALT_KFT;
|
||||
} else {
|
||||
// Formatted in feet
|
||||
buff[0] = SYM_ALT_FT;
|
||||
buff[3] = SYM_ALT_FT;
|
||||
}
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
case OSD_UNIT_METRIC:
|
||||
// alt is alredy in cm
|
||||
if (osdFormatCentiNumber(buff+1, alt, 1000, 0, 2, 3)) {
|
||||
if (osdFormatCentiNumber(buff, alt, 1000, 0, 2, 3)) {
|
||||
// Scaled to km
|
||||
buff[0] = SYM_ALT_KM;
|
||||
buff[3] = SYM_ALT_KM;
|
||||
} else {
|
||||
// Formatted in m
|
||||
buff[0] = SYM_ALT_M;
|
||||
buff[3] = SYM_ALT_M;
|
||||
}
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -1163,8 +1169,10 @@ static void osdDisplayBatteryVoltage(uint8_t elemPosX, uint8_t elemPosY, uint16_
|
|||
displayWriteWithAttr(osdDisplayPort, elemPosX, elemPosY, buff, elemAttr);
|
||||
|
||||
elemAttr = TEXT_ATTRIBUTES_NONE;
|
||||
osdFormatCentiNumber(buff, voltage, 0, decimals, 0, MIN(digits, 4));
|
||||
strcat(buff, "V");
|
||||
digits = MIN(digits, 4);
|
||||
osdFormatCentiNumber(buff, voltage, 0, decimals, 0, digits);
|
||||
buff[digits] = SYM_VOLT;
|
||||
buff[digits+1] = '\0';
|
||||
if ((getBatteryState() != BATTERY_NOT_PRESENT) && (getBatteryVoltage() <= getBatteryWarningVoltage()))
|
||||
TEXT_ATTRIBUTES_ADD_BLINK(elemAttr);
|
||||
displayWriteWithAttr(osdDisplayPort, elemPosX + 1, elemPosY, buff, elemAttr);
|
||||
|
@ -1241,34 +1249,40 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
return true;
|
||||
|
||||
case OSD_CURRENT_DRAW:
|
||||
buff[0] = SYM_AMP;
|
||||
osdFormatCentiNumber(buff + 1, getAmperage(), 0, 2, 0, 3);
|
||||
|
||||
osdFormatCentiNumber(buff, getAmperage(), 0, 2, 0, 3);
|
||||
buff[3] = SYM_AMP;
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
|
||||
case OSD_MAH_DRAWN:
|
||||
buff[0] = SYM_MAH;
|
||||
tfp_sprintf(buff + 1, "%-4d", (int)getMAhDrawn());
|
||||
tfp_sprintf(buff, "%4d", (int)getMAhDrawn());
|
||||
buff[4] = SYM_MAH;
|
||||
buff[5] = '\0';
|
||||
osdUpdateBatteryCapacityOrVoltageTextAttributes(&elemAttr);
|
||||
break;
|
||||
|
||||
case OSD_WH_DRAWN:
|
||||
buff[0] = SYM_WH;
|
||||
osdFormatCentiNumber(buff + 1, getMWhDrawn() / 10, 0, 2, 0, 3);
|
||||
osdFormatCentiNumber(buff, getMWhDrawn() / 10, 0, 2, 0, 3);
|
||||
osdUpdateBatteryCapacityOrVoltageTextAttributes(&elemAttr);
|
||||
buff[3] = SYM_WH;
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
|
||||
case OSD_BATTERY_REMAINING_CAPACITY:
|
||||
buff[0] = (currentBatteryProfile->capacity.unit == BAT_CAPACITY_UNIT_MAH ? SYM_MAH : SYM_WH);
|
||||
|
||||
if (currentBatteryProfile->capacity.value == 0)
|
||||
tfp_sprintf(buff + 1, "NA");
|
||||
tfp_sprintf(buff, " NA");
|
||||
else if (!batteryWasFullWhenPluggedIn())
|
||||
tfp_sprintf(buff + 1, "NF");
|
||||
tfp_sprintf(buff, " NF");
|
||||
else if (currentBatteryProfile->capacity.unit == BAT_CAPACITY_UNIT_MAH)
|
||||
tfp_sprintf(buff + 1, "%-4lu", getBatteryRemainingCapacity());
|
||||
tfp_sprintf(buff, "%4lu", getBatteryRemainingCapacity());
|
||||
else // currentBatteryProfile->capacity.unit == BAT_CAPACITY_UNIT_MWH
|
||||
osdFormatCentiNumber(buff + 1, getBatteryRemainingCapacity() / 10, 0, 2, 0, 3);
|
||||
|
||||
buff[3] = currentBatteryProfile->capacity.unit == BAT_CAPACITY_UNIT_MAH ? SYM_MAH : SYM_WH;
|
||||
buff[4] = '\0';
|
||||
|
||||
if ((getBatteryState() != BATTERY_NOT_PRESENT) && batteryUsesCapacityThresholds() && (getBatteryRemainingCapacity() <= currentBatteryProfile->capacity.warning - currentBatteryProfile->capacity.critical))
|
||||
TEXT_ATTRIBUTES_ADD_BLINK(elemAttr);
|
||||
|
||||
|
@ -1341,7 +1355,7 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
buff[0] = ARMING_FLAG(ARMED) ? '-' : SYM_ARROW_UP;
|
||||
TEXT_ATTRIBUTES_ADD_BLINK(elemAttr);
|
||||
}
|
||||
buff[1] = 0;
|
||||
