1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-23 08:15:26 +03:00

Merge branch 'scheduler-queue'

This commit is contained in:
Konstantin Sharlaimov (DigitalEntity) 2016-03-18 10:50:00 +10:00
commit ddc75033ef
13 changed files with 872 additions and 296 deletions

View file

@ -223,8 +223,8 @@ COMMON_SRC = build_config.c \
common/typeconversion.c \
common/encoding.c \
common/filter.c \
scheduler.c \
scheduler_tasks.c \
scheduler/scheduler.c \
scheduler/scheduler_tasks.c \
main.c \
mw.c \
flight/failsafe.c \

View file

@ -21,10 +21,15 @@
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
#ifdef UNIT_TEST
#define STATIC_UNIT_TESTED // make visible to unit test
// make these visible to unit test
#define STATIC_UNIT_TESTED
#define STATIC_INLINE_UNIT_TESTED
#define INLINE_UNIT_TESTED
#define UNIT_TESTED
#else
#define STATIC_UNIT_TESTED static
#define STATIC_INLINE_UNIT_TESTED static inline
#define INLINE_UNIT_TESTED inline
#define UNIT_TESTED
#endif

View file

@ -0,0 +1,100 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#ifdef SRC_MAIN_SCHEDULER_C_
#ifdef UNIT_TEST
cfTask_t *unittest_scheduler_selectedTask;
uint8_t unittest_scheduler_selectedTaskDynamicPriority;
uint16_t unittest_scheduler_waitingTasks;
uint32_t unittest_scheduler_timeToNextRealtimeTask;
bool unittest_outsideRealtimeGuardInterval;
#define GET_SCHEDULER_LOCALS() \
{ \
unittest_scheduler_selectedTask = selectedTask; \
unittest_scheduler_selectedTaskDynamicPriority = selectedTaskDynamicPriority; \
unittest_scheduler_waitingTasks = waitingTasks; \
unittest_scheduler_timeToNextRealtimeTask = timeToNextRealtimeTask; \
}
#else
#define SET_SCHEDULER_LOCALS() {}
#define GET_SCHEDULER_LOCALS() {}
#endif
#endif
#ifdef SRC_MAIN_FLIGHT_PID_C_
#ifdef UNIT_TEST
float unittest_pidLuxFloat_lastErrorForDelta[3];
float unittest_pidLuxFloat_delta1[3];
float unittest_pidLuxFloat_delta2[3];
float unittest_pidLuxFloat_PTerm[3];
float unittest_pidLuxFloat_ITerm[3];
float unittest_pidLuxFloat_DTerm[3];
#define SET_PID_LUX_FLOAT_LOCALS(axis) \
{ \
lastErrorForDelta[axis] = unittest_pidLuxFloat_lastErrorForDelta[axis]; \
delta1[axis] = unittest_pidLuxFloat_delta1[axis]; \
delta2[axis] = unittest_pidLuxFloat_delta2[axis]; \
}
#define GET_PID_LUX_FLOAT_LOCALS(axis) \
{ \
unittest_pidLuxFloat_lastErrorForDelta[axis] = lastErrorForDelta[axis]; \
unittest_pidLuxFloat_delta1[axis] = delta1[axis]; \
unittest_pidLuxFloat_delta2[axis] = delta2[axis]; \
unittest_pidLuxFloat_PTerm[axis] = PTerm; \
unittest_pidLuxFloat_ITerm[axis] = ITerm; \
unittest_pidLuxFloat_DTerm[axis] = DTerm; \
}
int32_t unittest_pidMultiWiiRewrite_lastErrorForDelta[3];
int32_t unittest_pidMultiWiiRewrite_PTerm[3];
int32_t unittest_pidMultiWiiRewrite_ITerm[3];
int32_t unittest_pidMultiWiiRewrite_DTerm[3];
#define SET_PID_MULTI_WII_REWRITE_LOCALS(axis) \
{ \
lastErrorForDelta[axis] = unittest_pidMultiWiiRewrite_lastErrorForDelta[axis]; \
}
#define GET_PID_MULTI_WII_REWRITE_LOCALS(axis) \
{ \
unittest_pidMultiWiiRewrite_lastErrorForDelta[axis] = lastErrorForDelta[axis]; \
unittest_pidMultiWiiRewrite_PTerm[axis] = PTerm; \
unittest_pidMultiWiiRewrite_ITerm[axis] = ITerm; \
unittest_pidMultiWiiRewrite_DTerm[axis] = DTerm; \
}
#else
#define SET_PID_LUX_FLOAT_LOCALS(axis) {}
#define GET_PID_LUX_FLOAT_LOCALS(axis) {}
#define SET_PID_MULTI_WII_REWRITE_LOCALS(axis) {}
#define GET_PID_MULTI_WII_REWRITE_LOCALS(axis) {}
#endif // UNIT_TEST
#endif // SRC_MAIN_FLIGHT_PID_C_

View file

@ -24,9 +24,10 @@
#include <ctype.h>
#include "platform.h"
#include "scheduler.h"
#include "version.h"
#include "scheduler/scheduler.h"
#include "build_config.h"
#include "common/axis.h"
@ -2442,11 +2443,13 @@ static void cliTasks(char *cmdline)
cfTaskId_e taskId;
cfTaskInfo_t taskInfo;
cliPrintf("Task list:\r\n");
cliPrintf("Task list max/us avg/us rate/hz total/ms\r\n");
for (taskId = 0; taskId < TASK_COUNT; taskId++) {
getTaskInfo(taskId, &taskInfo);
if (taskInfo.isEnabled) {
cliPrintf("%d - %s, max = %d us, avg = %d us, total = %d ms\r\n", taskId, taskInfo.taskName, taskInfo.maxExecutionTime, taskInfo.averageExecutionTime, taskInfo.totalExecutionTime / 1000);
const uint16_t taskFrequency = (uint16_t)(1.0f / ((float)taskInfo.latestDeltaTime * 0.000001f));
cliPrintf("%2d - %12s, %6d, %5d, %5d, %8d\r\n",
taskId, taskInfo.taskName, taskInfo.maxExecutionTime, taskInfo.averageExecutionTime, taskFrequency, taskInfo.totalExecutionTime / 1000);
}
}
}

