1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-25 09:16:01 +03:00

First cut on Alpha-Beta-Gamma filter for gyro

This commit is contained in:
Pawel Spychalski (DzikuVx) 2021-04-28 12:40:28 +02:00
parent 459645801b
commit f91279cb8a
7 changed files with 148 additions and 2 deletions

View file

@ -83,5 +83,6 @@ typedef enum {
DEBUG_FW_D, DEBUG_FW_D,
DEBUG_IMU2, DEBUG_IMU2,
DEBUG_ALTITUDE, DEBUG_ALTITUDE,
DEBUG_GYRO_ALPHA_BETA_GAMMA,
DEBUG_COUNT DEBUG_COUNT
} debugType_e; } debugType_e;

View file

@ -250,3 +250,69 @@ FAST_CODE void biquadFilterUpdate(biquadFilter_t *filter, float filterFreq, uint
filter->y1 = y1; filter->y1 = y1;
filter->y2 = y2; filter->y2 = y2;
} }
#ifdef USE_ALPHA_BETA_GAMMA_FILTER
void alphaBetaGammaFilterInit(alphaBetaGammaFilter_t *filter, float alpha, float boostGain, float halfLife, float dT) {
// beta, gamma, and eta gains all derived from
// http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-922ff6cb-e991-417f-93f0-77448f1ef4ec/c/A_Study_Jeong_1_2017.pdf
const float xi = powf(-alpha + 1.0f, 0.25); // fourth rool of -a + 1
filter->xk = 0.0f;
filter->vk = 0.0f;
filter->ak = 0.0f;
filter->jk = 0.0f;
filter->a = alpha;
filter->b = (1.0f / 6.0f) * powf(1.0f - xi, 2) * (11.0f + 14.0f * xi + 11 * xi * xi);
filter->g = 2 * powf(1.0f - xi, 3) * (1 + xi);
filter->e = (1.0f / 6.0f) * powf(1 - xi, 4);
filter->dT = dT;
filter->dT2 = dT * dT;
filter->dT3 = dT * dT * dT;
pt1FilterInit(&filter->boostFilter, 100, dT);
const float boost = boostGain * 100;
filter->boost = (boost * boost / 10000) * 0.003;
filter->halfLife = halfLife != 0 ? powf(0.5f, dT / halfLife): 1.0f;
}
FAST_CODE float alphaBetaGammaFilterApply(alphaBetaGammaFilter_t *filter, float input) {
//xk - current system state (ie: position)
//vk - derivative of system state (ie: velocity)
//ak - derivative of system velociy (ie: acceleration)
//jk - derivative of system acceleration (ie: jerk)
float rk; // residual error
// give the filter limited history
filter->xk *= filter->halfLife;
filter->vk *= filter->halfLife;
filter->ak *= filter->halfLife;
filter->jk *= filter->halfLife;
// update our (estimated) state 'x' from the system (ie pos = pos + vel (last).dT)
filter->xk += filter->dT * filter->vk + (1.0f / 2.0f) * filter->dT2 * filter->ak + (1.0f / 6.0f) * filter->dT3 * filter->jk;
// update (estimated) velocity (also estimated dterm from measurement)
filter->vk += filter->dT * filter->ak + 0.5f * filter->dT2 * filter->jk;
filter->ak += filter->dT * filter->jk;
// what is our residual error (measured - estimated)
rk = input - filter->xk;
// artificially boost the error to increase the response of the filter
rk += pt1FilterApply(&filter->boostFilter, fabsf(rk) * rk * filter->boost);
if ((fabsf(rk * filter->a) > fabsf(input - filter->xk))) {
rk = (input - filter->xk) / filter->a;
}
filter->rk = rk; // for logging
// update our estimates given the residual error.
filter->xk += filter->a * rk;
filter->vk += filter->b / filter->dT * rk;
filter->ak += filter->g / (2.0f * filter->dT2) * rk;
filter->jk += filter->e / (6.0f * filter->dT3) * rk;
return filter->xk;
}
#endif

