1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-25 01:05:21 +03:00

Merge pull request #7572 from bkleiner/bkleiner-h7-usb-msc

h7: usb msc support for sdio
This commit is contained in:
Paweł Spychalski 2021-11-08 08:57:49 +01:00 committed by GitHub
commit c4ecdd71ea
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 731 additions and 36 deletions

View file

@ -158,7 +158,8 @@ main_sources(STM32H7_SRC
drivers/system_stm32h7xx.c
drivers/serial_uart_stm32h7xx.c
drivers/serial_uart_hal.c
# drivers/sdcard/sdmmc_sdio_h7xx.c
drivers/sdio.h
drivers/sdcard/sdmmc_sdio_h7xx.c
)
main_sources(STM32H7_MSC_SRC
@ -188,8 +189,6 @@ function(target_stm32h7xx)
OPENOCD_TARGET stm32h7x
DISABLE_MSC # This should be temporary
# BOOTLOADER
${ARGN}

View file

@ -82,12 +82,13 @@ typedef struct _USBD_STORAGE
typedef struct
{
// bot_data at start of structure to ensure cache alignment
uint8_t bot_data[MSC_MEDIA_PACKET];
uint32_t max_lun;
uint32_t interface;
uint8_t bot_state;
uint8_t bot_status;
uint16_t bot_data_length;
uint8_t bot_data[MSC_MEDIA_PACKET];
USBD_MSC_BOT_CBWTypeDef cbw;
USBD_MSC_BOT_CSWTypeDef csw;

View file

@ -265,6 +265,8 @@ __ALIGN_BEGIN uint8_t USBD_MSC_DeviceQualifierDesc[USB_LEN_DEV_QUALIFIER_DESC]
* @}
*/
static USBD_MSC_BOT_HandleTypeDef ClassData __attribute__((aligned(32)));
/** @defgroup MSC_CORE_Private_Functions
* @{
@ -301,7 +303,7 @@ uint8_t USBD_MSC_Init(USBD_HandleTypeDef *pdev, uint8_t cfgidx)
USBD_LL_OpenEP(pdev, MSC_EPIN_ADDR, USBD_EP_TYPE_BULK, MSC_MAX_FS_PACKET);
pdev->ep_in[MSC_EPIN_ADDR & 0xFU].is_used = 1U;
}
pdev->pMSC_ClassData = USBD_malloc(sizeof(USBD_MSC_BOT_HandleTypeDef));
pdev->pMSC_ClassData = (void*)&ClassData;
if (pdev->pMSC_ClassData == NULL)
{