buff[1] = '\0';
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -1374,7 +1388,7 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
break;
|
||||
|
||||
case OSD_TRIP_DIST:
|
||||
buff[0] = SYM_TRIP_DIST;
|
||||
buff[0] = SYM_TOTAL;
|
||||
osdFormatDistanceSymbol(buff + 1, getTotalTravelDistance());
|
||||
break;
|
||||
|
||||
|
@ -1390,8 +1404,7 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
} else {
|
||||
buff[1] = buff[2] = buff[3] = '-';
|
||||
}
|
||||
buff[4] = SYM_DEGREES;
|
||||
buff[5] = '\0';
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -1555,12 +1568,13 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
}
|
||||
buff[0] = SYM_TRIP_DIST;
|
||||
if ((!ARMING_FLAG(ARMED)) || (distanceMeters == -1)) {
|
||||
buff[1] = SYM_DIST_M;
|
||||
strcpy(buff + 2, "---");
|
||||
buff[4] = SYM_DIST_M;
|
||||
buff[5] = '\0';
|
||||
strcpy(buff + 1, "---");
|
||||
} else if (distanceMeters == -2) {
|
||||
// Wind is too strong to come back with cruise throttle
|
||||
buff[1] = SYM_DIST_M;
|
||||
buff[2] = buff[3] = buff[4] = SYM_WIND_HORIZONTAL;
|
||||
buff[1] = buff[2] = buff[3] = SYM_WIND_HORIZONTAL;
|
||||
buff[4] = SYM_DIST_M;
|
||||
buff[5] = '\0';
|
||||
TEXT_ATTRIBUTES_ADD_BLINK(elemAttr);
|
||||
} else {
|
||||
|
@ -2054,8 +2068,9 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
|
||||
case OSD_POWER:
|
||||
{
|
||||
buff[0] = SYM_WATT;
|
||||
osdFormatCentiNumber(buff + 1, getPower(), 0, 2, 0, 3);
|
||||
osdFormatCentiNumber(buff, getPower(), 0, 2, 0, 3);
|
||||
buff[3] = SYM_WATT;
|
||||
buff[4] = '\0';
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -2306,6 +2321,27 @@ static bool osdDrawSingleElement(uint8_t item)
|
|||
break;
|
||||
}
|
||||
|
||||
case OSD_GFORCE:
|
||||
{
|
||||
osdFormatCentiNumber(buff, GForce, 0, 2, 0, 3);
|
||||
if (GForce > osdConfig()->gforce_alarm * 100) {
|
||||
TEXT_ATTRIBUTES_ADD_BLINK(elemAttr);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case OSD_GFORCE_X:
|
||||
case OSD_GFORCE_Y:
|
||||
case OSD_GFORCE_Z:
|
||||
{
|
||||
float GForceValue = GForceAxis[item - OSD_GFORCE_X];
|
||||
osdFormatCentiNumber(buff, GForceValue, 0, 2, 0, 4);
|
||||
if ((GForceValue < osdConfig()->gforce_axis_alarm_min * 100) || (GForceValue > osdConfig()->gforce_axis_alarm_max * 100)) {
|
||||
TEXT_ATTRIBUTES_ADD_BLINK(elemAttr);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case OSD_DEBUG:
|
||||
{
|
||||
// Longest representable string is -32768, hence 6 characters
|
||||
|
@ -2571,7 +2607,7 @@ void pgResetFn_osdConfig(osdConfig_t *osdConfig)
|
|||
osdConfig->item_pos[0][OSD_CRUISE_HEADING_ERROR] = OSD_POS(12, 2);
|
||||
osdConfig->item_pos[0][OSD_CRUISE_HEADING_ADJUSTMENT] = OSD_POS(12, 2);
|
||||
osdConfig->item_pos[0][OSD_HEADING_GRAPH] = OSD_POS(18, 2);
|
||||
osdConfig->item_pos[0][OSD_CURRENT_DRAW] = OSD_POS(1, 3) | OSD_VISIBLE_FLAG;
|
||||
osdConfig->item_pos[0][OSD_CURRENT_DRAW] = OSD_POS(2, 3) | OSD_VISIBLE_FLAG;
|
||||
osdConfig->item_pos[0][OSD_MAH_DRAWN] = OSD_POS(1, 4) | OSD_VISIBLE_FLAG;
|
||||
osdConfig->item_pos[0][OSD_WH_DRAWN] = OSD_POS(1, 5);
|
||||
osdConfig->item_pos[0][OSD_BATTERY_REMAINING_CAPACITY] = OSD_POS(1, 6);
|
||||
|
@ -2661,6 +2697,11 @@ void pgResetFn_osdConfig(osdConfig_t *osdConfig)
|
|||
osdConfig->item_pos[0][OSD_WIND_SPEED_HORIZONTAL] = OSD_POS(3, 6);
|
||||
osdConfig->item_pos[0][OSD_WIND_SPEED_VERTICAL] = OSD_POS(3, 7);
|
||||
|
||||
osdConfig->item_pos[0][OSD_GFORCE] = OSD_POS(12, 4);
|
||||
osdConfig->item_pos[0][OSD_GFORCE_X] = OSD_POS(12, 5);
|
||||
osdConfig->item_pos[0][OSD_GFORCE_Y] = OSD_POS(12, 6);
|
||||
osdConfig->item_pos[0][OSD_GFORCE_Z] = OSD_POS(12, 7);
|
||||
|
||||
// Under OSD_FLYMODE. TODO: Might not be visible on NTSC?