View file

@ -24,7 +24,8 @@
#include "build_config.h"
#include "debug.h"
#include "platform.h"
#include "scheduler.h"
#include "scheduler/scheduler.h"
#include "common/axis.h"
#include "common/color.h"

View file

@ -21,7 +21,8 @@
#include <string.h>
#include "platform.h"
#include "scheduler.h"
#include "scheduler/scheduler.h"
#include "common/axis.h"
#include "common/color.h"
@ -542,16 +543,15 @@ int main(void) {
init();
/* Setup scheduler */
if (masterConfig.gyroSync) {
rescheduleTask(TASK_GYROPID, targetLooptime - INTERRUPT_WAIT_TIME);
}
else {
rescheduleTask(TASK_GYROPID, targetLooptime);
}
schedulerInit();
rescheduleTask(TASK_GYROPID, targetLooptime);
setTaskEnabled(TASK_GYROPID, true);
setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
setTaskEnabled(TASK_BEEPER, true);
#endif
setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
setTaskEnabled(TASK_RX, true);
#ifdef GPS

View file

@ -21,9 +21,10 @@
#include <math.h>
#include "platform.h"
#include "scheduler.h"
#include "debug.h"
#include "scheduler/scheduler.h"
#include "common/maths.h"
#include "common/axis.h"
#include "common/color.h"