View file

@ -181,7 +181,8 @@ int8_t SCSI_ProcessCmd(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *cmd)
*/
static int8_t SCSI_TestUnitReady(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
UNUSED(params);
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
/* case 9 : Hi > D0 */
if (hmsc->cbw.dDataLength != 0U)
@ -191,7 +192,7 @@ static int8_t SCSI_TestUnitReady(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
return -1;
}
if (((USBD_StorageTypeDef *)pdev->pUserData)->IsReady(lun) != 0)
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->IsReady(lun) != 0)
{
SCSI_SenseCode(pdev, lun, NOT_READY, MEDIUM_NOT_PRESENT);
hmsc->bot_state = USBD_BOT_NO_DATA;
@ -214,7 +215,7 @@ static int8_t SCSI_Inquiry(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *par
{
uint8_t *pPage;
uint16_t len;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
if (params[1] & 0x01U)/*Evpd is set*/
{
@ -229,7 +230,7 @@ static int8_t SCSI_Inquiry(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *par
}
else
{
pPage = (uint8_t *)(void *) & ((USBD_StorageTypeDef *)pdev->pUserData)->pInquiry[lun * STANDARD_INQUIRY_DATA_LEN];
pPage = (uint8_t *)(void *) & ((USBD_StorageTypeDef *)pdev->pMSC_UserData)->pInquiry[lun * STANDARD_INQUIRY_DATA_LEN];
len = (uint16_t)pPage[4] + 5U;
if (params[4] <= len)
@ -257,9 +258,10 @@ static int8_t SCSI_Inquiry(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *par
*/
static int8_t SCSI_ReadCapacity10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
UNUSED(params);
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
if (((USBD_StorageTypeDef *)pdev->pUserData)->GetCapacity(lun, &hmsc->scsi_blk_nbr, &hmsc->scsi_blk_size) != 0)
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->GetCapacity(lun, &hmsc->scsi_blk_nbr, &hmsc->scsi_blk_size) != 0)
{
SCSI_SenseCode(pdev, lun, NOT_READY, MEDIUM_NOT_PRESENT);
return -1;
@ -290,7 +292,8 @@ static int8_t SCSI_ReadCapacity10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_
*/
static int8_t SCSI_ReadFormatCapacity(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
UNUSED(params);
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
uint16_t blk_size;
uint32_t blk_nbr;
@ -301,7 +304,7 @@ static int8_t SCSI_ReadFormatCapacity(USBD_HandleTypeDef *pdev, uint8_t lun, ui
hmsc->bot_data[i] = 0U;
}
if (((USBD_StorageTypeDef *)pdev->pUserData)->GetCapacity(lun, &blk_nbr, &blk_size) != 0U)
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->GetCapacity(lun, &blk_nbr, &blk_size) != 0U)
{
SCSI_SenseCode(pdev, lun, NOT_READY, MEDIUM_NOT_PRESENT);
return -1;
@ -332,7 +335,9 @@ static int8_t SCSI_ReadFormatCapacity(USBD_HandleTypeDef *pdev, uint8_t lun, ui
*/
static int8_t SCSI_ModeSense6(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
UNUSED(lun);
UNUSED(params);
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
uint16_t len = 8U;
hmsc->bot_data_length = len;
@ -353,8 +358,10 @@ static int8_t SCSI_ModeSense6(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *p
*/
static int8_t SCSI_ModeSense10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
UNUSED(lun);
UNUSED(params);
uint16_t len = 8U;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
hmsc->bot_data_length = len;
@ -377,8 +384,9 @@ static int8_t SCSI_ModeSense10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *
static int8_t SCSI_RequestSense(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
UNUSED(lun);
uint8_t i;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
for (i = 0U ; i < REQUEST_SENSE_DATA_LEN; i++)
{
@ -421,7 +429,8 @@ static int8_t SCSI_RequestSense(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
*/
void SCSI_SenseCode(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t sKey, uint8_t ASC)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
UNUSED(lun);
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
hmsc->scsi_sense[hmsc->scsi_sense_tail].Skey = sKey;
hmsc->scsi_sense[hmsc->scsi_sense_tail].w.ASC = ASC << 8;
@ -440,7 +449,9 @@ void SCSI_SenseCode(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t sKey, uint8_
*/
static int8_t SCSI_StartStopUnit(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pClassData;
UNUSED(lun);
UNUSED(params);
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pMSC_ClassData;
hmsc->bot_data_length = 0U;
return 0;
}
@ -454,7 +465,7 @@ static int8_t SCSI_StartStopUnit(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t
*/
static int8_t SCSI_Read10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pMSC_ClassData;
if (hmsc->bot_state == USBD_BOT_IDLE) /* Idle */
{
@ -465,7 +476,7 @@ static int8_t SCSI_Read10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params
return -1;
}
if (((USBD_StorageTypeDef *)pdev->pUserData)->IsReady(lun) != 0)
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->IsReady(lun) != 0)
{
SCSI_SenseCode(pdev, lun, NOT_READY, MEDIUM_NOT_PRESENT);
return -1;
@ -508,7 +519,7 @@ static int8_t SCSI_Read10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params
static int8_t SCSI_Write10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pMSC_ClassData;
uint32_t len;
if (hmsc->bot_state == USBD_BOT_IDLE) /* Idle */
@ -521,14 +532,14 @@ static int8_t SCSI_Write10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *para
}
/* Check whether Media is ready */
if (((USBD_StorageTypeDef *)pdev->pUserData)->IsReady(lun) != 0)
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->IsReady(lun) != 0)
{
SCSI_SenseCode(pdev, lun, NOT_READY, MEDIUM_NOT_PRESENT);
return -1;
}
/* Check If media is write-protected */
if (((USBD_StorageTypeDef *)pdev->pUserData)->IsWriteProtected(lun) != 0)
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->IsWriteProtected(lun) != 0)
{
SCSI_SenseCode(pdev, lun, NOT_READY, WRITE_PROTECTED);
return -1;
@ -582,7 +593,7 @@ static int8_t SCSI_Write10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *para
static int8_t SCSI_Verify10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *params)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pMSC_ClassData;
if ((params[1] & 0x02U) == 0x02U)
{
@ -610,7 +621,7 @@ static int8_t SCSI_Verify10(USBD_HandleTypeDef *pdev, uint8_t lun, uint8_t *par
static int8_t SCSI_CheckAddressRange(USBD_HandleTypeDef *pdev, uint8_t lun,
uint32_t blk_offset, uint32_t blk_nbr)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pMSC_ClassData;
if ((blk_offset + blk_nbr) > hmsc->scsi_blk_nbr)
{
@ -628,12 +639,12 @@ static int8_t SCSI_CheckAddressRange(USBD_HandleTypeDef *pdev, uint8_t lun,
*/
static int8_t SCSI_ProcessRead(USBD_HandleTypeDef *pdev, uint8_t lun)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *)pdev->pMSC_ClassData;
uint32_t len = hmsc->scsi_blk_len * hmsc->scsi_blk_size;
len = MIN(len, MSC_MEDIA_PACKET);
if (((USBD_StorageTypeDef *)pdev->pUserData)->Read(lun,
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->Read(lun,
hmsc->bot_data,
hmsc->scsi_blk_addr,
(len / hmsc->scsi_blk_size)) < 0)
@ -666,12 +677,12 @@ static int8_t SCSI_ProcessRead(USBD_HandleTypeDef *pdev, uint8_t lun)
static int8_t SCSI_ProcessWrite(USBD_HandleTypeDef *pdev, uint8_t lun)
{
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pClassData;
USBD_MSC_BOT_HandleTypeDef *hmsc = (USBD_MSC_BOT_HandleTypeDef *) pdev->pMSC_ClassData;
uint32_t len = hmsc->scsi_blk_len * hmsc->scsi_blk_size;
len = MIN(len, MSC_MEDIA_PACKET);
if (((USBD_StorageTypeDef *)pdev->pUserData)->Write(lun, hmsc->bot_data,
if (((USBD_StorageTypeDef *)pdev->pMSC_UserData)->Write(lun, hmsc->bot_data,
hmsc->scsi_blk_addr,
(len / hmsc->scsi_blk_size)) < 0)
{

