/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include #include "platform.h" #include "build/build_config.h" #include "build/debug.h" #include "common/axis.h" #include "common/calibration.h" #include "common/filter.h" #include "common/log.h" #include "common/maths.h" #include "common/utils.h" #include "config/parameter_group.h" #include "config/parameter_group_ids.h" #include "config/feature.h" #include "drivers/accgyro/accgyro.h" #include "drivers/accgyro/accgyro_mpu.h" #include "drivers/accgyro/accgyro_mpu3050.h" #include "drivers/accgyro/accgyro_mpu6000.h" #include "drivers/accgyro/accgyro_mpu6050.h" #include "drivers/accgyro/accgyro_mpu6500.h" #include "drivers/accgyro/accgyro_mpu9250.h" #include "drivers/accgyro/accgyro_lsm303dlhc.h" #include "drivers/accgyro/accgyro_l3g4200d.h" #include "drivers/accgyro/accgyro_l3gd20.h" #include "drivers/accgyro/accgyro_adxl345.h" #include "drivers/accgyro/accgyro_mma845x.h" #include "drivers/accgyro/accgyro_bma280.h" #include "drivers/accgyro/accgyro_bmi160.h" #include "drivers/accgyro/accgyro_icm20689.h" #include "drivers/accgyro/accgyro_fake.h" #include "drivers/io.h" #include "fc/config.h" #include "fc/runtime_config.h" #include "io/beeper.h" #include "io/statusindicator.h" #include "scheduler/scheduler.h" #include "sensors/boardalignment.h" #include "sensors/gyro.h" #include "sensors/sensors.h" #include "flight/gyroanalyse.h" #include "flight/rpm_filter.h" #ifdef USE_HARDWARE_REVISION_DETECTION #include "hardware_revision.h" #endif FASTRAM gyro_t gyro; // gyro sensor object STATIC_UNIT_TESTED gyroDev_t gyroDev0; // Not in FASTRAM since it may hold DMA buffers STATIC_FASTRAM int16_t gyroTemperature0; STATIC_FASTRAM_UNIT_TESTED zeroCalibrationVector_t gyroCalibration; STATIC_FASTRAM int32_t gyroADC[XYZ_AXIS_COUNT]; STATIC_FASTRAM filterApplyFnPtr gyroLpfApplyFn; STATIC_FASTRAM filter_t gyroLpfState[XYZ_AXIS_COUNT]; STATIC_FASTRAM filterApplyFnPtr gyroLpf2ApplyFn; STATIC_FASTRAM filter_t gyroLpf2State[XYZ_AXIS_COUNT]; STATIC_FASTRAM filterApplyFnPtr notchFilter1ApplyFn; STATIC_FASTRAM void *notchFilter1[XYZ_AXIS_COUNT]; STATIC_FASTRAM filterApplyFnPtr notchFilter2ApplyFn; STATIC_FASTRAM void *notchFilter2[XYZ_AXIS_COUNT]; #ifdef USE_DYNAMIC_FILTERS #define DYNAMIC_NOTCH_DEFAULT_CENTER_HZ 350 #define DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ 300 static EXTENDED_FASTRAM filterApplyFnPtr notchFilterDynApplyFn; static EXTENDED_FASTRAM filterApplyFnPtr notchFilterDynApplyFn2; static EXTENDED_FASTRAM biquadFilter_t notchFilterDyn[XYZ_AXIS_COUNT]; static EXTENDED_FASTRAM biquadFilter_t notchFilterDyn2[XYZ_AXIS_COUNT]; EXTENDED_FASTRAM gyroAnalyseState_t gyroAnalyseState; #endif PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 7); PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig, .gyro_lpf = GYRO_LPF_42HZ, // 42HZ value is defined for Invensense/TDK gyros .gyro_soft_lpf_hz = 60, .gyro_soft_lpf_type = FILTER_BIQUAD, .gyro_align = ALIGN_DEFAULT, .gyroMovementCalibrationThreshold = 32, .looptime = 1000, .gyroSync = 1, .gyro_to_use = 0, .gyro_soft_notch_hz_1 = 0, .gyro_soft_notch_cutoff_1 = 1, .gyro_soft_notch_hz_2 = 0, .gyro_soft_notch_cutoff_2 = 1, .gyro_stage2_lowpass_hz = 0, .gyro_stage2_lowpass_type = FILTER_BIQUAD, .dyn_notch_width_percent = 8, .dyn_notch_range = DYN_NOTCH_RANGE_MEDIUM, .dyn_notch_q = 120, .dyn_notch_min_hz = 150, ); STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev, gyroSensor_e gyroHardware) { dev->gyroAlign = ALIGN_DEFAULT; switch (gyroHardware) { case GYRO_AUTODETECT: FALLTHROUGH; #ifdef USE_GYRO_MPU6050 case GYRO_MPU6050: if (mpu6050GyroDetect(dev)) { gyroHardware = GYRO_MPU6050; #ifdef GYRO_MPU6050_ALIGN dev->gyroAlign = GYRO_MPU6050_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_L3G4200D case GYRO_L3G4200D: if (l3g4200dDetect(dev)) { gyroHardware = GYRO_L3G4200D; #ifdef GYRO_L3G4200D_ALIGN dev->gyroAlign = GYRO_L3G4200D_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_MPU3050 case GYRO_MPU3050: if (mpu3050Detect(dev)) { gyroHardware = GYRO_MPU3050; #ifdef GYRO_MPU3050_ALIGN dev->gyroAlign = GYRO_MPU3050_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_L3GD20 case GYRO_L3GD20: if (l3gd20Detect(dev)) { gyroHardware = GYRO_L3GD20; #ifdef GYRO_L3GD20_ALIGN dev->gyroAlign = GYRO_L3GD20_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_MPU6000 case GYRO_MPU6000: if (mpu6000GyroDetect(dev)) { gyroHardware = GYRO_MPU6000; #ifdef GYRO_MPU6000_ALIGN dev->gyroAlign = GYRO_MPU6000_ALIGN; #endif break; } FALLTHROUGH; #endif #if defined(USE_GYRO_MPU6500) case GYRO_MPU6500: if (mpu6500GyroDetect(dev)) { gyroHardware = GYRO_MPU6500; #ifdef GYRO_MPU6500_ALIGN dev->gyroAlign = GYRO_MPU6500_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_MPU9250 case GYRO_MPU9250: if (mpu9250GyroDetect(dev)) { gyroHardware = GYRO_MPU9250; #ifdef GYRO_MPU9250_ALIGN dev->gyroAlign = GYRO_MPU9250_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_BMI160 case GYRO_BMI160: if (bmi160GyroDetect(dev)) { gyroHardware = GYRO_BMI160; #ifdef GYRO_BMI160_ALIGN dev->gyroAlign = GYRO_BMI160_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_GYRO_ICM20689 case GYRO_ICM20689: if (icm20689GyroDetect(dev)) { gyroHardware = GYRO_ICM20689; #ifdef GYRO_ICM20689_ALIGN dev->gyroAlign = GYRO_ICM20689_ALIGN; #endif break; } FALLTHROUGH; #endif #ifdef USE_FAKE_GYRO case GYRO_FAKE: if (fakeGyroDetect(dev)) { gyroHardware = GYRO_FAKE; break; } FALLTHROUGH; #endif default: case GYRO_NONE: gyroHardware = GYRO_NONE; } if (gyroHardware != GYRO_NONE) { detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware; sensorsSet(SENSOR_GYRO); } return gyroHardware; } #ifdef USE_DYNAMIC_FILTERS bool isDynamicFilterActive(void) { return feature(FEATURE_DYNAMIC_FILTERS); } static void gyroInitFilterDynamicNotch(void) { notchFilterDynApplyFn = nullFilterApply; notchFilterDynApplyFn2 = nullFilterApply; if (isDynamicFilterActive()) { notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2 if(gyroConfig()->dyn_notch_width_percent != 0) { notchFilterDynApplyFn2 = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2 } const float notchQ = filterGetNotchQ(DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ); // any defaults OK here for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { biquadFilterInit(¬chFilterDyn[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, getLooptime(), notchQ, FILTER_NOTCH); biquadFilterInit(¬chFilterDyn2[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, getLooptime(), notchQ, FILTER_NOTCH); } } } #endif