View file

@ -1,226 +0,0 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include "platform.h"
#include "scheduler.h"
#include "debug.h"
#include "common/maths.h"
#include "drivers/system.h"
cfTaskId_e currentTaskId = TASK_NONE;
static uint32_t totalWaitingTasks;
static uint32_t totalWaitingTasksSamples;
static uint32_t realtimeGuardInterval;
uint32_t currentTime = 0;
uint16_t averageSystemLoadPercent = 0;
#define REALTIME_GUARD_INTERVAL_MIN 10
#define REALTIME_GUARD_INTERVAL_MAX 300
#define REALTIME_GUARD_INTERVAL_MARGIN 25
void taskSystem(void)
{
uint8_t taskId;
/* Calculate system load */
if (totalWaitingTasksSamples > 0) {
averageSystemLoadPercent = 100 * totalWaitingTasks / totalWaitingTasksSamples;
totalWaitingTasksSamples = 0;
totalWaitingTasks = 0;
}
/* Calculate guard interval */
uint32_t maxNonRealtimeTaskTime = 0;
for (taskId = 0; taskId < TASK_COUNT; taskId++) {
if (cfTasks[taskId].staticPriority != TASK_PRIORITY_REALTIME) {
maxNonRealtimeTaskTime = MAX(maxNonRealtimeTaskTime, cfTasks[taskId].averageExecutionTime);
}
}
realtimeGuardInterval = constrain(maxNonRealtimeTaskTime, REALTIME_GUARD_INTERVAL_MIN, REALTIME_GUARD_INTERVAL_MAX) + REALTIME_GUARD_INTERVAL_MARGIN;
#if defined SCHEDULER_DEBUG
debug[2] = realtimeGuardInterval;
#endif
}
#ifndef SKIP_TASK_STATISTICS
void getTaskInfo(cfTaskId_e taskId, cfTaskInfo_t * taskInfo)
{
taskInfo->taskName = cfTasks[taskId].taskName;
taskInfo->isEnabled= cfTasks[taskId].isEnabled;
taskInfo->desiredPeriod = cfTasks[taskId].desiredPeriod;
taskInfo->staticPriority = cfTasks[taskId].staticPriority;
taskInfo->maxExecutionTime = cfTasks[taskId].maxExecutionTime;
taskInfo->totalExecutionTime = cfTasks[taskId].totalExecutionTime;
taskInfo->averageExecutionTime = cfTasks[taskId].averageExecutionTime;
}
#endif
void rescheduleTask(cfTaskId_e taskId, uint32_t newPeriodMicros)
{
if (taskId == TASK_SELF)
taskId = currentTaskId;
if (taskId < TASK_COUNT) {
cfTasks[taskId].desiredPeriod = MAX(100, newPeriodMicros); // Limit delay to 100us (10 kHz) to prevent scheduler clogging
}
}
void setTaskEnabled(cfTaskId_e taskId, bool newEnabledState)
{
if (taskId == TASK_SELF)
taskId = currentTaskId;
if (taskId < TASK_COUNT) {
cfTasks[taskId].isEnabled = newEnabledState;
}
}
uint32_t getTaskDeltaTime(cfTaskId_e taskId)
{
if (taskId == TASK_SELF)
taskId = currentTaskId;
if (taskId < TASK_COUNT) {
return cfTasks[taskId].taskLatestDeltaTime;
}
else {
return 0;
}
}
void scheduler(void)
{
uint8_t taskId;
uint8_t selectedTaskId;
uint8_t selectedTaskDynPrio;
uint16_t waitingTasks = 0;
uint32_t timeToNextRealtimeTask = UINT32_MAX;
/* Cache currentTime */
currentTime = micros();
/* The task to be invoked */
selectedTaskId = TASK_NONE;
selectedTaskDynPrio = 0;
/* Check for realtime tasks */
for (taskId = 0; taskId < TASK_COUNT; taskId++) {
if (cfTasks[taskId].staticPriority == TASK_PRIORITY_REALTIME) {
uint32_t nextExecuteAt = cfTasks[taskId].lastExecutedAt + cfTasks[taskId].desiredPeriod;
if ((int32_t)(currentTime - nextExecuteAt) >= 0) {
timeToNextRealtimeTask = 0;
}
else {
uint32_t newTimeInterval = nextExecuteAt - currentTime;
timeToNextRealtimeTask = MIN(timeToNextRealtimeTask, newTimeInterval);
}
}
}
bool outsideRealtimeGuardInterval = (timeToNextRealtimeTask > realtimeGuardInterval);
/* Update task dynamic priorities */
for (taskId = 0; taskId < TASK_COUNT; taskId++) {
if (cfTasks[taskId].isEnabled) {
/* Task has checkFunc - event driven */
if (cfTasks[taskId].checkFunc != NULL) {
/* Increase priority for event driven tasks */
if (cfTasks[taskId].dynamicPriority > 0) {
cfTasks[taskId].taskAgeCycles = 1 + ((currentTime - cfTasks[taskId].lastSignaledAt) / cfTasks[taskId].desiredPeriod);
cfTasks[taskId].dynamicPriority = 1 + cfTasks[taskId].staticPriority * cfTasks[taskId].taskAgeCycles;
waitingTasks++;
}
else if (cfTasks[taskId].checkFunc(currentTime - cfTasks[taskId].lastExecutedAt)) {
cfTasks[taskId].lastSignaledAt = currentTime;
cfTasks[taskId].taskAgeCycles = 1;
cfTasks[taskId].dynamicPriority = 1 + cfTasks[taskId].staticPriority;
waitingTasks++;
}
else {
cfTasks[taskId].taskAgeCycles = 0;
}
}
/* Task is time-driven, dynamicPriority is last execution age measured in desiredPeriods) */
else {
// Task age is calculated from last execution
cfTasks[taskId].taskAgeCycles = ((currentTime - cfTasks[taskId].lastExecutedAt) / cfTasks[taskId].desiredPeriod);
if (cfTasks[taskId].taskAgeCycles > 0) {
cfTasks[taskId].dynamicPriority = 1 + cfTasks[taskId].staticPriority * cfTasks[taskId].taskAgeCycles;
waitingTasks++;
}
}
/* limit new priority to avoid overflow of uint8_t */
cfTasks[taskId].dynamicPriority = MIN(cfTasks[taskId].dynamicPriority, TASK_PRIORITY_MAX);;
bool taskCanBeChosenForScheduling =
(outsideRealtimeGuardInterval) ||
(cfTasks[taskId].taskAgeCycles > 1) ||
(cfTasks[taskId].staticPriority == TASK_PRIORITY_REALTIME);
if (taskCanBeChosenForScheduling && (cfTasks[taskId].dynamicPriority > selectedTaskDynPrio)) {
selectedTaskDynPrio = cfTasks[taskId].dynamicPriority;
selectedTaskId = taskId;
}
}
}
totalWaitingTasksSamples += 1;
totalWaitingTasks += waitingTasks;
/* Found a task that should be run */
if (selectedTaskId != TASK_NONE) {
cfTasks[selectedTaskId].taskLatestDeltaTime = currentTime - cfTasks[selectedTaskId].lastExecutedAt;
cfTasks[selectedTaskId].lastExecutedAt = currentTime;
cfTasks[selectedTaskId].dynamicPriority = 0;
currentTaskId = selectedTaskId;
uint32_t currentTimeBeforeTaskCall = micros();
/* Execute task */
if (cfTasks[selectedTaskId].taskFunc != NULL) {
cfTasks[selectedTaskId].taskFunc();
}
uint32_t taskExecutionTime = micros() - currentTimeBeforeTaskCall;
cfTasks[selectedTaskId].averageExecutionTime = ((uint32_t)cfTasks[selectedTaskId].averageExecutionTime * 31 + taskExecutionTime) / 32;
#ifndef SKIP_TASK_STATISTICS
cfTasks[selectedTaskId].totalExecutionTime += taskExecutionTime; // time consumed by scheduler + task
cfTasks[selectedTaskId].maxExecutionTime = MAX(cfTasks[selectedTaskId].maxExecutionTime, taskExecutionTime);
#endif
#if defined SCHEDULER_DEBUG
debug[3] = (micros() - currentTime) - taskExecutionTime;
#endif
}
else {
currentTaskId = TASK_NONE;
#if defined SCHEDULER_DEBUG
debug[3] = (micros() - currentTime);
#endif
}
}