View file

@ -241,11 +241,12 @@ static sdcardOperationStatus_e sdcard_endWriteBlocks(void)
*/
static bool sdcardSdio_poll(void)
{
#if !defined(STM32H7) // H7 uses IDMA
if (!sdcard.dma) {
sdcard.state = SDCARD_STATE_NOT_PRESENT;
return false;
}
#endif
doMore:
switch (sdcard.state) {
case SDCARD_STATE_RESET:
@ -545,6 +546,7 @@ static bool sdcardSdio_readBlock(uint32_t blockIndex, uint8_t *buffer, sdcard_op
*/
void sdcardSdio_init(void)
{
#if !defined(STM32H7) // H7 uses IDMA
sdcard.dma = dmaGetByTag(SDCARD_SDIO_DMA);
if (!sdcard.dma) {
@ -564,7 +566,12 @@ void sdcardSdio_init(void)
sdcard.state = SDCARD_STATE_NOT_PRESENT;
return;
}
#else
if (!SD_Initialize_LL(0)) {
sdcard.state = SDCARD_STATE_NOT_PRESENT;
return;
}
#endif
// We don't support hot insertion
if (!sdcard_isInserted()) {
sdcard.state = SDCARD_STATE_NOT_PRESENT;

View file

@ -38,6 +38,10 @@
#ifdef STM32F7
#include "stm32f7xx.h"
#endif
#ifdef STM32H7
#include "stm32h7xx.h"
#endif
/* SDCARD pinouts