View file

@ -56,6 +56,18 @@ typedef struct firFilter_s {
uint8_t coeffsLength; uint8_t coeffsLength;
} firFilter_t; } firFilter_t;
typedef struct alphaBetaGammaFilter_s {
float a, b, g, e;
float ak; // derivative of system velociy (ie: acceleration)
float vk; // derivative of system state (ie: velocity)
float xk; // current system state (ie: position)
float jk; // derivative of system acceleration (ie: jerk)
float rk; // residual error
float dT, dT2, dT3;
float halfLife, boost;
pt1Filter_t boostFilter;
} alphaBetaGammaFilter_t;
typedef float (*filterApplyFnPtr)(void *filter, float input); typedef float (*filterApplyFnPtr)(void *filter, float input);
typedef float (*filterApply4FnPtr)(void *filter, float input, float f_cut, float dt); typedef float (*filterApply4FnPtr)(void *filter, float input, float f_cut, float dt);
@ -86,3 +98,6 @@ float biquadFilterReset(biquadFilter_t *filter, float value);
float biquadFilterApplyDF1(biquadFilter_t *filter, float input); float biquadFilterApplyDF1(biquadFilter_t *filter, float input);
float filterGetNotchQ(float centerFrequencyHz, float cutoffFrequencyHz); float filterGetNotchQ(float centerFrequencyHz, float cutoffFrequencyHz);
void biquadFilterUpdate(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType); void biquadFilterUpdate(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType);
void alphaBetaGammaFilterInit(alphaBetaGammaFilter_t *filter, float alpha, float boostGain, float halfLife, float dT);
float alphaBetaGammaFilterApply(alphaBetaGammaFilter_t *filter, float input);

View file

@ -90,7 +90,8 @@ tables:
"FLOW", "SBUS", "FPORT", "ALWAYS", "SAG_COMP_VOLTAGE", "FLOW", "SBUS", "FPORT", "ALWAYS", "SAG_COMP_VOLTAGE",
"VIBE", "CRUISE", "REM_FLIGHT_TIME", "SMARTAUDIO", "ACC", "VIBE", "CRUISE", "REM_FLIGHT_TIME", "SMARTAUDIO", "ACC",
"ERPM", "RPM_FILTER", "RPM_FREQ", "NAV_YAW", "DYNAMIC_FILTER", "DYNAMIC_FILTER_FREQUENCY", "ERPM", "RPM_FILTER", "RPM_FREQ", "NAV_YAW", "DYNAMIC_FILTER", "DYNAMIC_FILTER_FREQUENCY",
"IRLOCK", "CD", "KALMAN_GAIN", "PID_MEASUREMENT", "SPM_CELLS", "SPM_VS600", "SPM_VARIO", "PCF8574", "DYN_GYRO_LPF", "FW_D", "IMU2", "ALTITUDE"] "IRLOCK", "CD", "KALMAN_GAIN", "PID_MEASUREMENT", "SPM_CELLS", "SPM_VS600", "SPM_VARIO", "PCF8574", "DYN_GYRO_LPF", "FW_D", "IMU2", "ALTITUDE",
"DEBUG_GYRO_ALPHA_BETA_GAMMA"]
- name: async_mode - name: async_mode
values: ["NONE", "GYRO", "ALL"] values: ["NONE", "GYRO", "ALL"]
- name: aux_operator - name: aux_operator
@ -292,6 +293,27 @@ groups:
min: 0 min: 0
max: 1 max: 1
default_value: 0 default_value: 0
- name: gyro_abg_alpha
description: "Alpha factor for Gyro Alpha-Beta-Gamma filter"
default_value: 0
field: alphaBetaGammaAlpha
condition: USE_ALPHA_BETA_GAMMA_FILTER
min: 0
max: 1
- name: gyro_abg_boost
description: "Boost factor for Gyro Alpha-Beta-Gamma filter"
default_value: 0.35
field: alphaBetaGammaBoost
condition: USE_ALPHA_BETA_GAMMA_FILTER
min: 0
max: 2
- name: gyro_abg_half_life
description: "Sample half-life for Gyro Alpha-Beta-Gamma filter"
default_value: 0.5
field: alphaBetaGammaHalfLife
condition: USE_ALPHA_BETA_GAMMA_FILTER
min: 0
max: 10
- name: PG_ADC_CHANNEL_CONFIG - name: PG_ADC_CHANNEL_CONFIG
type: adcChannelConfig_t type: adcChannelConfig_t