|
||||
osdConfig->item_pos[0][OSD_MESSAGES] = OSD_POS(1, 13) | OSD_VISIBLE_FLAG;
|
||||
|
||||
|
@ -2677,6 +2718,9 @@ void pgResetFn_osdConfig(osdConfig_t *osdConfig)
|
|||
osdConfig->neg_alt_alarm = 5;
|
||||
osdConfig->imu_temp_alarm_min = -200;
|
||||
osdConfig->imu_temp_alarm_max = 600;
|
||||
osdConfig->gforce_alarm = 5;
|
||||
osdConfig->gforce_axis_alarm_min = -5;
|
||||
osdConfig->gforce_axis_alarm_max = 5;
|
||||
#ifdef USE_BARO
|
||||
osdConfig->baro_temp_alarm_min = -200;
|
||||
osdConfig->baro_temp_alarm_max = 600;
|
||||
|
@ -2935,6 +2979,19 @@ static void osdShowStats(void)
|
|||
tfp_sprintf(buff, "%02u:%02u:%02u", flyHours, flyMinutes, flySeconds);
|
||||
displayWrite(osdDisplayPort, statValuesX, top++, buff);
|
||||
|
||||
const float max_gforce = accGetMeasuredMaxG();
|
||||
displayWrite(osdDisplayPort, statNameX, top, "MAX G-FORCE :");
|
||||
osdFormatCentiNumber(buff, max_gforce * 100, 0, 2, 0, 3);
|
||||
displayWrite(osdDisplayPort, statValuesX, top++, buff);
|
||||
|
||||
const acc_extremes_t *acc_extremes = accGetMeasuredExtremes();
|
||||
displayWrite(osdDisplayPort, statNameX, top, "MIN/MAX Z G-FORCE:");
|
||||
osdFormatCentiNumber(buff, acc_extremes[Z].min * 100, 0, 2, 0, 4);
|
||||
strcat(buff,"/");
|
||||
displayWrite(osdDisplayPort, statValuesX, top, buff);
|
||||
osdFormatCentiNumber(buff, acc_extremes[Z].max * 100, 0, 2, 0, 3);
|
||||
displayWrite(osdDisplayPort, statValuesX + 5, top++, buff);
|
||||
|
||||
displayWrite(osdDisplayPort, statNameX, top, "DISARMED BY :");
|
||||
displayWrite(osdDisplayPort, statValuesX, top++, disarmReasonStr[getDisarmReason()]);
|
||||
}
|
||||
|
@ -2981,8 +3038,33 @@ static void osdShowArmed(void)
|
|||
}
|
||||
}
|
||||
|
||||
static void osdFilterData(timeUs_t currentTimeUs) {
|
||||
static timeUs_t lastRefresh = 0;
|
||||
float refresh_dT = cmpTimeUs(currentTimeUs, lastRefresh) * 1e-6;
|
||||
|
||||
GForce = sqrtf(vectorNormSquared(&imuMeasuredAccelBF)) / GRAVITY_MSS;
|
||||
for (uint8_t axis = 0; axis < XYZ_AXIS_COUNT; ++axis) GForceAxis[axis] = imuMeasuredAccelBF.v[axis] / GRAVITY_MSS;
|
||||
|
||||
if (lastRefresh) {
|
||||
GForce = pt1FilterApply3(&GForceFilter, GForce, refresh_dT);
|
||||
for (uint8_t axis = 0; axis < XYZ_AXIS_COUNT; ++axis) pt1FilterApply3(GForceFilterAxis + axis, GForceAxis[axis], refresh_dT);
|
||||
} else {
|
||||
pt1FilterInitRC(&GForceFilter, GFORCE_FILTER_TC, 0);
|
||||
pt1FilterReset(&GForceFilter, GForce);
|
||||
|
||||
for (uint8_t axis = 0; axis < XYZ_AXIS_COUNT; ++axis) {
|
||||
pt1FilterInitRC(GForceFilterAxis + axis, GFORCE_FILTER_TC, 0);
|
||||
pt1FilterReset(GForceFilterAxis + axis, GForceAxis[axis]);
|
||||
}
|
||||
}
|
||||
|
||||
lastRefresh = currentTimeUs;
|
||||
}
|
||||
|
||||
static void osdRefresh(timeUs_t currentTimeUs)
|
||||
{
|
||||
osdFilterData(currentTimeUs);
|
||||
|
||||
#ifdef USE_CMS
|
||||
if (IS_RC_MODE_ACTIVE(BOXOSD) && (!cmsInMenu) && !(osdConfig()->osd_failsafe_switch_layout && FLIGHT_MODE(FAILSAFE_MODE))) {
|
||||
#else
|
||||
|
|
|
@ -137,6 +137,10 @@ typedef enum {
|
|||
OSD_PLUS_CODE,
|
||||
OSD_MAP_SCALE,
|
||||
OSD_MAP_REFERENCE,
|
||||
OSD_GFORCE,