View file

@ -0,0 +1,614 @@
/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Original author: Alain (https://github.com/aroyer-qc)
* Modified for BF source: Chris Hockuba (https://github.com/conkerkh)
*/
/* Include(s) -------------------------------------------------------------------------------------------------------*/
#include "stdbool.h"
#include <string.h>
#include "platform.h"
#ifdef USE_SDCARD_SDIO
#include "sdmmc_sdio.h"
#include "stm32h7xx.h"
#include "drivers/sdio.h"
#include "drivers/io.h"
#include "drivers/io_impl.h"
#include "drivers/nvic.h"
#include "drivers/time.h"
#include "drivers/rcc.h"
#include "drivers/dma.h"
#include "build/debug.h"
typedef struct SD_Handle_s
{
uint32_t CSD[4]; // SD card specific data table
uint32_t CID[4]; // SD card identification number table
volatile uint32_t RXCplt; // SD RX Complete is equal 0 when no transfer
volatile uint32_t TXCplt; // SD TX Complete is equal 0 when no transfer
} SD_Handle_t;
SD_HandleTypeDef hsd1;
SD_CardInfo_t SD_CardInfo;
SD_CardType_t SD_CardType;
static SD_Handle_t SD_Handle;
typedef struct sdioPin_s {
ioTag_t pin;
uint8_t af;
} sdioPin_t;
#define SDIO_PIN_D0 0
#define SDIO_PIN_D1 1
#define SDIO_PIN_D2 2
#define SDIO_PIN_D3 3
#define SDIO_PIN_CK 4
#define SDIO_PIN_CMD 5
#define SDIO_PIN_COUNT 6
#define SDIO_MAX_PINDEFS 2
typedef struct sdioHardware_s {
SDMMC_TypeDef *instance;
IRQn_Type irqn;
sdioPin_t sdioPinCK[SDIO_MAX_PINDEFS];
sdioPin_t sdioPinCMD[SDIO_MAX_PINDEFS];
sdioPin_t sdioPinD0[SDIO_MAX_PINDEFS];
sdioPin_t sdioPinD1[SDIO_MAX_PINDEFS];
sdioPin_t sdioPinD2[SDIO_MAX_PINDEFS];
sdioPin_t sdioPinD3[SDIO_MAX_PINDEFS];
} sdioHardware_t;
// Possible pin assignments
#define PINDEF(device, pin, afnum) { DEFIO_TAG_E(pin), GPIO_AF ## afnum ## _SDMMC ## device }
static const sdioHardware_t sdioPinHardware[SDIODEV_COUNT] = {
{
.instance = SDMMC1,
.irqn = SDMMC1_IRQn,
.sdioPinCK = { PINDEF(1, PC12, 12) },
.sdioPinCMD = { PINDEF(1, PD2, 12) },
.sdioPinD0 = { PINDEF(1, PC8, 12) },
.sdioPinD1 = { PINDEF(1, PC9, 12) },
.sdioPinD2 = { PINDEF(1, PC10, 12) },
.sdioPinD3 = { PINDEF(1, PC11, 12) },
},
{
.instance = SDMMC2,
.irqn = SDMMC2_IRQn,
.sdioPinCK = { PINDEF(2, PC1, 9), PINDEF(2, PD6, 11) },
.sdioPinCMD = { PINDEF(2, PA0, 9), PINDEF(2, PD7, 11) },
.sdioPinD0 = { PINDEF(2, PB14, 9) },
.sdioPinD1 = { PINDEF(2, PB15, 9) },
.sdioPinD2 = { PINDEF(2, PB3, 9) },
.sdioPinD3 = { PINDEF(2, PB4, 9) },
}
};
#undef PINDEF
// Active configuration
static const sdioHardware_t *sdioHardware;
static sdioPin_t sdioPin[SDIO_PIN_COUNT];
void sdioPinConfigure(void)
{
if (SDCARD_SDIO_DEVICE == SDIOINVALID) {
return;
}
sdioHardware = &sdioPinHardware[SDCARD_SDIO_DEVICE];
sdioPin[SDIO_PIN_CK] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinCK[0];
sdioPin[SDIO_PIN_CMD] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinCMD[0];
sdioPin[SDIO_PIN_D0] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD0[0];
#ifdef SDCARD_SDIO_4BIT
sdioPin[SDIO_PIN_D1] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD1[0];
sdioPin[SDIO_PIN_D2] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD2[0];
sdioPin[SDIO_PIN_D3] = sdioHardware[SDCARD_SDIO_DEVICE].sdioPinD3[0];
#endif
}
#define IOCFG_SDMMC IO_CONFIG(GPIO_MODE_AF_PP, GPIO_SPEED_FREQ_VERY_HIGH, GPIO_NOPULL)
void HAL_SD_MspInit(SD_HandleTypeDef* hsd)
{
UNUSED(hsd);
if (!sdioHardware) {
return;
}
if (sdioHardware->instance == SDMMC1) {
__HAL_RCC_SDMMC1_CLK_DISABLE();
__HAL_RCC_SDMMC1_FORCE_RESET();
__HAL_RCC_SDMMC1_RELEASE_RESET();
__HAL_RCC_SDMMC1_CLK_ENABLE();
} else if (sdioHardware->instance == SDMMC2) {
__HAL_RCC_SDMMC2_CLK_DISABLE();
__HAL_RCC_SDMMC2_FORCE_RESET();
__HAL_RCC_SDMMC2_RELEASE_RESET();
__HAL_RCC_SDMMC2_CLK_ENABLE();
}
const IO_t clk = IOGetByTag(sdioPin[SDIO_PIN_CK].pin);
const IO_t cmd = IOGetByTag(sdioPin[SDIO_PIN_CMD].pin);
const IO_t d0 = IOGetByTag(sdioPin[SDIO_PIN_D0].pin);
const IO_t d1 = IOGetByTag(sdioPin[SDIO_PIN_D1].pin);
const IO_t d2 = IOGetByTag(sdioPin[SDIO_PIN_D2].pin);
