1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-20 06:45:14 +03:00

Initial cut on full quaternion IMU conversion (#2894)

* Initial cut on full quaternion/vector IMU conversion
* More accurate quaternion integration
* Refactor vector struct per @ledvinap suggection
* Implement rotation matrix from axis/angle; Refactor mag declination to have orientation correspond to RPY angles
* Use magnetic North vector as a reference
This commit is contained in:
Konstantin Sharlaimov 2018-03-15 00:19:53 +10:00 committed by GitHub
parent 0ede6d52d6
commit e174e5a48d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
23 changed files with 801 additions and 498 deletions

View file

@ -21,6 +21,8 @@
#include "axis.h"
#include "maths.h"
#include "vector.h"
#include "quaternion.h"
// http://lolengine.net/blog/2011/12/21/better-function-approximations
// Chebyshev http://stackoverflow.com/questions/345085/how-do-trigonometric-functions-work/345117#345117
@ -203,59 +205,65 @@ float scaleRangef(float x, float srcMin, float srcMax, float destMin, float dest
return ((a / b) + destMin);
}
// Normalize a vector
void normalizeV(struct fp_vector *src, struct fp_vector *dest)
{
float length;
length = sqrtf(src->X * src->X + src->Y * src->Y + src->Z * src->Z);
if (length != 0) {
dest->X = src->X / length;
dest->Y = src->Y / length;
dest->Z = src->Z / length;
}
}
void buildRotationMatrix(fp_angles_t *delta, float matrix[3][3])
// Build rMat from TaitBryan angles (convention X1, Y2, Z3)
void rotationMatrixFromAngles(fpMat3_t * rmat, const fp_angles_t * angles)
{
float cosx, sinx, cosy, siny, cosz, sinz;
float coszcosx, sinzcosx, coszsinx, sinzsinx;
cosx = cos_approx(delta->angles.roll);
sinx = sin_approx(delta->angles.roll);
cosy = cos_approx(delta->angles.pitch);
siny = sin_approx(delta->angles.pitch);
cosz = cos_approx(delta->angles.yaw);
sinz = sin_approx(delta->angles.yaw);
cosx = cos_approx(angles->angles.roll);
sinx = sin_approx(angles->angles.roll);
cosy = cos_approx(angles->angles.pitch);
siny = sin_approx(angles->angles.pitch);
cosz = cos_approx(angles->angles.yaw);
sinz = sin_approx(angles->angles.yaw);
coszcosx = cosz * cosx;
sinzcosx = sinz * cosx;
coszsinx = sinx * cosz;
sinzsinx = sinx * sinz;
matrix[0][X] = cosz * cosy;
matrix[0][Y] = -cosy * sinz;
matrix[0][Z] = siny;
matrix[1][X] = sinzcosx + (coszsinx * siny);
matrix[1][Y] = coszcosx - (sinzsinx * siny);
matrix[1][Z] = -sinx * cosy;
matrix[2][X] = (sinzsinx) - (coszcosx * siny);
matrix[2][Y] = (coszsinx) + (sinzcosx * siny);
matrix[2][Z] = cosy * cosx;
rmat->m[0][X] = cosz * cosy;
rmat->m[0][Y] = -cosy * sinz;
rmat->m[0][Z] = siny;
rmat->m[1][X] = sinzcosx + (coszsinx * siny);
rmat->m[1][Y] = coszcosx - (sinzsinx * siny);
rmat->m[1][Z] = -sinx * cosy;
rmat->m[2][X] = (sinzsinx) - (coszcosx * siny);
rmat->m[2][Y] = (coszsinx) + (sinzcosx * siny);
rmat->m[2][Z] = cosy * cosx;
}
// Rotate a vector *v by the euler angles defined by the 3-vector *delta.
void rotateV(struct fp_vector *v, fp_angles_t *delta)
void rotationMatrixFromAxisAngle(fpMat3_t * rmat, const fpAxisAngle_t * a)
{
struct fp_vector v_tmp = *v;
const float sang = sin_approx(a->angle);
const float cang = cos_approx(a->angle);
const float C = 1.0f - cang;
float matrix[3][3];
const float xC = a->axis.x * C;
const float yC = a->axis.y * C;
const float zC = a->axis.z * C;
const float xxC = a->axis.x * xC;
const float yyC = a->axis.y * yC;
const float zzC = a->axis.z * zC;
const float xyC = a->axis.x * yC;
const float yzC = a->axis.y * zC;
const float zxC = a->axis.z * xC;
const float xs = a->axis.x * sang;
const float ys = a->axis.y * sang;
const float zs = a->axis.z * sang;
buildRotationMatrix(delta, matrix);
rmat->m[0][X] = xxC + cang;
rmat->m[0][Y] = xyC - zs;
rmat->m[0][Z] = zxC + ys;
v->X = v_tmp.X * matrix[0][X] + v_tmp.Y * matrix[1][X] + v_tmp.Z * matrix[2][X];
v->Y = v_tmp.X * matrix[0][Y] + v_tmp.Y * matrix[1][Y] + v_tmp.Z * matrix[2][Y];
v->Z = v_tmp.X * matrix[0][Z] + v_tmp.Y * matrix[1][Z] + v_tmp.Z * matrix[2][Z];
rmat->m[1][X] = zxC + ys;
rmat->m[1][Y] = yyC + cang;
rmat->m[1][Z] = yzC - xs;
rmat->m[2][X] = zxC - ys;
rmat->m[2][Y] = yzC + xs;
rmat->m[2][Z] = zzC + cang;
}
// Quick median filter implementation