|
||||
OSD_GFORCE_X,
|
||||
OSD_GFORCE_Y,
|
||||
OSD_GFORCE_Z,
|
||||
OSD_ITEM_COUNT // MUST BE LAST
|
||||
} osd_items_e;
|
||||
|
||||
|
@ -180,6 +184,9 @@ typedef struct osdConfig_s {
|
|||
uint16_t neg_alt_alarm; // abs(negative altitude) in m
|
||||
int16_t imu_temp_alarm_min;
|
||||
int16_t imu_temp_alarm_max;
|
||||
float gforce_alarm;
|
||||
float gforce_axis_alarm_min;
|
||||
float gforce_axis_alarm_max;
|
||||
#ifdef USE_BARO
|
||||
int16_t baro_temp_alarm_min;
|
||||
int16_t baro_temp_alarm_max;
|
||||
|
|
|
@ -49,6 +49,7 @@ typedef enum {
|
|||
FUNCTION_LOG = (1 << 15), // 32768
|
||||
FUNCTION_RANGEFINDER = (1 << 16), // 65536
|
||||
FUNCTION_VTX_FFPV = (1 << 17), // 131072
|
||||
FUNCTION_SERIALSHOT = (1 << 18), // 262144
|
||||
} serialPortFunction_e;
|
||||
|
||||
typedef enum {
|
||||
|
|
|
@ -1119,6 +1119,15 @@ static navigationFSMEvent_t navOnEnteringState_NAV_STATE_RTH_CLIMB_TO_SAFE_ALT(n
|
|||
initializeRTHSanityChecker(&navGetCurrentActualPositionAndVelocity()->pos);
|
||||
}
|
||||
|
||||
posControl.rthInitialHomeDistance = posControl.homeDistance;
|
||||
|
||||
if (navConfig()->general.flags.rth_tail_first && !STATE(FIXED_WING)) {
|
||||
setDesiredPosition(&posControl.homeWaypointAbove.pos, 0, NAV_POS_UPDATE_XY | NAV_POS_UPDATE_Z | NAV_POS_UPDATE_BEARING_TAIL_FIRST);
|
||||
}
|
||||
else {
|
||||
setDesiredPosition(&posControl.homeWaypointAbove.pos, 0, NAV_POS_UPDATE_XY | NAV_POS_UPDATE_Z | NAV_POS_UPDATE_BEARING);
|
||||
}
|
||||
|
||||
return NAV_FSM_EVENT_SUCCESS; // NAV_STATE_RTH_HEAD_HOME
|
||||
}
|
||||
else {
|
||||
|
@ -1144,8 +1153,7 @@ static navigationFSMEvent_t navOnEnteringState_NAV_STATE_RTH_CLIMB_TO_SAFE_ALT(n
|
|||
|
||||
if (navConfig()->general.flags.rth_tail_first) {
|
||||
setDesiredPosition(&pos, 0, NAV_POS_UPDATE_Z | NAV_POS_UPDATE_BEARING_TAIL_FIRST);
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
setDesiredPosition(&pos, 0, NAV_POS_UPDATE_Z | NAV_POS_UPDATE_BEARING);
|
||||
}
|
||||
}
|
||||
|
@ -1179,13 +1187,17 @@ static navigationFSMEvent_t navOnEnteringState_NAV_STATE_RTH_HEAD_HOME(navigatio
|
|||
return NAV_FSM_EVENT_SWITCH_TO_EMERGENCY_LANDING;
|
||||
}
|
||||
else {
|
||||
// Update XYZ-position target
|
||||
if (navConfig()->general.flags.rth_tail_first && !STATE(FIXED_WING)) {
|
||||
setDesiredPosition(&posControl.homeWaypointAbove.pos, 0, NAV_POS_UPDATE_XY | NAV_POS_UPDATE_Z | NAV_POS_UPDATE_BEARING_TAIL_FIRST);
|
||||
}
|
||||
else {
|
||||
setDesiredPosition(&posControl.homeWaypointAbove.pos, 0, NAV_POS_UPDATE_XY | NAV_POS_UPDATE_Z | NAV_POS_UPDATE_BEARING);
|
||||
if (navConfig()->general.flags.rth_alt_control_mode == NAV_RTH_AT_LEAST_ALT_LINEAR_DESCENT) {
|
||||
fpVector3_t pos;
|
||||
uint16_t loiterDistanceFromHome = STATE(FIXED_WING) ? navConfig()->fw.loiter_radius : 0;
|
||||
uint32_t distanceToLoiterToTravelFromRTHStart = posControl.rthInitialHomeDistance - loiterDistanceFromHome;
|
||||
uint32_t distanceToLoiterTraveled = constrain((int32_t)posControl.rthInitialHomeDistance - posControl.homeDistance, 0, distanceToLoiterToTravelFromRTHStart);
|
||||
float RTHStartAltitude = posControl.homeWaypointAbove.pos.z;