const IO_t d3 = IOGetByTag(sdioPin[SDIO_PIN_D3].pin);
IOConfigGPIOAF(clk, IOCFG_SDMMC, sdioPin[SDIO_PIN_CK].af);
IOConfigGPIOAF(cmd, IOCFG_SDMMC, sdioPin[SDIO_PIN_CMD].af);
IOConfigGPIOAF(d0, IOCFG_SDMMC, sdioPin[SDIO_PIN_D0].af);
#ifdef SDCARD_SDIO_4BIT
IOConfigGPIOAF(d1, IOCFG_SDMMC, sdioPin[SDIO_PIN_D1].af);
IOConfigGPIOAF(d2, IOCFG_SDMMC, sdioPin[SDIO_PIN_D2].af);
IOConfigGPIOAF(d3, IOCFG_SDMMC, sdioPin[SDIO_PIN_D3].af);
#endif
HAL_NVIC_SetPriority(sdioHardware->irqn, 0, 0);
HAL_NVIC_EnableIRQ(sdioHardware->irqn);
}
void SDIO_GPIO_Init(void)
{
if (!sdioHardware) {
return;
}
const IO_t clk = IOGetByTag(sdioPin[SDIO_PIN_CK].pin);
const IO_t cmd = IOGetByTag(sdioPin[SDIO_PIN_CMD].pin);
const IO_t d0 = IOGetByTag(sdioPin[SDIO_PIN_D0].pin);
const IO_t d1 = IOGetByTag(sdioPin[SDIO_PIN_D1].pin);
const IO_t d2 = IOGetByTag(sdioPin[SDIO_PIN_D2].pin);
const IO_t d3 = IOGetByTag(sdioPin[SDIO_PIN_D3].pin);
IOInit(clk, OWNER_SDCARD, RESOURCE_NONE, 0);
IOInit(cmd, OWNER_SDCARD, RESOURCE_NONE, 0);
IOInit(d0, OWNER_SDCARD, RESOURCE_NONE, 0);
#ifdef SDCARD_SDIO_4BIT
IOInit(d1, OWNER_SDCARD, RESOURCE_NONE, 0);
IOInit(d2, OWNER_SDCARD, RESOURCE_NONE, 0);
IOInit(d3, OWNER_SDCARD, RESOURCE_NONE, 0);
#endif
//
// Setting all the SDIO pins to high for a short time results in more robust initialisation.
//
IOHi(d0);
IOConfigGPIO(d0, IOCFG_OUT_PP);
#ifdef SDCARD_SDIO_4BIT
IOHi(d1);
IOHi(d2);
IOHi(d3);
IOConfigGPIO(d1, IOCFG_OUT_PP);
IOConfigGPIO(d2, IOCFG_OUT_PP);
IOConfigGPIO(d3, IOCFG_OUT_PP);
#endif
IOHi(clk);
IOHi(cmd);
IOConfigGPIO(clk, IOCFG_OUT_PP);
IOConfigGPIO(cmd, IOCFG_OUT_PP);
}
bool SD_Initialize_LL(DMA_Stream_TypeDef *dma)
{
UNUSED(dma);
return true;
}
bool SD_GetState(void)
{
HAL_SD_CardStateTypedef cardState = HAL_SD_GetCardState(&hsd1);
return (cardState == HAL_SD_CARD_TRANSFER);
}
bool SD_Init(void)
{
HAL_StatusTypeDef status;
memset(&hsd1, 0, sizeof(hsd1));
hsd1.Instance = sdioHardware->instance;
hsd1.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
hsd1.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_ENABLE;
#ifdef SDCARD_SDIO_4BIT
hsd1.Init.BusWide = SDMMC_BUS_WIDE_4B;
#else
hsd1.Init.BusWide = SDMMC_BUS_WIDE_1B; // FIXME untested
#endif
hsd1.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_ENABLE;
hsd1.Init.ClockDiv = 1; // 200Mhz / (2 * 1 ) = 100Mhz, used for "UltraHigh speed SD card" only, see HAL_SD_ConfigWideBusOperation, SDMMC_HSpeed_CLK_DIV, SDMMC_NSpeed_CLK_DIV
status = HAL_SD_Init(&hsd1); // Will call HAL_SD_MspInit
if (status != HAL_OK) {
return SD_ERROR;
}
switch(hsd1.SdCard.CardType) {
case CARD_SDSC:
switch (hsd1.SdCard.CardVersion) {
case CARD_V1_X:
SD_CardType = SD_STD_CAPACITY_V1_1;
break;
case CARD_V2_X:
SD_CardType = SD_STD_CAPACITY_V2_0;
break;
default:
return SD_ERROR;
}
break;
case CARD_SDHC_SDXC:
SD_CardType = SD_HIGH_CAPACITY;
break;
default:
return SD_ERROR;
}
// STATIC_ASSERT(sizeof(SD_Handle.CSD) == sizeof(hsd1.CSD), hal-csd-size-error);
memcpy(&SD_Handle.CSD, &hsd1.CSD, sizeof(SD_Handle.CSD));
// STATIC_ASSERT(sizeof(SD_Handle.CID) == sizeof(hsd1.CID), hal-cid-size-error);
memcpy(&SD_Handle.CID, &hsd1.CID, sizeof(SD_Handle.CID));
return SD_OK;
}
SD_Error_t SD_GetCardInfo(void)
{
SD_Error_t ErrorState = SD_OK;
// fill in SD_CardInfo
uint32_t Temp = 0;
// Byte 0
Temp = (SD_Handle.CSD[0] & 0xFF000000) >> 24;
SD_CardInfo.SD_csd.CSDStruct = (uint8_t)((Temp & 0xC0) >> 6);
SD_CardInfo.SD_csd.SysSpecVersion = (uint8_t)((Temp & 0x3C) >> 2);
SD_CardInfo.SD_csd.Reserved1 = Temp & 0x03;
// Byte 1
Temp = (SD_Handle.CSD[0] & 0x00FF0000) >> 16;
SD_CardInfo.SD_csd.TAAC = (uint8_t)Temp;
// Byte 2
Temp = (SD_Handle.CSD[0] & 0x0000FF00) >> 8;
SD_CardInfo.SD_csd.NSAC = (uint8_t)Temp;
// Byte 3
Temp = SD_Handle.CSD[0] & 0x000000FF;
SD_CardInfo.SD_csd.MaxBusClkFrec = (uint8_t)Temp;
// Byte 4
Temp = (SD_Handle.CSD[1] & 0xFF000000) >> 24;
SD_CardInfo.SD_csd.CardComdClasses = (uint16_t)(Temp << 4);
// Byte 5
Temp = (SD_Handle.CSD[1] & 0x00FF0000) >> 16;