286
src/main/scheduler/scheduler.c Executable file
View file

@ -0,0 +1,286 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#ifdef UNIT_TEST
typedef enum {TEST_IRQ = 0 } IRQn_Type;
#endif
#include "platform.h"
#include "scheduler.h"
#include "debug.h"
#include "build_config.h"
#include "common/maths.h"
#include "drivers/system.h"
static cfTask_t *currentTask = NULL;
static uint32_t totalWaitingTasks;
static uint32_t totalWaitingTasksSamples;
static uint32_t realtimeGuardInterval;
uint32_t currentTime = 0;
uint16_t averageSystemLoadPercent = 0;
#define REALTIME_GUARD_INTERVAL_MIN 10
#define REALTIME_GUARD_INTERVAL_MAX 300
#define REALTIME_GUARD_INTERVAL_MARGIN 25
static int taskQueuePos = 0;
static int taskQueueSize = 0;
// No need for a linked list for the queue, since items are only inserted at startup
#ifdef UNIT_TEST
STATIC_UNIT_TESTED cfTask_t* taskQueueArray[TASK_COUNT + 2]; // 1 extra space so test code can check for buffer overruns
#else
static cfTask_t* taskQueueArray[TASK_COUNT + 1]; // extra item for NULL pointer at end of queue
#endif
STATIC_UNIT_TESTED void queueClear(void)
{
memset(taskQueueArray, 0, sizeof(taskQueueArray));
taskQueuePos = 0;
taskQueueSize = 0;
}
#ifdef UNIT_TEST
STATIC_UNIT_TESTED int queueSize(void)
{
return taskQueueSize;
}
#endif
STATIC_UNIT_TESTED bool queueContains(cfTask_t *task)
{
for (int ii = 0; ii < taskQueueSize; ++ii) {
if (taskQueueArray[ii] == task) {
return true;
}
}
return false;
}
STATIC_UNIT_TESTED bool queueAdd(cfTask_t *task)
{
if ((taskQueueSize >= TASK_COUNT) || queueContains(task)) {
return false;
}
for (int ii = 0; ii <= taskQueueSize; ++ii) {
if (taskQueueArray[ii] == NULL || taskQueueArray[ii]->staticPriority < task->staticPriority) {
memmove(&taskQueueArray[ii+1], &taskQueueArray[ii], sizeof(task) * (taskQueueSize - ii));
taskQueueArray[ii] = task;
++taskQueueSize;
return true;
}
}
return false;
}
STATIC_UNIT_TESTED bool queueRemove(cfTask_t *task)
{
for (int ii = 0; ii < taskQueueSize; ++ii) {
if (taskQueueArray[ii] == task) {
memmove(&taskQueueArray[ii], &taskQueueArray[ii+1], sizeof(task) * (taskQueueSize - ii));
--taskQueueSize;
return true;
}
}
return false;
}
/*
* Returns first item queue or NULL if queue empty
*/
STATIC_INLINE_UNIT_TESTED cfTask_t *queueFirst(void)
{
taskQueuePos = 0;
return taskQueueArray[0]; // guaranteed to be NULL if queue is empty
}
/*
* Returns next item in queue or NULL if at end of queue
*/
STATIC_INLINE_UNIT_TESTED cfTask_t *queueNext(void)
{
return taskQueueArray[++taskQueuePos]; // guaranteed to be NULL at end of queue
}
void taskSystem(void)
{
/* Calculate system load */
if (totalWaitingTasksSamples > 0) {
averageSystemLoadPercent = 100 * totalWaitingTasks / totalWaitingTasksSamples;
totalWaitingTasksSamples = 0;
totalWaitingTasks = 0;
}
/* Calculate guard interval */
uint32_t maxNonRealtimeTaskTime = 0;
for (const cfTask_t *task = queueFirst(); task != NULL; task = queueNext()) {
if (task->staticPriority != TASK_PRIORITY_REALTIME) {
maxNonRealtimeTaskTime = MAX(maxNonRealtimeTaskTime, task->averageExecutionTime);
}
}
realtimeGuardInterval = constrain(maxNonRealtimeTaskTime, REALTIME_GUARD_INTERVAL_MIN, REALTIME_GUARD_INTERVAL_MAX) + REALTIME_GUARD_INTERVAL_MARGIN;
#if defined SCHEDULER_DEBUG
debug[2] = realtimeGuardInterval;
#endif
}
#ifndef SKIP_TASK_STATISTICS
void getTaskInfo(cfTaskId_e taskId, cfTaskInfo_t * taskInfo)
{
taskInfo->taskName = cfTasks[taskId].taskName;
taskInfo->isEnabled = queueContains(&cfTasks[taskId]);
taskInfo->desiredPeriod = cfTasks[taskId].desiredPeriod;
taskInfo->staticPriority = cfTasks[taskId].staticPriority;
taskInfo->maxExecutionTime = cfTasks[taskId].maxExecutionTime;
taskInfo->totalExecutionTime = cfTasks[taskId].totalExecutionTime;
taskInfo->averageExecutionTime = cfTasks[taskId].averageExecutionTime;
taskInfo->latestDeltaTime = cfTasks[taskId].taskLatestDeltaTime;
}
#endif
void rescheduleTask(cfTaskId_e taskId, uint32_t newPeriodMicros)
{
if (taskId == TASK_SELF || taskId < TASK_COUNT) {
cfTask_t *task = taskId == TASK_SELF ? currentTask : &cfTasks[taskId];
task->desiredPeriod = MAX((uint32_t)100, newPeriodMicros); // Limit delay to 100us (10 kHz) to prevent scheduler clogging
}
}
void setTaskEnabled(cfTaskId_e taskId, bool enabled)
{
if (taskId == TASK_SELF || taskId < TASK_COUNT) {
cfTask_t *task = taskId == TASK_SELF ? currentTask : &cfTasks[taskId];
if (enabled && task->taskFunc) {
queueAdd(task);
} else {
queueRemove(task);
}
}
}
uint32_t getTaskDeltaTime(cfTaskId_e taskId)
{
if (taskId == TASK_SELF || taskId < TASK_COUNT) {
cfTask_t *task = taskId == TASK_SELF ? currentTask : &cfTasks[taskId];
return task->taskLatestDeltaTime;
} else {
return 0;
}
}
void schedulerInit(void)
{
queueClear();
queueAdd(&cfTasks[TASK_SYSTEM]);
}
void scheduler(void)
{
// Cache currentTime
currentTime = micros();
uint32_t timeToNextRealtimeTask = UINT32_MAX;
for (const cfTask_t *task = queueFirst(); task != NULL && task->staticPriority >= TASK_PRIORITY_REALTIME; task = queueNext()) {
const uint32_t nextExecuteAt = task->lastExecutedAt + task->desiredPeriod;
if ((int32_t)(currentTime - nextExecuteAt) >= 0) {
timeToNextRealtimeTask = 0;
} else {
const uint32_t newTimeInterval = nextExecuteAt - currentTime;
timeToNextRealtimeTask = MIN(timeToNextRealtimeTask, newTimeInterval);
}
}
const bool outsideRealtimeGuardInterval = (timeToNextRealtimeTask > realtimeGuardInterval);
// The task to be invoked
cfTask_t *selectedTask = NULL;
uint16_t selectedTaskDynamicPriority = 0;
// Update task dynamic priorities
uint16_t waitingTasks = 0;
for (cfTask_t *task = queueFirst(); task != NULL; task = queueNext()) {
// Task has checkFunc - event driven
if (task->checkFunc != NULL) {
// Increase priority for event driven tasks
if (task->dynamicPriority > 0) {
task->taskAgeCycles = 1 + ((currentTime - task->lastSignaledAt) / task->desiredPeriod);
task->dynamicPriority = 1 + task->staticPriority * task->taskAgeCycles;
waitingTasks++;
} else if (task->checkFunc(currentTime - task->lastExecutedAt)) {
task->lastSignaledAt = currentTime;
task->taskAgeCycles = 1;
task->dynamicPriority = 1 + task->staticPriority;
waitingTasks++;
} else {
task->taskAgeCycles = 0;
}
} else {
// Task is time-driven, dynamicPriority is last execution age (measured in desiredPeriods)
// Task age is calculated from last execution
task->taskAgeCycles = ((currentTime - task->lastExecutedAt) / task->desiredPeriod);
if (task->taskAgeCycles > 0) {
task->dynamicPriority = 1 + task->staticPriority * task->taskAgeCycles;
waitingTasks++;
}
}
if (task->dynamicPriority > selectedTaskDynamicPriority) {
const bool taskCanBeChosenForScheduling =
(outsideRealtimeGuardInterval) ||
(task->taskAgeCycles > 1) ||
(task->staticPriority == TASK_PRIORITY_REALTIME);
if (taskCanBeChosenForScheduling) {
selectedTaskDynamicPriority = task->dynamicPriority;
selectedTask = task;
}
}
}
totalWaitingTasksSamples++;
totalWaitingTasks += waitingTasks;
currentTask = selectedTask;
if (selectedTask != NULL) {
// Found a task that should be run
selectedTask->taskLatestDeltaTime = currentTime - selectedTask->lastExecutedAt;
selectedTask->lastExecutedAt = currentTime;
selectedTask->dynamicPriority = 0;
// Execute task
const uint32_t currentTimeBeforeTaskCall = micros();
selectedTask->taskFunc();
const uint32_t taskExecutionTime = micros() - currentTimeBeforeTaskCall;
selectedTask->averageExecutionTime = ((uint32_t)selectedTask->averageExecutionTime * 31 + taskExecutionTime) / 32;
#ifndef SKIP_TASK_STATISTICS
selectedTask->totalExecutionTime += taskExecutionTime; // time consumed by scheduler + task
selectedTask->maxExecutionTime = MAX(selectedTask->maxExecutionTime, taskExecutionTime);
#endif
#if defined SCHEDULER_DEBUG
debug[3] = (micros() - currentTime) - taskExecutionTime;
} else {
debug[3] = (micros() - currentTime);
#endif
}
}