|
||||
float RTHFinalAltitude = posControl.homePosition.pos.z + navConfig()->general.rth_altitude;
|
||||
pos.z = RTHStartAltitude - scaleRange(distanceToLoiterTraveled, 0, distanceToLoiterToTravelFromRTHStart, 0, RTHStartAltitude - RTHFinalAltitude);
|
||||
setDesiredPosition(&pos, 0, NAV_POS_UPDATE_Z);
|
||||
}
|
||||
|
||||
return NAV_FSM_EVENT_NONE;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -68,6 +68,8 @@ enum {
|
|||
NAV_RTH_CONST_ALT = 2, // Climb/descend to predefined altitude
|
||||
NAV_RTH_MAX_ALT = 3, // Track maximum altitude and climb to it when RTH
|
||||
NAV_RTH_AT_LEAST_ALT = 4, // Climb to predefined altitude if below it
|
||||
NAV_RTH_AT_LEAST_ALT_LINEAR_DESCENT = 5, // Climb to predefined altitude if below it,
|
||||
// descend linearly to reach home at predefined altitude if above it
|
||||
};
|
||||
|
||||
enum {
|
||||
|
@ -400,6 +402,7 @@ bool loadNonVolatileWaypointList(void);
|
|||
bool saveNonVolatileWaypointList(void);
|
||||
|
||||
float RTHAltitude(void);
|
||||
int16_t fixedWingPitchToThrottleCorrection(int16_t pitch);
|
||||
|
||||
/* Geodetic functions */
|
||||
typedef enum {
|
||||
|
|
|
@ -432,6 +432,11 @@ int16_t applyFixedWingMinSpeedController(timeUs_t currentTimeUs)
|
|||
return throttleSpeedAdjustment;
|
||||
}
|
||||
|
||||
int16_t fixedWingPitchToThrottleCorrection(int16_t pitch)
|
||||
{
|
||||
return DECIDEGREES_TO_DEGREES(pitch) * navConfig()->fw.pitch_to_throttle;
|
||||
}
|
||||
|
||||
void applyFixedWingPitchRollThrottleController(navigationFSMStateFlags_t navStateFlags, timeUs_t currentTimeUs)
|
||||
{
|
||||
int16_t minThrottleCorrection = navConfig()->fw.min_throttle - navConfig()->fw.cruise_throttle;
|
||||
|
@ -447,7 +452,7 @@ void applyFixedWingPitchRollThrottleController(navigationFSMStateFlags_t navStat
|
|||
// PITCH >0 dive, <0 climb
|
||||
int16_t pitchCorrection = constrain(posControl.rcAdjustment[PITCH], -DEGREES_TO_DECIDEGREES(navConfig()->fw.max_dive_angle), DEGREES_TO_DECIDEGREES(navConfig()->fw.max_climb_angle));
|
||||
rcCommand[PITCH] = -pidAngleToRcCommand(pitchCorrection, pidProfile()->max_angle_inclination[FD_PITCH]);
|
||||
int16_t throttleCorrection = DECIDEGREES_TO_DEGREES(pitchCorrection) * navConfig()->fw.pitch_to_throttle;
|
||||
int16_t throttleCorrection = fixedWingPitchToThrottleCorrection(pitchCorrection);
|
||||
|
||||
#ifdef NAV_FIXED_WING_LANDING
|
||||
if (navStateFlags & NAV_CTL_LAND) {
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#if defined(USE_NAV)
|
||||
|
||||
#include "build/build_config.h"
|
||||
#include "build/debug.h"
|
||||
|
||||
#include "common/axis.h"
|
||||
#include "common/log.h"
|
||||
|
@ -354,8 +355,37 @@ static bool gravityCalibrationComplete(void)
|
|||
return zeroCalibrationIsCompleteS(&posEstimator.imu.gravityCalibration);
|
||||
}
|
||||
|
||||
static void updateIMUTopic(void)
|
||||
static void updateIMUEstimationWeight(const float dt)
|
||||
{
|
||||
bool isAccClipped = accIsClipped();
|
||||
|
||||
// If accelerometer measurement is clipped - drop the acc weight to zero
|
||||
// and gradually restore weight back to 1.0 over time
|
||||
if (isAccClipped) {