SD_CardInfo.SD_csd.CardComdClasses |= (uint16_t)((Temp & 0xF0) >> 4);
SD_CardInfo.SD_csd.RdBlockLen = (uint8_t)(Temp & 0x0F);
// Byte 6
Temp = (SD_Handle.CSD[1] & 0x0000FF00) >> 8;
SD_CardInfo.SD_csd.PartBlockRead = (uint8_t)((Temp & 0x80) >> 7);
SD_CardInfo.SD_csd.WrBlockMisalign = (uint8_t)((Temp & 0x40) >> 6);
SD_CardInfo.SD_csd.RdBlockMisalign = (uint8_t)((Temp & 0x20) >> 5);
SD_CardInfo.SD_csd.DSRImpl = (uint8_t)((Temp & 0x10) >> 4);
SD_CardInfo.SD_csd.Reserved2 = 0; /*!< Reserved */
if((SD_CardType == SD_STD_CAPACITY_V1_1) || (SD_CardType == SD_STD_CAPACITY_V2_0)) {
SD_CardInfo.SD_csd.DeviceSize = (Temp & 0x03) << 10;
// Byte 7
Temp = (uint8_t)(SD_Handle.CSD[1] & 0x000000FF);
SD_CardInfo.SD_csd.DeviceSize |= (Temp) << 2;
// Byte 8
Temp = (uint8_t)((SD_Handle.CSD[2] & 0xFF000000) >> 24);
SD_CardInfo.SD_csd.DeviceSize |= (Temp & 0xC0) >> 6;
SD_CardInfo.SD_csd.MaxRdCurrentVDDMin = (Temp & 0x38) >> 3;
SD_CardInfo.SD_csd.MaxRdCurrentVDDMax = (Temp & 0x07);
// Byte 9
Temp = (uint8_t)((SD_Handle.CSD[2] & 0x00FF0000) >> 16);
SD_CardInfo.SD_csd.MaxWrCurrentVDDMin = (Temp & 0xE0) >> 5;
SD_CardInfo.SD_csd.MaxWrCurrentVDDMax = (Temp & 0x1C) >> 2;
SD_CardInfo.SD_csd.DeviceSizeMul = (Temp & 0x03) << 1;
// Byte 10
Temp = (uint8_t)((SD_Handle.CSD[2] & 0x0000FF00) >> 8);
SD_CardInfo.SD_csd.DeviceSizeMul |= (Temp & 0x80) >> 7;
SD_CardInfo.CardCapacity = (SD_CardInfo.SD_csd.DeviceSize + 1) ;
SD_CardInfo.CardCapacity *= (1 << (SD_CardInfo.SD_csd.DeviceSizeMul + 2));
SD_CardInfo.CardBlockSize = 1 << (SD_CardInfo.SD_csd.RdBlockLen);
SD_CardInfo.CardCapacity = SD_CardInfo.CardCapacity * SD_CardInfo.CardBlockSize / 512; // In 512 byte blocks
} else if(SD_CardType == SD_HIGH_CAPACITY) {
// Byte 7
Temp = (uint8_t)(SD_Handle.CSD[1] & 0x000000FF);
SD_CardInfo.SD_csd.DeviceSize = (Temp & 0x3F) << 16;
// Byte 8
Temp = (uint8_t)((SD_Handle.CSD[2] & 0xFF000000) >> 24);
SD_CardInfo.SD_csd.DeviceSize |= (Temp << 8);
// Byte 9
Temp = (uint8_t)((SD_Handle.CSD[2] & 0x00FF0000) >> 16);
SD_CardInfo.SD_csd.DeviceSize |= (Temp);
// Byte 10
Temp = (uint8_t)((SD_Handle.CSD[2] & 0x0000FF00) >> 8);
SD_CardInfo.CardCapacity = ((uint64_t)SD_CardInfo.SD_csd.DeviceSize + 1) * 1024;
SD_CardInfo.CardBlockSize = 512;
} else {
// Not supported card type
ErrorState = SD_ERROR;
}
SD_CardInfo.SD_csd.EraseGrSize = (Temp & 0x40) >> 6;
SD_CardInfo.SD_csd.EraseGrMul = (Temp & 0x3F) << 1;
// Byte 11
Temp = (uint8_t)(SD_Handle.CSD[2] & 0x000000FF);
SD_CardInfo.SD_csd.EraseGrMul |= (Temp & 0x80) >> 7;
SD_CardInfo.SD_csd.WrProtectGrSize = (Temp & 0x7F);
// Byte 12
Temp = (uint8_t)((SD_Handle.CSD[3] & 0xFF000000) >> 24);
SD_CardInfo.SD_csd.WrProtectGrEnable = (Temp & 0x80) >> 7;
SD_CardInfo.SD_csd.ManDeflECC = (Temp & 0x60) >> 5;
SD_CardInfo.SD_csd.WrSpeedFact = (Temp & 0x1C) >> 2;
SD_CardInfo.SD_csd.MaxWrBlockLen = (Temp & 0x03) << 2;
// Byte 13
Temp = (uint8_t)((SD_Handle.CSD[3] & 0x00FF0000) >> 16);
SD_CardInfo.SD_csd.MaxWrBlockLen |= (Temp & 0xC0) >> 6;
SD_CardInfo.SD_csd.WriteBlockPaPartial = (Temp & 0x20) >> 5;
SD_CardInfo.SD_csd.Reserved3 = 0;
SD_CardInfo.SD_csd.ContentProtectAppli = (Temp & 0x01);
// Byte 14
Temp = (uint8_t)((SD_Handle.CSD[3] & 0x0000FF00) >> 8);
SD_CardInfo.SD_csd.FileFormatGrouop = (Temp & 0x80) >> 7;
SD_CardInfo.SD_csd.CopyFlag = (Temp & 0x40) >> 6;
SD_CardInfo.SD_csd.PermWrProtect = (Temp & 0x20) >> 5;
SD_CardInfo.SD_csd.TempWrProtect = (Temp & 0x10) >> 4;
SD_CardInfo.SD_csd.FileFormat = (Temp & 0x0C) >> 2;
SD_CardInfo.SD_csd.ECC = (Temp & 0x03);
// Byte 15
Temp = (uint8_t)(SD_Handle.CSD[3] & 0x000000FF);
SD_CardInfo.SD_csd.CSD_CRC = (Temp & 0xFE) >> 1;
SD_CardInfo.SD_csd.Reserved4 = 1;
// Byte 0
Temp = (uint8_t)((SD_Handle.CID[0] & 0xFF000000) >> 24);
SD_CardInfo.SD_cid.ManufacturerID = Temp;
// Byte 1
Temp = (uint8_t)((SD_Handle.CID[0] & 0x00FF0000) >> 16);
SD_CardInfo.SD_cid.OEM_AppliID = Temp << 8;
// Byte 2
Temp = (uint8_t)((SD_Handle.CID[0] & 0x000000FF00) >> 8);
SD_CardInfo.SD_cid.OEM_AppliID |= Temp;
