mirror of
https://github.com/iNavFlight/inav.git
synced 2025-07-12 19:10:27 +03:00
INAV PID Controller basic description
This commit is contained in:
parent
5d221d3a8c
commit
cc159269d2
2 changed files with 25 additions and 63 deletions
25
docs/INAV PID Controller.md
Normal file
25
docs/INAV PID Controller.md
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
# INAV PID Controller
|
||||||
|
|
||||||
|
What you have to know about INAV PID/PIFF/PIDCD controllers:
|
||||||
|
|
||||||
|
1. INAV PID uses floating-point math
|
||||||
|
1. Rate/Angular Velocity controllers work in dps [degrees per second]
|
||||||
|
1. P, I, D and Multirotor CD gains are scaled like Betafligfht equivalents, but actual mechanics are different, and PID response might be different
|
||||||
|
1. Depending on platform type, different controllers are used
|
||||||
|
1. Fixed-wing uses **PIFF**:
|
||||||
|
1. Error is computed with a formula `const float rateError = pidState->rateTarget - pidState->gyroRate;`
|
||||||
|
1. P-term with a formula `rateError * pidState->kP`
|
||||||
|
1. Simple I-term without Iterm Relax. I-term limit based on stick position is used instead. I-term is no allowed to grow if stick (roll/pitch/yaw) is deflected above threshold defined in `fw_iterm_limit_stick_position`. `pidState->errorGyroIf += rateError * pidState->kI * dT;`
|
||||||
|
1. No D-term
|
||||||
|
1. FF-term (Feed Forward) is computed from the controller input with a formula `pidState->rateTarget * pidState->kFF`. Bear in mind, this is not a **FeedForward** from Betaflight!
|
||||||
|
1. Multirotor uses **PIDCD**:
|
||||||
|
1. Error is computed with a formula `const float rateError = pidState->rateTarget - pidState->gyroRate;`
|
||||||
|
1. P-term with a formula `rateError * pidState->kP`
|
||||||
|
1. I-term
|
||||||
|
1. Iterm Relax is used to dynamically attenuate I-term during fast stick movements
|
||||||
|
1. I-term formula `pidState->errorGyroIf += (itermErrorRate * pidState->kI * antiWindupScaler * dT) + ((newOutputLimited - newOutput) * pidState->kT * antiWindupScaler * dT);`
|
||||||
|
1. I-term can be limited when motor output is saturated
|
||||||
|
1. D-term is computed only from gyro measurement
|
||||||
|
1. There are 2 LPF filters on D-term
|
||||||
|
1. D-term can by boosted during fast maneuvers using D-Boost. D-Boost is an equivalent of Betaflight D_min
|
||||||
|
1. **Control Derivative**, CD, or CD-term is a derivative computed from the setpoint that helps to boost PIDCD controller during fast stick movements. `newCDTerm = rateTargetDeltaFiltered * (pidState->kCD / dT);` It is an equivalent of Betaflight Feed Forward
|
|
@ -1,63 +0,0 @@
|
||||||
### IO variables
|
|
||||||
|
|
||||||
`gyroADC/8192*2000 = deg/s`
|
|
||||||
|
|
||||||
`gyroADC/4 ~ deg/s`
|
|
||||||
|
|
||||||
`rcCommand` - `<-500 - 500>` nominal, but is scaled with `rcRate/100`, max +-1250
|
|
||||||
|
|
||||||
`inclination` - in 0.1 degree, roll and pitch deviation from horizontal position
|
|
||||||
`max_angle_inclination` - in 0.1 degree, default 50 degrees (500)
|
|
||||||
|
|
||||||
`axisPID` - output to mixer, will be added to throttle(`<1000-2000>`), output range is `<minthrottle, maxthrottle>` (default `<1150 - 1850>`)
|
|
||||||
|
|
||||||
### PID controller 0, "MultiWii" (default)
|
|
||||||
|
|
||||||
|
|
||||||
#### Leveling term
|
|
||||||
```
|
|
||||||
error = constrain(2*rcCommand[axis], limit +- max_angle_inclination) - inclination[axis]
|
|
||||||
Pacc = constrain(P8[PIDLEVEL]/100 * error, limit +- 5 * D8[PIDLEVEL])
|
|
||||||
Iacc = intergrate(error, limit +-10000) * I8[PIDLEVEL] / 4096
|
|
||||||
```
|
|
||||||
#### Gyro term
|
|
||||||
```
|
|
||||||
Pgyro = rcCommand[axis];
|
|
||||||
error = rcCommand[axis] * 10 * 8 / pidProfile->P8[axis] - gyroADC[axis] / 4; (conversion so that error is in deg/s ?)
|
|
||||||
Igyro = integrate(error, limit +-16000) / 10 / 8 * I8[axis] / 100 (conversion back to mixer units ?)
|
|
||||||
```
|
|
||||||
|
|
||||||
reset I term if
|
|
||||||
- axis rotation rate > +-64deg/s
|
|
||||||
- axis is YAW and rcCommand>+-100
|
|
||||||
|
|
||||||
##### Mode dependent mix(yaw is always from gyro)
|
|
||||||
|
|
||||||
- HORIZON - proportionally according to max deflection
|
|
||||||
```
|
|
||||||
deflection = MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])) / 500 ; limit to 0.0 .. 1.0
|
|
||||||
P = Pacc * (1-deflection) + Pgyro * deflection
|
|
||||||
I = Iacc * (1-deflection) + Igyro * deflection
|
|
||||||
```
|
|
||||||
- gyro
|
|
||||||
```
|
|
||||||
P = Pgyro
|
|
||||||
I = Igyro
|
|
||||||
```
|
|
||||||
- ANGLE
|
|
||||||
```
|
|
||||||
P = Pacc
|
|
||||||
I = Iacc
|
|
||||||
```
|
|
||||||
#### Gyro stabilization
|
|
||||||
|
|
||||||
```
|
|
||||||
P -= gyroADC[axis] / 4 * dynP8 / 10 / 8
|
|
||||||
D = -mean(diff(gyroADC[axis] / 4), over 3 samples) * 3 * dynD8 / 32
|
|
||||||
[equivalent to :]
|
|
||||||
D = - (gyroADC[axis]/4 - (<3 loops old>gyroADC[axis]/4)) * dynD8 / 32
|
|
||||||
```
|
|
||||||
|
|
||||||
This can be seen as sum of
|
|
||||||
- PI controller (handles rcCommand, HORIZON/ANGLE); `Igyro` is only output based on gyroADC
|
|
||||||
- PD controller(parameters dynP8/dynD8) with zero setpoint acting on gyroADC
|
|
Loading…
Add table
Add a link
Reference in a new issue