View file

@ -36,6 +36,7 @@ typedef struct {
uint32_t maxExecutionTime;
uint32_t totalExecutionTime;
uint32_t averageExecutionTime;
uint32_t latestDeltaTime;
} cfTaskInfo_t;
typedef enum {
@ -81,18 +82,17 @@ typedef struct {
const char * taskName;
bool (*checkFunc)(uint32_t currentDeltaTime);
void (*taskFunc)(void);
bool isEnabled;
uint32_t desiredPeriod; // target period of execution
uint8_t staticPriority; // dynamicPriority grows in steps of this size, shouldn't be zero
const uint8_t staticPriority; // dynamicPriority grows in steps of this size, shouldn't be zero
/* Scheduling */
uint8_t dynamicPriority; // measurement of how old task was last executed, used to avoid task starvation
uint16_t dynamicPriority; // measurement of how old task was last executed, used to avoid task starvation
uint16_t taskAgeCycles;
uint32_t lastExecutedAt; // last time of invocation
uint32_t lastSignaledAt; // time of invocation event for event-driven tasks
uint16_t taskAgeCycles;
/* Statistics */
uint32_t averageExecutionTime; // Moving averate over 6 samples, used to calculate guard interval
uint32_t averageExecutionTime; // Moving average over 6 samples, used to calculate guard interval
uint32_t taskLatestDeltaTime; //
#ifndef SKIP_TASK_STATISTICS
uint32_t maxExecutionTime;
@ -109,6 +109,7 @@ void rescheduleTask(cfTaskId_e taskId, uint32_t newPeriodMicros);
void setTaskEnabled(cfTaskId_e taskId, bool newEnabledState);
uint32_t getTaskDeltaTime(cfTaskId_e taskId);
void schedulerInit(void);
void scheduler(void);
#define isSystemOverloaded() (averageSystemLoadPercent >= 100)

View file

@ -39,7 +39,6 @@ void taskSystem(void);
cfTask_t cfTasks[TASK_COUNT] = {
[TASK_SYSTEM] = {
.isEnabled = true,
.taskName = "SYSTEM",
.taskFunc = taskSystem,
.desiredPeriod = 1000000 / 10, // run every 100 ms

View file

@ -20,7 +20,8 @@
#include <math.h>
#include "platform.h"
#include "scheduler.h"
#include "scheduler/scheduler.h"
#include "common/maths.h"