// Byte 3
Temp = (uint8_t)(SD_Handle.CID[0] & 0x000000FF);
SD_CardInfo.SD_cid.ProdName1 = Temp << 24;
// Byte 4
Temp = (uint8_t)((SD_Handle.CID[1] & 0xFF000000) >> 24);
SD_CardInfo.SD_cid.ProdName1 |= Temp << 16;
// Byte 5
Temp = (uint8_t)((SD_Handle.CID[1] & 0x00FF0000) >> 16);
SD_CardInfo.SD_cid.ProdName1 |= Temp << 8;
// Byte 6
Temp = (uint8_t)((SD_Handle.CID[1] & 0x0000FF00) >> 8);
SD_CardInfo.SD_cid.ProdName1 |= Temp;
// Byte 7
Temp = (uint8_t)(SD_Handle.CID[1] & 0x000000FF);
SD_CardInfo.SD_cid.ProdName2 = Temp;
// Byte 8
Temp = (uint8_t)((SD_Handle.CID[2] & 0xFF000000) >> 24);
SD_CardInfo.SD_cid.ProdRev = Temp;
// Byte 9
Temp = (uint8_t)((SD_Handle.CID[2] & 0x00FF0000) >> 16);
SD_CardInfo.SD_cid.ProdSN = Temp << 24;
// Byte 10
Temp = (uint8_t)((SD_Handle.CID[2] & 0x0000FF00) >> 8);
SD_CardInfo.SD_cid.ProdSN |= Temp << 16;
// Byte 11
Temp = (uint8_t)(SD_Handle.CID[2] & 0x000000FF);
SD_CardInfo.SD_cid.ProdSN |= Temp << 8;
// Byte 12
Temp = (uint8_t)((SD_Handle.CID[3] & 0xFF000000) >> 24);
SD_CardInfo.SD_cid.ProdSN |= Temp;
// Byte 13
Temp = (uint8_t)((SD_Handle.CID[3] & 0x00FF0000) >> 16);
SD_CardInfo.SD_cid.Reserved1 |= (Temp & 0xF0) >> 4;
SD_CardInfo.SD_cid.ManufactDate = (Temp & 0x0F) << 8;
// Byte 14
Temp = (uint8_t)((SD_Handle.CID[3] & 0x0000FF00) >> 8);
SD_CardInfo.SD_cid.ManufactDate |= Temp;
// Byte 15
Temp = (uint8_t)(SD_Handle.CID[3] & 0x000000FF);
SD_CardInfo.SD_cid.CID_CRC = (Temp & 0xFE) >> 1;
SD_CardInfo.SD_cid.Reserved2 = 1;
return ErrorState;
}
SD_Error_t SD_CheckWrite(void) {
if (SD_Handle.TXCplt != 0) return SD_BUSY;
return SD_OK;
}
SD_Error_t SD_CheckRead(void) {
if (SD_Handle.RXCplt != 0) return SD_BUSY;
return SD_OK;
}
SD_Error_t SD_WriteBlocks_DMA(uint64_t WriteAddress, uint32_t *buffer, uint32_t BlockSize, uint32_t NumberOfBlocks)
{
SD_Error_t ErrorState = SD_OK;
SD_Handle.TXCplt = 1;
if (BlockSize != 512) {
return SD_ERROR; // unsupported.
}
if ((uint32_t)buffer & 0x1f) {
return SD_ADDR_MISALIGNED;
}
// Ensure the data is flushed to main memory
SCB_CleanDCache_by_Addr(buffer, NumberOfBlocks * BlockSize);
HAL_StatusTypeDef status;
if ((status = HAL_SD_WriteBlocks_DMA(&hsd1, (uint8_t *)buffer, WriteAddress, NumberOfBlocks)) != HAL_OK) {
return SD_ERROR;
}
return ErrorState;
}
typedef struct {
uint32_t *buffer;
uint32_t BlockSize;
uint32_t NumberOfBlocks;
} sdReadParameters_t;
sdReadParameters_t sdReadParameters;
SD_Error_t SD_ReadBlocks_DMA(uint64_t ReadAddress, uint32_t *buffer, uint32_t BlockSize, uint32_t NumberOfBlocks)
{
SD_Error_t ErrorState = SD_OK;
if (BlockSize != 512) {
return SD_ERROR; // unsupported.
}
if ((uint32_t)buffer & 0x1f) {
return SD_ADDR_MISALIGNED;
}
SD_Handle.RXCplt = 1;
sdReadParameters.buffer = buffer;
sdReadParameters.BlockSize = BlockSize;
sdReadParameters.NumberOfBlocks = NumberOfBlocks;
HAL_StatusTypeDef status;
if ((status = HAL_SD_ReadBlocks_DMA(&hsd1, (uint8_t *)buffer, ReadAddress, NumberOfBlocks)) != HAL_OK) {
return SD_ERROR;
}
return ErrorState;
}
/**
* @brief Tx Transfer completed callback
* @param hsd: SD handle
* @retval None
*/
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
{
UNUSED(hsd);
SD_Handle.TXCplt = 0;
}
/**
* @brief Rx Transfer completed callback
* @param hsd: SD handle
* @retval None
*/
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
{
UNUSED(hsd);
SD_Handle.RXCplt = 0;
/*
the SCB_InvalidateDCache_by_Addr() requires a 32-Byte aligned address,
adjust the address and the D-Cache size to invalidate accordingly.
*/
uint32_t alignedAddr = (uint32_t)sdReadParameters.buffer & ~0x1F;
SCB_InvalidateDCache_by_Addr((uint32_t*)alignedAddr, sdReadParameters.NumberOfBlocks * sdReadParameters.BlockSize + ((uint32_t)sdReadParameters.buffer - alignedAddr));
}
void HAL_SD_AbortCallback(SD_HandleTypeDef *hsd)
{
UNUSED(hsd);
SD_Handle.TXCplt = 0;
SD_Handle.RXCplt = 0;
}
void SDMMC1_IRQHandler(void)
{
HAL_SD_IRQHandler(&hsd1);
}
void SDMMC2_IRQHandler(void)
{
HAL_SD_IRQHandler(&hsd1);
}
#endif