View file

@ -104,7 +104,14 @@ EXTENDED_FASTRAM dynamicGyroNotchState_t dynamicGyroNotchState;
#endif #endif
PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 12); #ifdef USE_ALPHA_BETA_GAMMA_FILTER
STATIC_FASTRAM filterApplyFnPtr abgFilterApplyFn;
STATIC_FASTRAM alphaBetaGammaFilter_t abgFilter[XYZ_AXIS_COUNT];
#endif
PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 13);
PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
.gyro_lpf = SETTING_GYRO_HARDWARE_LPF_DEFAULT, .gyro_lpf = SETTING_GYRO_HARDWARE_LPF_DEFAULT,
@ -130,6 +137,11 @@ PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
.dynamicGyroNotchMinHz = SETTING_DYNAMIC_GYRO_NOTCH_MIN_HZ_DEFAULT, .dynamicGyroNotchMinHz = SETTING_DYNAMIC_GYRO_NOTCH_MIN_HZ_DEFAULT,
.dynamicGyroNotchEnabled = SETTING_DYNAMIC_GYRO_NOTCH_ENABLED_DEFAULT, .dynamicGyroNotchEnabled = SETTING_DYNAMIC_GYRO_NOTCH_ENABLED_DEFAULT,
#endif #endif
#ifdef USE_ALPHA_BETA_GAMMA_FILTER
.alphaBetaGammaAlpha = SETTING_GYRO_ABG_ALPHA_DEFAULT,
.alphaBetaGammaBoost = SETTING_GYRO_ABG_BOOST_DEFAULT,
.alphaBetaGammaHalfLife = SETTING_GYRO_ABG_HALF_LIFE_DEFAULT,
#endif
); );
STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev, gyroSensor_e gyroHardware) STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev, gyroSensor_e gyroHardware)
@ -284,6 +296,24 @@ static void gyroInitFilters(void)
biquadFilterInitNotch(notchFilter1[axis], getLooptime(), gyroConfig()->gyro_notch_hz, gyroConfig()->gyro_notch_cutoff); biquadFilterInitNotch(notchFilter1[axis], getLooptime(), gyroConfig()->gyro_notch_hz, gyroConfig()->gyro_notch_cutoff);
} }
} }
#ifdef USE_ALPHA_BETA_GAMMA_FILTER
abgFilterApplyFn = (filterApplyFnPtr)nullFilterApply;
if (gyroConfig()->alphaBetaGammaAlpha > 0) {
abgFilterApplyFn = (filterApplyFnPtr)alphaBetaGammaFilterApply;
for (int axis = 0; axis < 3; axis++) {
alphaBetaGammaFilterInit(
&abgFilter[axis],
gyroConfig()->alphaBetaGammaAlpha,
gyroConfig()->alphaBetaGammaBoost,
gyroConfig()->alphaBetaGammaHalfLife,
getLooptime() * 1e-6f
);
}
}
#endif
} }
bool gyroInit(void) bool gyroInit(void)
@ -458,6 +488,12 @@ void FAST_CODE NOINLINE gyroUpdate()
gyroADCf = gyroLpfApplyFn((filter_t *) &gyroLpfState[axis], gyroADCf); gyroADCf = gyroLpfApplyFn((filter_t *) &gyroLpfState[axis], gyroADCf);
gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf); gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf);
#ifdef USE_ALPHA_BETA_GAMMA_FILTER
DEBUG_SET(DEBUG_GYRO_ALPHA_BETA_GAMMA, axis, gyroADCf);
gyroADCf = abgFilterApplyFn(&abgFilter[axis], gyroADCf);
DEBUG_SET(DEBUG_GYRO_ALPHA_BETA_GAMMA, axis + 3, gyroADCf);
#endif
#ifdef USE_DYNAMIC_FILTERS #ifdef USE_DYNAMIC_FILTERS
if (dynamicGyroNotchState.enabled) { if (dynamicGyroNotchState.enabled) {
gyroDataAnalysePush(&gyroAnalyseState, axis, gyroADCf); gyroDataAnalysePush(&gyroAnalyseState, axis, gyroADCf);

View file

@ -82,6 +82,11 @@ typedef struct gyroConfig_s {
uint16_t dynamicGyroNotchMinHz; uint16_t dynamicGyroNotchMinHz;
uint8_t dynamicGyroNotchEnabled; uint8_t dynamicGyroNotchEnabled;
#endif #endif
#ifdef USE_ALPHA_BETA_GAMMA_FILTER
float alphaBetaGammaAlpha;
float alphaBetaGammaBoost;
float alphaBetaGammaHalfLife;
#endif
} gyroConfig_t; } gyroConfig_t;
PG_DECLARE(gyroConfig_t, gyroConfig); PG_DECLARE(gyroConfig_t, gyroConfig);

View file

@ -84,6 +84,7 @@
#define USE_PITOT_ADC #define USE_PITOT_ADC
#define USE_PITOT_VIRTUAL #define USE_PITOT_VIRTUAL
#define USE_ALPHA_BETA_GAMMA_FILTER
#define USE_DYNAMIC_FILTERS #define USE_DYNAMIC_FILTERS
#define USE_GYRO_KALMAN #define USE_GYRO_KALMAN
#define USE_EXTENDED_CMS_MENUS #define USE_EXTENDED_CMS_MENUS