View file

@ -0,0 +1,405 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
extern "C" {
#include "platform.h"
#include "scheduler.h"
}
#include "unittest_macros.h"
#include "gtest/gtest.h"
enum {
systemTime = 10,
pidLoopCheckerTime = 650,
updateAccelerometerTime = 192,
handleSerialTime = 30,
updateBeeperTime = 1,
updateBatteryTime = 1,
updateRxCheckTime = 34,
updateRxMainTime = 10,
processGPSTime = 10,
updateCompassTime = 195,
updateBaroTime = 201,
updateSonarTime = 10,
calculateAltitudeTime = 154,
updateDisplayTime = 10,
telemetryTime = 10,
ledStripTime = 10,
transponderTime = 10
};
extern "C" {
cfTask_t * unittest_scheduler_selectedTask;
uint8_t unittest_scheduler_selectedTaskDynPrio;
uint16_t unittest_scheduler_waitingTasks;
uint32_t unittest_scheduler_timeToNextRealtimeTask;
bool unittest_outsideRealtimeGuardInterval;
// set up micros() to simulate time
uint32_t simulatedTime = 0;
uint32_t micros(void) {return simulatedTime;}
// set up tasks to take a simulated representative time to execute
void taskMainPidLoopChecker(void) {simulatedTime+=pidLoopCheckerTime;}
void taskUpdateAccelerometer(void) {simulatedTime+=updateAccelerometerTime;}
void taskHandleSerial(void) {simulatedTime+=handleSerialTime;}
void taskUpdateBeeper(void) {simulatedTime+=updateBeeperTime;}
void taskUpdateBattery(void) {simulatedTime+=updateBatteryTime;}
bool taskUpdateRxCheck(uint32_t currentDeltaTime) {UNUSED(currentDeltaTime);simulatedTime+=updateRxCheckTime;return false;}
void taskUpdateRxMain(void) {simulatedTime+=updateRxMainTime;}
void taskProcessGPS(void) {simulatedTime+=processGPSTime;}
void taskUpdateCompass(void) {simulatedTime+=updateCompassTime;}
void taskUpdateBaro(void) {simulatedTime+=updateBaroTime;}
void taskUpdateSonar(void) {simulatedTime+=updateSonarTime;}
void taskCalculateAltitude(void) {simulatedTime+=calculateAltitudeTime;}
void taskUpdateDisplay(void) {simulatedTime+=updateDisplayTime;}
void taskTelemetry(void) {simulatedTime+=telemetryTime;}
void taskLedStrip(void) {simulatedTime+=ledStripTime;}
void taskTransponder(void) {simulatedTime+=transponderTime;}
extern cfTask_t* taskQueueArray[];
extern void queueClear(void);
extern int queueSize();
extern bool queueContains(cfTask_t *task);
extern bool queueAdd(cfTask_t *task);
extern bool queueRemove(cfTask_t *task);
extern cfTask_t *queueFirst(void);
extern cfTask_t *queueNext(void);
}
TEST(SchedulerUnittest, TestPriorites)
{
EXPECT_EQ(14, TASK_COUNT);
// if any of these fail then task priorities have changed and ordering in TestQueue needs to be re-checked
EXPECT_EQ(TASK_PRIORITY_HIGH, cfTasks[TASK_SYSTEM].staticPriority);
EXPECT_EQ(TASK_PRIORITY_REALTIME, cfTasks[TASK_GYROPID].staticPriority);
EXPECT_EQ(TASK_PRIORITY_MEDIUM, cfTasks[TASK_ACCEL].staticPriority);
EXPECT_EQ(TASK_PRIORITY_LOW, cfTasks[TASK_SERIAL].staticPriority);
EXPECT_EQ(TASK_PRIORITY_MEDIUM, cfTasks[TASK_BATTERY].staticPriority);
}
TEST(SchedulerUnittest, TestQueueInit)
{
queueClear();
EXPECT_EQ(0, queueSize());
EXPECT_EQ(0, queueFirst());
EXPECT_EQ(0, queueNext());
for (int ii = 0; ii <= TASK_COUNT; ++ii) {
EXPECT_EQ(0, taskQueueArray[ii]);
}
}
cfTask_t *deadBeefPtr = reinterpret_cast<cfTask_t*>(0xDEADBEEF);
TEST(SchedulerUnittest, TestQueue)
{
queueClear();
taskQueueArray[TASK_COUNT + 1] = deadBeefPtr;
queueAdd(&cfTasks[TASK_SYSTEM]); // TASK_PRIORITY_HIGH
EXPECT_EQ(1, queueSize());
EXPECT_EQ(&cfTasks[TASK_SYSTEM], queueFirst());
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
queueAdd(&cfTasks[TASK_GYROPID]); // TASK_PRIORITY_REALTIME
EXPECT_EQ(2, queueSize());
EXPECT_EQ(&cfTasks[TASK_GYROPID], queueFirst());
EXPECT_EQ(&cfTasks[TASK_SYSTEM], queueNext());
EXPECT_EQ(NULL, queueNext());
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
queueAdd(&cfTasks[TASK_SERIAL]); // TASK_PRIORITY_LOW
EXPECT_EQ(3, queueSize());
EXPECT_EQ(&cfTasks[TASK_GYROPID], queueFirst());
EXPECT_EQ(&cfTasks[TASK_SYSTEM], queueNext());
EXPECT_EQ(&cfTasks[TASK_SERIAL], queueNext());
EXPECT_EQ(NULL, queueNext());
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
queueAdd(&cfTasks[TASK_BEEPER]); // TASK_PRIORITY_MEDIUM
EXPECT_EQ(4, queueSize());
EXPECT_EQ(&cfTasks[TASK_GYROPID], queueFirst());
EXPECT_EQ(&cfTasks[TASK_SYSTEM], queueNext());
EXPECT_EQ(&cfTasks[TASK_BEEPER], queueNext());
EXPECT_EQ(&cfTasks[TASK_SERIAL], queueNext());
EXPECT_EQ(NULL, queueNext());
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
queueAdd(&cfTasks[TASK_RX]); // TASK_PRIORITY_HIGH