bool gyroInit(void) { memset(&gyro, 0, sizeof(gyro)); // Set inertial sensor tag (for dual-gyro selection) #ifdef USE_DUAL_GYRO gyroDev0.imuSensorToUse = gyroConfig()->gyro_to_use; #else gyroDev0.imuSensorToUse = 0; #endif if (gyroDetect(&gyroDev0, GYRO_AUTODETECT) == GYRO_NONE) { return false; } // Driver initialisation gyroDev0.lpf = gyroConfig()->gyro_lpf; gyroDev0.requestedSampleIntervalUs = gyroConfig()->looptime; gyroDev0.sampleRateIntervalUs = gyroConfig()->looptime; gyroDev0.initFn(&gyroDev0); // initFn will initialize sampleRateIntervalUs to actual gyro sampling rate (if driver supports it). Calculate target looptime using that value gyro.targetLooptime = gyroConfig()->gyroSync ? gyroDev0.sampleRateIntervalUs : gyroConfig()->looptime; if (gyroConfig()->gyro_align != ALIGN_DEFAULT) { gyroDev0.gyroAlign = gyroConfig()->gyro_align; } gyroInitFilters(); #ifdef USE_DYNAMIC_FILTERS gyroInitFilterDynamicNotch(); gyroDataAnalyseStateInit(&gyroAnalyseState, getLooptime()); #endif return true; } static void initGyroFilter(filterApplyFnPtr *applyFn, filter_t state[], uint8_t type, uint16_t cutoff) { *applyFn = nullFilterApply; if (cutoff > 0) { switch (type) { case FILTER_PT1: *applyFn = (filterApplyFnPtr)pt1FilterApply; for (int axis = 0; axis < 3; axis++) { pt1FilterInit(&state[axis].pt1, cutoff, getLooptime()* 1e-6f); } break; case FILTER_BIQUAD: *applyFn = (filterApplyFnPtr)biquadFilterApply; for (int axis = 0; axis < 3; axis++) { biquadFilterInitLPF(&state[axis].biquad, cutoff, getLooptime()); } break; } } } void gyroInitFilters(void) { STATIC_FASTRAM biquadFilter_t gyroFilterNotch_1[XYZ_AXIS_COUNT]; notchFilter1ApplyFn = nullFilterApply; STATIC_FASTRAM biquadFilter_t gyroFilterNotch_2[XYZ_AXIS_COUNT]; notchFilter2ApplyFn = nullFilterApply; initGyroFilter(&gyroLpf2ApplyFn, gyroLpf2State, gyroConfig()->gyro_stage2_lowpass_type, gyroConfig()->gyro_stage2_lowpass_hz); initGyroFilter(&gyroLpfApplyFn, gyroLpfState, gyroConfig()->gyro_soft_lpf_type, gyroConfig()->gyro_soft_lpf_hz); if (gyroConfig()->gyro_soft_notch_hz_1) { notchFilter1ApplyFn = (filterApplyFnPtr)biquadFilterApply; for (int axis = 0; axis < 3; axis++) { notchFilter1[axis] = &gyroFilterNotch_1[axis]; biquadFilterInitNotch(notchFilter1[axis], getLooptime(), gyroConfig()->gyro_soft_notch_hz_1, gyroConfig()->gyro_soft_notch_cutoff_1); } } if (gyroConfig()->gyro_soft_notch_hz_2) { notchFilter2ApplyFn = (filterApplyFnPtr)biquadFilterApply; for (int axis = 0; axis < 3; axis++) { notchFilter2[axis] = &gyroFilterNotch_2[axis]; biquadFilterInitNotch(notchFilter2[axis], getLooptime(), gyroConfig()->gyro_soft_notch_hz_2, gyroConfig()->gyro_soft_notch_cutoff_2); } } } void gyroStartCalibration(void) { zeroCalibrationStartV(&gyroCalibration, CALIBRATING_GYRO_TIME_MS, gyroConfig()->gyroMovementCalibrationThreshold, false); } bool FAST_CODE NOINLINE gyroIsCalibrationComplete(void) { return zeroCalibrationIsCompleteV(&gyroCalibration) && zeroCalibrationIsSuccessfulV(&gyroCalibration); } STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *dev, zeroCalibrationVector_t *gyroCalibration) { fpVector3_t v; // Consume gyro reading