35
src/main/drivers/sdio.h Normal file
View file

@ -0,0 +1,35 @@
/*
* This file is part of Cleanflight and Betaflight.
*
* Cleanflight and Betaflight are free software. You can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#define SDIO_CFG_TO_DEV(x) ((x) - 1)
#define SDIO_DEV_TO_CFG(x) ((x) + 1)
typedef enum {
SDIOINVALID = -1,
SDIODEV_1 = 0,
SDIODEV_2,
} SDIODevice;
#define SDIODEV_COUNT 2
#if defined(STM32H7)
void sdioPinConfigure(void);
void SDIO_GPIO_Init(void);
#endif

View file

@ -82,6 +82,7 @@
#include "msc/emfat_file.h"
#endif
#include "drivers/sdcard/sdcard.h"
#include "drivers/sdio.h"
#include "drivers/io_port_expander.h"
#include "fc/cli.h"
@ -367,6 +368,11 @@ void init(void)
updateHardwareRevision();
#endif
#if defined(USE_SDCARD_SDIO) && defined(STM32H7)
sdioPinConfigure();
SDIO_GPIO_Init();
#endif
#ifdef USE_USB_MSC
/* MSC mode will start after init, but will not allow scheduler to run,
* so there is no bottleneck in reading and writing data

View file

@ -435,7 +435,11 @@ typedef struct afatfs_t {
} initState;
#endif
#ifdef STM32H7
uint8_t *cache;
#else
uint8_t cache[AFATFS_SECTOR_SIZE * AFATFS_NUM_CACHE_SECTORS];
#endif
afatfsCacheBlockDescriptor_t cacheDescriptor[AFATFS_NUM_CACHE_SECTORS];
uint32_t cacheTimer;
@ -481,6 +485,10 @@ typedef struct afatfs_t {
uint32_t rootDirectorySectors; // Zero on FAT32, for FAT16 the number of sectors that the root directory occupies
} afatfs_t;
#ifdef STM32H7
static uint8_t afatfs_cache[AFATFS_SECTOR_SIZE * AFATFS_NUM_CACHE_SECTORS] __attribute__((aligned(32)));
#endif
static afatfs_t afatfs;
static void afatfs_fileOperationContinue(afatfsFile_t *file);
@ -3616,6 +3624,9 @@ afatfsError_e afatfs_getLastError(void)
void afatfs_init(void)
{
#ifdef STM32H7
afatfs.cache = afatfs_cache;
#endif
afatfs.filesystemState = AFATFS_FILESYSTEM_STATE_INITIALIZATION;
afatfs.initPhase = AFATFS_INITIALIZATION_READ_MBR;
afatfs.lastClusterAllocated = FAT_SMALLEST_LEGAL_CLUSTER_NUMBER;

View file

@ -156,7 +156,11 @@ static int8_t STORAGE_Init (uint8_t lun)
UNUSED(lun);
LED0_OFF;
#if defined(STM32H7) // H7 uses IDMA
SD_Initialize_LL(0);
#else
SD_Initialize_LL(SDIO_DMA);
#endif
if (SD_Init() != 0) return 1;
LED0_ON;
return 0;

View file

@ -168,11 +168,12 @@
#define SERIALRX_UART SERIAL_PORT_USART6
// *************** SDIO SD BLACKBOX*******************
//#define USE_SDCARD
//#define USE_SDCARD_SDIO
//#define SDCARD_SDIO_DMA DMA_TAG(2,3,4)
//#define SDCARD_SDIO_4BIT
//#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
#define USE_SDCARD
#define USE_SDCARD_SDIO
#define SDCARD_SDIO_DEVICE SDIODEV_1
#define SDCARD_SDIO_4BIT
#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
// *************** ADC *****************************
#define USE_ADC