EXPECT_EQ(5, queueSize());
EXPECT_EQ(&cfTasks[TASK_GYROPID], queueFirst());
EXPECT_EQ(&cfTasks[TASK_SYSTEM], queueNext());
EXPECT_EQ(&cfTasks[TASK_RX], queueNext());
EXPECT_EQ(&cfTasks[TASK_BEEPER], queueNext());
EXPECT_EQ(&cfTasks[TASK_SERIAL], queueNext());
EXPECT_EQ(NULL, queueNext());
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
queueRemove(&cfTasks[TASK_SYSTEM]); // TASK_PRIORITY_HIGH
EXPECT_EQ(4, queueSize());
EXPECT_EQ(&cfTasks[TASK_GYROPID], queueFirst());
EXPECT_EQ(&cfTasks[TASK_RX], queueNext());
EXPECT_EQ(&cfTasks[TASK_BEEPER], queueNext());
EXPECT_EQ(&cfTasks[TASK_SERIAL], queueNext());
EXPECT_EQ(NULL, queueNext());
}
TEST(SchedulerUnittest, TestQueueAddAndRemove)
{
queueClear();
taskQueueArray[TASK_COUNT + 1] = deadBeefPtr;
// fill up the queue
for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
const bool added = queueAdd(&cfTasks[taskId]);
EXPECT_EQ(true, added);
EXPECT_EQ(taskId + 1, queueSize());
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
}
// double check end of queue
EXPECT_EQ(TASK_COUNT, queueSize());
EXPECT_NE(static_cast<cfTask_t*>(0), taskQueueArray[TASK_COUNT - 1]); // last item was indeed added to queue
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]); // null pointer at end of queue is preserved
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]); // there hasn't been an out by one error
// and empty it again
for (int taskId = 0; taskId < TASK_COUNT; ++taskId) {
const bool removed = queueRemove(&cfTasks[taskId]);
EXPECT_EQ(true, removed);
EXPECT_EQ(TASK_COUNT - taskId - 1, queueSize());
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - taskId]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
}
// double check size and end of queue
EXPECT_EQ(0, queueSize()); // queue is indeed empty
EXPECT_EQ(NULL, taskQueueArray[0]); // there is a null pointer at the end of the queueu
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]); // no accidental overwrites past end of queue
}
TEST(SchedulerUnittest, TestQueueArray)
{
// test there are no "out by one" errors or buffer overruns when items are added and removed
queueClear();
taskQueueArray[TASK_COUNT + 1] = deadBeefPtr;
for (int taskId=0; taskId < TASK_COUNT - 1; ++taskId) {
setTaskEnabled(static_cast<cfTaskId_e>(taskId), true);
}
EXPECT_EQ(TASK_COUNT - 1, queueSize());
EXPECT_NE(static_cast<cfTask_t*>(0), taskQueueArray[TASK_COUNT - 2]);
const cfTask_t *lastTaskPrev = taskQueueArray[TASK_COUNT - 2];
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
setTaskEnabled(TASK_SYSTEM, false);
EXPECT_EQ(TASK_COUNT - 2, queueSize());
EXPECT_EQ(lastTaskPrev, taskQueueArray[TASK_COUNT - 3]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 2]); // NULL at end of queue
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
taskQueueArray[TASK_COUNT - 2] = 0;
setTaskEnabled(TASK_SYSTEM, true);
EXPECT_EQ(TASK_COUNT - 1, queueSize());
EXPECT_EQ(lastTaskPrev, taskQueueArray[TASK_COUNT - 2]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
cfTaskInfo_t taskInfo;
getTaskInfo(static_cast<cfTaskId_e>(TASK_COUNT - 1), &taskInfo);
EXPECT_EQ(false, taskInfo.isEnabled);
setTaskEnabled(static_cast<cfTaskId_e>(TASK_COUNT - 1), true);
EXPECT_EQ(TASK_COUNT, queueSize());
EXPECT_EQ(lastTaskPrev, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]); // check no buffer overrun
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
setTaskEnabled(TASK_SYSTEM, false);
EXPECT_EQ(TASK_COUNT - 1, queueSize());
//EXPECT_EQ(lastTaskPrev, taskQueueArray[TASK_COUNT - 3]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
setTaskEnabled(TASK_ACCEL, false);
EXPECT_EQ(TASK_COUNT - 2, queueSize());
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 2]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
setTaskEnabled(TASK_BATTERY, false);
EXPECT_EQ(TASK_COUNT - 3, queueSize());
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 3]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 2]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT - 1]);
EXPECT_EQ(NULL, taskQueueArray[TASK_COUNT]);
EXPECT_EQ(deadBeefPtr, taskQueueArray[TASK_COUNT + 1]);
}
TEST(SchedulerUnittest, TestSchedulerInit)
{
schedulerInit();
EXPECT_EQ(1, queueSize());
EXPECT_EQ(&cfTasks[TASK_SYSTEM], queueFirst());
}
TEST(SchedulerUnittest, TestScheduleEmptyQueue)
{
queueClear();
simulatedTime = 4000;
// run the with an empty queue
scheduler();
EXPECT_EQ(NULL, unittest_scheduler_selectedTask);
}