|
||||
posEstimator.imu.accWeightFactor = 0.0f;
|
||||
}
|
||||
else {
|
||||
const float relAlpha = dt / (dt + INAV_ACC_CLIPPING_RC_CONSTANT);
|
||||
posEstimator.imu.accWeightFactor = posEstimator.imu.accWeightFactor * (1.0f - relAlpha) + 1.0f * relAlpha;
|
||||
}
|
||||
|
||||
// DEBUG_VIBE[0-3] are used in IMU
|
||||
DEBUG_SET(DEBUG_VIBE, 4, posEstimator.imu.accWeightFactor * 1000);
|
||||
}
|
||||
|
||||
float navGetAccelerometerWeight(void)
|
||||
{
|
||||
const float accWeightScaled = posEstimator.imu.accWeightFactor * positionEstimationConfig()->w_xyz_acc_p;
|
||||
DEBUG_SET(DEBUG_VIBE, 5, accWeightScaled * 1000);
|
||||
|
||||
return accWeightScaled;
|
||||
}
|
||||
|
||||
static void updateIMUTopic(timeUs_t currentTimeUs)
|
||||
{
|
||||
const float dt = US2S(currentTimeUs - posEstimator.imu.lastUpdateTime);
|
||||
posEstimator.imu.lastUpdateTime = currentTimeUs;
|
||||
|
||||
if (!isImuReady()) {
|
||||
posEstimator.imu.accelNEU.x = 0;
|
||||
posEstimator.imu.accelNEU.y = 0;
|
||||
|
@ -364,6 +394,9 @@ static void updateIMUTopic(void)
|
|||
restartGravityCalibration();
|
||||
}
|
||||
else {
|
||||
/* Update acceleration weight based on vibration levels and clipping */
|
||||
updateIMUEstimationWeight(dt);
|
||||
|
||||
fpVector3_t accelBF;
|
||||
|
||||
/* Read acceleration data in body frame */
|
||||
|
@ -435,12 +468,6 @@ static bool navIsHeadingUsable(void)
|
|||
}
|
||||
}
|
||||
|
||||
float navGetAccelerometerWeight(void)
|
||||
{
|
||||
// TODO(digitalentity): consider accelerometer health in weight calculation
|
||||
return positionEstimationConfig()->w_xyz_acc_p;
|
||||
}
|
||||
|
||||
static uint32_t calculateCurrentValidityFlags(timeUs_t currentTimeUs)
|
||||
{
|
||||
/* Figure out if we have valid position data from our data sources */
|
||||
|
@ -768,6 +795,7 @@ void initializePositionEstimator(void)
|
|||
posEstimator.est.eph = positionEstimationConfig()->max_eph_epv + 0.001f;
|
||||
posEstimator.est.epv = positionEstimationConfig()->max_eph_epv + 0.001f;
|
||||
|
||||
posEstimator.imu.lastUpdateTime = 0;
|
||||
posEstimator.gps.lastUpdateTime = 0;
|
||||
posEstimator.baro.lastUpdateTime = 0;
|
||||
posEstimator.surface.lastUpdateTime = 0;
|
||||
|
@ -778,6 +806,8 @@ void initializePositionEstimator(void)
|
|||
posEstimator.est.flowCoordinates[X] = 0;
|
||||
posEstimator.est.flowCoordinates[Y] = 0;
|
||||
|
||||
posEstimator.imu.accWeightFactor = 0;
|
||||
|
||||
restartGravityCalibration();
|
||||
|
||||
for (axis = 0; axis < 3; axis++) {
|
||||
|
@ -806,7 +836,7 @@ void FAST_CODE NOINLINE updatePositionEstimator(void)
|
|||
const timeUs_t currentTimeUs = micros();
|
||||
|
||||
/* Read updates from IMU, preprocess */
|
||||
updateIMUTopic();
|
||||
updateIMUTopic(currentTimeUs);
|
||||
|
||||
/* Update estimate */
|
||||
updateEstimatedTopic(currentTimeUs);
|
||||
|
|
|
@ -51,6 +51,8 @@
|
|||
#define INAV_BARO_AVERAGE_HZ 1.0f
|
||||
#define INAV_SURFACE_AVERAGE_HZ 1.0f
|
||||
|
||||
#define INAV_ACC_CLIPPING_RC_CONSTANT (0.010f) // Reduce acc weight for ~10ms after clipping
|
||||
|
||||
#define RANGEFINDER_RELIABILITY_RC_CONSTANT (0.47802f)
|
||||