v.v[0] = dev->gyroADCRaw[0]; v.v[1] = dev->gyroADCRaw[1]; v.v[2] = dev->gyroADCRaw[2]; zeroCalibrationAddValueV(gyroCalibration, &v); // Check if calibration is complete after this cycle if (zeroCalibrationIsCompleteV(gyroCalibration)) { zeroCalibrationGetZeroV(gyroCalibration, &v); dev->gyroZero[0] = v.v[0]; dev->gyroZero[1] = v.v[1]; dev->gyroZero[2] = v.v[2]; LOG_D(GYRO, "Gyro calibration complete (%d, %d, %d)", dev->gyroZero[0], dev->gyroZero[1], dev->gyroZero[2]); schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics } else { dev->gyroZero[0] = 0; dev->gyroZero[1] = 0; dev->gyroZero[2] = 0; } } /* * Calculate rotation rate in rad/s in body frame */ void gyroGetMeasuredRotationRate(fpVector3_t *measuredRotationRate) { for (int axis = 0; axis < 3; axis++) { measuredRotationRate->v[axis] = DEGREES_TO_RADIANS(gyro.gyroADCf[axis]); } } void FAST_CODE NOINLINE gyroUpdate() { // range: +/- 8192; +/- 2000 deg/sec if (gyroDev0.readFn(&gyroDev0)) { if (zeroCalibrationIsCompleteV(&gyroCalibration)) { // Copy gyro value into int32_t (to prevent overflow) and then apply calibration and alignment gyroADC[X] = (int32_t)gyroDev0.gyroADCRaw[X] - (int32_t)gyroDev0.gyroZero[X]; gyroADC[Y] = (int32_t)gyroDev0.gyroADCRaw[Y] - (int32_t)gyroDev0.gyroZero[Y]; gyroADC[Z] = (int32_t)gyroDev0.gyroADCRaw[Z] - (int32_t)gyroDev0.gyroZero[Z]; applySensorAlignment(gyroADC, gyroADC, gyroDev0.gyroAlign); applyBoardAlignment(gyroADC); } else { performGyroCalibration(&gyroDev0, &gyroCalibration); // Reset gyro values to zero to prevent other code from using uncalibrated data gyro.gyroADCf[X] = 0.0f; gyro.gyroADCf[Y] = 0.0f; gyro.gyroADCf[Z] = 0.0f; // still calibrating, so no need to further process gyro data return; } } else { // no gyro reading to process return; } for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) { float gyroADCf = (float)gyroADC[axis] * gyroDev0.scale; DEBUG_SET(DEBUG_GYRO, axis, lrintf(gyroADCf)); #ifdef USE_RPM_FILTER DEBUG_SET(DEBUG_RPM_FILTER, axis, gyroADCf); gyroADCf = rpmFilterGyroApply(axis, gyroADCf); DEBUG_SET(DEBUG_RPM_FILTER, axis + 3, gyroADCf); #endif gyroADCf = gyroLpf2ApplyFn((filter_t *) &gyroLpf2State[axis], gyroADCf); gyroADCf = gyroLpfApplyFn((filter_t *) &gyroLpfState[axis], gyroADCf); gyroADCf = notchFilter1ApplyFn(notchFilter1[axis], gyroADCf); gyroADCf = notchFilter2ApplyFn(notchFilter2[axis], gyroADCf); #ifdef USE_DYNAMIC_FILTERS if (isDynamicFilterActive()) { gyroDataAnalysePush(&gyroAnalyseState, axis, gyroADCf); gyroADCf = notchFilterDynApplyFn((filter_t *)¬chFilterDyn[axis], gyroADCf); gyroADCf = notchFilterDynApplyFn2((filter_t *)¬chFilterDyn2[axis], gyroADCf); } #endif gyro.gyroADCf[axis] = gyroADCf; } #ifdef USE_DYNAMIC_FILTERS if (isDynamicFilterActive()) { gyroDataAnalyse(&gyroAnalyseState, notchFilterDyn, notchFilterDyn2); } #endif } bool gyroReadTemperature(void) { // Read gyro sensor temperature. temperatureFn returns temperature in [degC * 10] if (gyroDev0.temperatureFn) { return gyroDev0.temperatureFn(&gyroDev0, &gyroTemperature0); } return false; } int16_t gyroGetTemperature(void) { return gyroTemperature0; } int16_t gyroRateDps(int axis) { return lrintf(gyro.gyroADCf[axis] / gyroDev0.scale); } bool gyroSyncCheckUpdate(void) { if (!gyroDev0.intStatusFn) return false; return gyroDev0.intStatusFn(&gyroDev0); }