TEST(SchedulerUnittest, TestSingleTask)
{
schedulerInit();
// disable all tasks except TASK_GYROPID
for (int taskId=0; taskId < TASK_COUNT; ++taskId) {
setTaskEnabled(static_cast<cfTaskId_e>(taskId), false);
}
setTaskEnabled(TASK_GYROPID, true);
cfTasks[TASK_GYROPID].lastExecutedAt = 1000;
simulatedTime = 4000;
// run the scheduler and check the task has executed
scheduler();
EXPECT_NE(static_cast<cfTask_t*>(0), unittest_scheduler_selectedTask);
EXPECT_EQ(&cfTasks[TASK_GYROPID], unittest_scheduler_selectedTask);
EXPECT_EQ(3000, cfTasks[TASK_GYROPID].taskLatestDeltaTime);
EXPECT_EQ(4000, cfTasks[TASK_GYROPID].lastExecutedAt);
EXPECT_EQ(pidLoopCheckerTime, cfTasks[TASK_GYROPID].totalExecutionTime);
// task has run, so its dynamic priority should have been set to zero
EXPECT_EQ(0, cfTasks[TASK_GYROPID].dynamicPriority);
}
TEST(SchedulerUnittest, TestTwoTasks)
{
// disable all tasks except TASK_GYROPID and TASK_ACCEL
for (int taskId=0; taskId < TASK_COUNT; ++taskId) {
setTaskEnabled(static_cast<cfTaskId_e>(taskId), false);
}
setTaskEnabled(TASK_ACCEL, true);
setTaskEnabled(TASK_GYROPID, true);
// set it up so that TASK_ACCEL ran just before TASK_GYROPID
static const uint32_t startTime = 4000;
simulatedTime = startTime;
cfTasks[TASK_GYROPID].lastExecutedAt = simulatedTime;
cfTasks[TASK_ACCEL].lastExecutedAt = cfTasks[TASK_GYROPID].lastExecutedAt - updateAccelerometerTime;
EXPECT_EQ(0, cfTasks[TASK_ACCEL].taskAgeCycles);
// run the scheduler
scheduler();
// no tasks should have run, since neither task's desired time has elapsed
EXPECT_EQ(static_cast<cfTask_t*>(0), unittest_scheduler_selectedTask);
// NOTE:
// TASK_GYROPID desiredPeriod is 1000 microseconds
// TASK_ACCEL desiredPeriod is 10000 microseconds
// 500 microseconds later
simulatedTime += 500;
// no tasks should run, since neither task's desired time has elapsed
scheduler();
EXPECT_EQ(static_cast<cfTask_t*>(0), unittest_scheduler_selectedTask);
EXPECT_EQ(0, unittest_scheduler_waitingTasks);
// 500 microseconds later, TASK_GYROPID desiredPeriod has elapsed
simulatedTime += 500;
// TASK_GYROPID should now run
scheduler();
EXPECT_EQ(&cfTasks[TASK_GYROPID], unittest_scheduler_selectedTask);
EXPECT_EQ(1, unittest_scheduler_waitingTasks);
EXPECT_EQ(5000 + pidLoopCheckerTime, simulatedTime);
simulatedTime += 1000 - pidLoopCheckerTime;
scheduler();
// TASK_GYROPID should run again
EXPECT_EQ(&cfTasks[TASK_GYROPID], unittest_scheduler_selectedTask);
scheduler();
EXPECT_EQ(static_cast<cfTask_t*>(0), unittest_scheduler_selectedTask);
EXPECT_EQ(0, unittest_scheduler_waitingTasks);
simulatedTime = startTime + 10500; // TASK_GYROPID and TASK_ACCEL desiredPeriods have elapsed
// of the two TASK_GYROPID should run first
scheduler();
EXPECT_EQ(&cfTasks[TASK_GYROPID], unittest_scheduler_selectedTask);
// and finally TASK_ACCEL should now run
scheduler();
EXPECT_EQ(&cfTasks[TASK_ACCEL], unittest_scheduler_selectedTask);
}
TEST(SchedulerUnittest, TestRealTimeGuardInNoTaskRun)
{
// disable all tasks except TASK_GYROPID and TASK_SYSTEM
for (int taskId=0; taskId < TASK_COUNT; ++taskId) {
setTaskEnabled(static_cast<cfTaskId_e>(taskId), false);
}
setTaskEnabled(TASK_GYROPID, true);
cfTasks[TASK_GYROPID].lastExecutedAt = 200000;
simulatedTime = 200700;
setTaskEnabled(TASK_SYSTEM, true);
cfTasks[TASK_SYSTEM].lastExecutedAt = 100000;
scheduler();
EXPECT_EQ(false, unittest_outsideRealtimeGuardInterval);
EXPECT_EQ(300, unittest_scheduler_timeToNextRealtimeTask);
// Nothing should be scheduled in guard period
EXPECT_EQ(NULL, unittest_scheduler_selectedTask);
EXPECT_EQ(100000, cfTasks[TASK_SYSTEM].lastExecutedAt);
EXPECT_EQ(200000, cfTasks[TASK_GYROPID].lastExecutedAt);
}
TEST(SchedulerUnittest, TestRealTimeGuardOutTaskRun)
{
// disable all tasks except TASK_GYROPID and TASK_SYSTEM
for (int taskId=0; taskId < TASK_COUNT; ++taskId) {
setTaskEnabled(static_cast<cfTaskId_e>(taskId), false);
}
setTaskEnabled(TASK_GYROPID, true);
cfTasks[TASK_GYROPID].lastExecutedAt = 200000;
simulatedTime = 200699;
setTaskEnabled(TASK_SYSTEM, true);
cfTasks[TASK_SYSTEM].lastExecutedAt = 100000;
scheduler();
EXPECT_EQ(true, unittest_outsideRealtimeGuardInterval);
EXPECT_EQ(301, unittest_scheduler_timeToNextRealtimeTask);
// System should be scheduled as not in guard period
EXPECT_EQ(&cfTasks[TASK_SYSTEM], unittest_scheduler_selectedTask);
EXPECT_EQ(200699, cfTasks[TASK_SYSTEM].lastExecutedAt);
EXPECT_EQ(200000, cfTasks[TASK_GYROPID].lastExecutedAt);
}
// STUBS
extern "C" {
}