#define RANGEFINDER_RELIABILITY_LIGHT_THRESHOLD (0.15f)
|
||||
#define RANGEFINDER_RELIABILITY_LOW_THRESHOLD (0.33f)
|
||||
|
@ -126,9 +128,11 @@ typedef struct {
|
|||
} navPositionEstimatorESTIMATE_t;
|
||||
|
||||
typedef struct {
|
||||
timeUs_t lastUpdateTime;
|
||||
fpVector3_t accelNEU;
|
||||
fpVector3_t accelBias;
|
||||
float calibratedGravityCMSS;
|
||||
float accWeightFactor;
|
||||
zeroCalibrationScalar_t gravityCalibration;
|
||||
} navPosisitonEstimatorIMU_t;
|
||||
|
||||
|
|
|
@ -324,6 +324,7 @@ typedef struct {
|
|||
navWaypointPosition_t homePosition; // Special waypoint, stores original yaw (heading when launched)
|
||||
navWaypointPosition_t homeWaypointAbove; // NEU-coordinates and initial bearing + desired RTH altitude
|
||||
navigationHomeFlags_t homeFlags;
|
||||
uint32_t rthInitialHomeDistance; // Distance to home after RTH has been initiated and the initial climb/descent is done
|
||||
|
||||
uint32_t homeDistance; // cm
|
||||
int32_t homeDirection; // deg*100
|
||||
|
|
|
@ -339,6 +339,11 @@ bool accInit(uint32_t targetLooptime)
|
|||
acc.accClipCount = 0;
|
||||
accInitFilters();
|
||||
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
acc.extremes[axis].min = 100;
|
||||
acc.extremes[axis].max = -100;
|
||||
}
|
||||
|
||||
if (accelerometerConfig()->acc_align != ALIGN_DEFAULT) {
|
||||
acc.dev.accAlign = accelerometerConfig()->acc_align;
|
||||
}
|
||||
|
@ -504,7 +509,7 @@ static void applyAccelerationZero(const flightDynamicsTrims_t * accZero, const f
|
|||
}
|
||||
|
||||
/*
|
||||
* Calculate measured acceleration in body frame in g
|
||||
* Calculate measured acceleration in body frame in m/s^2
|
||||
*/
|
||||
void accGetMeasuredAcceleration(fpVector3_t *measuredAcc)
|
||||
{
|
||||
|
@ -513,6 +518,19 @@ void accGetMeasuredAcceleration(fpVector3_t *measuredAcc)
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Return g's
|
||||
*/
|
||||
const acc_extremes_t* accGetMeasuredExtremes(void)
|
||||
{
|
||||
return (const acc_extremes_t *)&acc.extremes;
|
||||
}
|
||||
|
||||
float accGetMeasuredMaxG(void)
|
||||
{
|
||||
return acc.maxG;
|
||||
}
|
||||
|
||||
void accUpdate(void)
|
||||
{
|
||||
if (!acc.dev.readFn(&acc.dev)) {
|
||||
|
@ -541,8 +559,12 @@ void accUpdate(void)
|
|||
|
||||
// Before filtering check for clipping and vibration levels
|
||||
if (fabsf(acc.accADCf[X]) > ACC_CLIPPING_THRESHOLD_G || fabsf(acc.accADCf[Y]) > ACC_CLIPPING_THRESHOLD_G || fabsf(acc.accADCf[Z]) > ACC_CLIPPING_THRESHOLD_G) {
|
||||
acc.isClipped = true;
|
||||
acc.accClipCount++;
|
||||
}
|
||||
else {
|
||||
acc.isClipped = false;
|
||||
}
|
||||
|
||||
// Calculate vibration levels
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
|
@ -559,7 +581,6 @@ void accUpdate(void)
|
|||
acc.accADCf[axis] = accSoftLpfFilterApplyFn(accSoftLpfFilter[axis], acc.accADCf[axis]);
|
||||
}
|
||||
|
||||
|
||||
#ifdef USE_ACC_NOTCH
|
||||
if (accelerometerConfig()->acc_notch_hz) {
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
|
@ -570,6 +591,18 @@ void accUpdate(void)
|
|||
|
||||
}
|
||||
|
||||
// Record extremes: min/max for each axis and acceleration vector modulus
|
||||
void updateAccExtremes(void)
|
||||
{
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
if (acc.accADCf[axis] < acc.extremes[axis].min) acc.extremes[axis].min = acc.accADCf[axis];
|
||||
if (acc.accADCf[axis] > acc.extremes[axis].max) acc.extremes[axis].max = acc.accADCf[axis];
|
||||
}
|
||||
|
||||
float gforce = sqrtf(sq(acc.accADCf[0]) + sq(acc.accADCf[1]) + sq(acc.accADCf[2]));
|
||||
if (gforce > acc.maxG) acc.maxG = gforce;
|
||||
}
|
||||
|
||||
void accGetVibrationLevels(fpVector3_t *accVibeLevels)
|
||||
{
|
||||
accVibeLevels->x = sqrtf(acc.accVibeSq[X]);
|
||||
|
@ -587,6 +620,11 @@ uint32_t accGetClipCount(void)
|
|||
return acc.accClipCount;
|
||||
}
|
||||
|
||||
bool accIsClipped(void)
|
||||
{
|
||||
return acc.isClipped;
|
||||
}
|
||||
|
||||
void accSetCalibrationValues(void)
|
||||
{
|
||||
if ((accelerometerConfig()->accZero.raw[X] == 0) && (accelerometerConfig()->accZero.raw[Y] == 0) && (accelerometerConfig()->accZero.raw[Z] == 0) &&
|
||||
|
|
|
@ -49,12 +49,20 @@ typedef enum {
|
|||
ACC_MAX = ACC_FAKE
|
||||
} accelerationSensor_e;
|
||||
|
||||
typedef struct {
|
||||
float min;
|
||||
float max;
|
||||
} acc_extremes_t;
|
||||
|
||||
typedef struct acc_s {
|
||||
accDev_t dev;
|
||||
uint32_t accTargetLooptime;
|
||||
float accADCf[XYZ_AXIS_COUNT]; // acceleration in g
|
||||
float accVibeSq[XYZ_AXIS_COUNT];
|
||||
uint32_t accClipCount;
|
||||
bool isClipped;
|
||||
acc_extremes_t extremes[XYZ_AXIS_COUNT];
|
||||
float maxG;
|
||||
} acc_t;
|
||||
|
||||
extern acc_t acc;
|
||||
|
@ -76,9 +84,13 @@ bool accInit(uint32_t accTargetLooptime);
|
|||
bool accIsCalibrationComplete(void);
|
||||
void accStartCalibration(void);
|
||||
void accGetMeasuredAcceleration(fpVector3_t *measuredAcc);
|
||||
const acc_extremes_t* accGetMeasuredExtremes(void);
|
||||
float accGetMeasuredMaxG(void);
|
||||
void updateAccExtremes(void);
|
||||
void accGetVibrationLevels(fpVector3_t *accVibeLevels);
|
||||
float accGetVibrationLevel(void);
|
||||
uint32_t accGetClipCount(void);
|
||||
bool accIsClipped(void);
|
||||
void accUpdate(void);
|
||||
void accSetCalibrationValues(void);
|
||||
void accInitFilters(void);
|
||||
|
|
|
@ -204,6 +204,7 @@
|
|||
#define TARGET_IO_PORTD (BIT(2))
|
||||
|
||||
#define USE_DSHOT
|
||||
#define USE_SERIALSHOT
|
||||
|
||||
#define MAX_PWM_OUTPUT_PORTS 6
|
||||
|
||||
|
|
|
@ -151,6 +151,7 @@
|
|||
#define USE_SPEKTRUM_BIND
|
||||
#define BIND_PIN PA10 // RX1
|
||||
|
||||
#define USE_SERIALSHOT
|
||||
#define USE_SERIAL_4WAY_BLHELI_INTERFACE
|
||||
|
||||
#define TARGET_IO_PORTA 0xffff
|
||||
|
|
|
@ -161,3 +161,4 @@
|
|||
|
||||
#define MAX_PWM_OUTPUT_PORTS 7
|
||||
#define USE_DSHOT
|
||||
#define USE_SERIALSHOT
|
||||
|
|
|
@ -196,3 +196,4 @@
|
|||
|
||||
#define MAX_PWM_OUTPUT_PORTS 8
|
||||
#define USE_DSHOT
|
||||
#define USE_SERIALSHOT
|
||||
|
|
|
@ -174,6 +174,7 @@
|
|||
#define USE_SERIAL_4WAY_BLHELI_INTERFACE
|
||||
|
||||
#define USE_DSHOT
|
||||
#define USE_SERIALSHOT
|
||||
|
||||
// Number of available PWM outputs
|
||||
#define MAX_PWM_OUTPUT_PORTS 6
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue