/* * This file is part of Cleanflight. * * Cleanflight is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Cleanflight is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Cleanflight. If not, see . */ #include #include #include #include "axis.h" #include "maths.h" #include "vector.h" #include "quaternion.h" #include "platform.h" #ifdef USE_ARM_MATH #include "arm_math.h" #endif FILE_COMPILE_FOR_SPEED // http://lolengine.net/blog/2011/12/21/better-function-approximations // Chebyshev http://stackoverflow.com/questions/345085/how-do-trigonometric-functions-work/345117#345117 // Thanks for ledvinap for making such accuracy possible! See: https://github.com/cleanflight/cleanflight/issues/940#issuecomment-110323384 // https://github.com/Crashpilot1000/HarakiriWebstore1/blob/master/src/mw.c#L1235 #if defined(FAST_MATH) || defined(VERY_FAST_MATH) #if defined(VERY_FAST_MATH) #define sinPolyCoef3 -1.666568107e-1f #define sinPolyCoef5 8.312366210e-3f #define sinPolyCoef7 -1.849218155e-4f #define sinPolyCoef9 0 #else #define sinPolyCoef3 -1.666665710e-1f // Double: -1.666665709650470145824129400050267289858e-1 #define sinPolyCoef5 8.333017292e-3f // Double: 8.333017291562218127986291618761571373087e-3 #define sinPolyCoef7 -1.980661520e-4f // Double: -1.980661520135080504411629636078917643846e-4 #define sinPolyCoef9 2.600054768e-6f // Double: 2.600054767890361277123254766503271638682e-6 #endif float sin_approx(float x) { int32_t xint = x; if (xint < -32 || xint > 32) return 0.0f; // Stop here on error input (5 * 360 Deg) while (x > M_PIf) x -= (2.0f * M_PIf); // always wrap input angle to -PI..PI while (x < -M_PIf) x += (2.0f * M_PIf); if (x > (0.5f * M_PIf)) x = (0.5f * M_PIf) - (x - (0.5f * M_PIf)); // We just pick -90..+90 Degree else if (x < -(0.5f * M_PIf)) x = -(0.5f * M_PIf) - ((0.5f * M_PIf) + x); float x2 = x * x; return x + x * x2 * (sinPolyCoef3 + x2 * (sinPolyCoef5 + x2 * (sinPolyCoef7 + x2 * sinPolyCoef9))); } float cos_approx(float x) { return sin_approx(x + (0.5f * M_PIf)); } // https://github.com/Crashpilot1000/HarakiriWebstore1/blob/396715f73c6fcf859e0db0f34e12fe44bace6483/src/mw.c#L1292 // http://http.developer.nvidia.com/Cg/atan2.html (not working correctly!) // Poly coefficients by @ledvinap (https://github.com/cleanflight/cleanflight/pull/1107) // Max absolute error 0,000027 degree float atan2_approx(float y, float x) { #define atanPolyCoef1 3.14551665884836e-07f #define atanPolyCoef2 0.99997356613987f #define atanPolyCoef3 0.14744007058297684f #define atanPolyCoef4 0.3099814292351353f #define atanPolyCoef5 0.05030176425872175f #define atanPolyCoef6 0.1471039133652469f #define atanPolyCoef7 0.6444640676891548f float res, absX, absY; absX = fabsf(x); absY = fabsf(y); res = MAX(absX, absY); if (res) res = MIN(absX, absY) / res; else res = 0.0f; res = -((((atanPolyCoef5 * res - atanPolyCoef4) * res - atanPolyCoef3) * res - atanPolyCoef2) * res - atanPolyCoef1) / ((atanPolyCoef7 * res + atanPolyCoef6) * res + 1.0f); if (absY > absX) res = (M_PIf / 2.0f) - res; if (x < 0) res = M_PIf - res; if (y < 0) res = -res; return res; } // http://http.developer.nvidia.com/Cg/acos.html // Handbook of Mathematical Functions // M. Abramowitz and I.A. Stegun, Ed. // Absolute error <= 6.7e-5 float acos_approx(float x) { float xa = fabsf(x); float result = fast_fsqrtf(1.0f - xa) * (1.5707288f + xa * (-0.2121144f + xa * (0.0742610f + (-0.0187293f * xa)))); if (x < 0.0f) return M_PIf - result; else return result; } #endif int gcd(int num, int denom) { if (denom == 0) { return num; } return gcd(denom, num % denom); } int32_t wrap_18000(int32_t angle) { if (angle > 18000) angle -= 36000; if (angle < -18000) angle += 36000; return angle; } int32_t wrap_36000(int32_t angle) { if (angle > 36000) angle -= 36000; if (angle < 0) angle += 36000; return angle; } int32_t applyDeadband(int32_t value, int32_t deadband) { if (ABS(value) < deadband) { value = 0; } else if (value > 0) { value -= deadband; } else if (value < 0) { value += deadband; } return value; } int32_t applyDeadbandRescaled(int32_t value, int32_t deadband, int32_t min, int32_t max) { if (ABS(value) < deadband) { value = 0; } else if (value > 0) { value = scaleRange(value - deadband, 0, max - deadband, 0, max); } else if (value < 0) { value = scaleRange(value + deadband, min + deadband, 0, min, 0); } return value; } int32_t constrain(int32_t amt, int32_t low, int32_t high) { if (amt < low) return low; else if (amt > high) return high; else return amt; } float constrainf(float amt, float low, float high) { if (amt < low) return low; else if (amt > high) return high; else return amt; } void devClear(stdev_t *dev) { dev->m_n = 0; } void devPush(stdev_t *dev, float x) { dev->m_n++; if (dev->m_n == 1) { dev->m_oldM = dev->m_newM = x; dev->m_oldS = 0.0f; } else { dev->m_newM = dev->m_oldM + (x - dev->m_oldM) / dev->m_n; dev->m_newS = dev->m_oldS + (x - dev->m_oldM) * (x - dev->m_newM); dev->m_oldM = dev->m_newM; dev->m_oldS = dev->m_newS; } } float devVariance(stdev_t *dev) { return ((dev->m_n > 1) ? dev->m_newS / (dev->m_n - 1) : 0.0f); } float devStandardDeviation(stdev_t *dev) { return fast_fsqrtf(devVariance(dev)); } float degreesToRadians(int16_t degrees) { return degrees * RAD; } int scaleRange(int x, int srcMin, int srcMax, int destMin, int destMax) { long int a = ((long int) destMax - (long int) destMin) * ((long int) x - (long int) srcMin); long int b = (long int) srcMax - (long int) srcMin; return ((a / b) + destMin); } float scaleRangef(float x, float srcMin, float srcMax, float destMin, float destMax) { float a = (destMax - destMin) * (x - srcMin); float b = srcMax - srcMin; return ((a / b) + destMin); } // Build rMat from Tait–Bryan angles (convention X1, Y2, Z3) void rotationMatrixFromAngles(fpMat3_t * rmat, const fp_angles_t * angles) { float cosx, sinx, cosy, siny, cosz, sinz; float coszcosx, sinzcosx, coszsinx, sinzsinx; cosx = cos_approx(angles->angles.roll); sinx = sin_approx(angles->angles.roll); cosy = cos_approx(angles->angles.pitch); siny = sin_approx(angles->angles.pitch); cosz = cos_approx(angles->angles.yaw); sinz = sin_approx(angles->angles.yaw); coszcosx = cosz * cosx; sinzcosx = sinz * cosx; coszsinx = sinx * cosz; sinzsinx = sinx * sinz; rmat->m[0][X] = cosz * cosy; rmat->m[0][Y] = -cosy * sinz; rmat->m[0][Z] = siny; rmat->m[1][X] = sinzcosx + (coszsinx * siny); rmat->m[1][Y] = coszcosx - (sinzsinx * siny); rmat->m[1][Z] = -sinx * cosy; rmat->m[2][X] = (sinzsinx) - (coszcosx * siny); rmat->m[2][Y] = (coszsinx) + (sinzcosx * siny); rmat->m[2][Z] = cosy * cosx; } void rotationMatrixFromAxisAngle(fpMat3_t * rmat, const fpAxisAngle_t * a) { const float sang = sin_approx(a->angle); const float cang = cos_approx(a->angle); const float C = 1.0f - cang; const float xC = a->axis.x * C; const float yC = a->axis.y * C; const float zC = a->axis.z * C; const float xxC = a->axis.x * xC; const float yyC = a->axis.y * yC; const float zzC = a->axis.z * zC; const float xyC = a->axis.x * yC; const float yzC = a->axis.y * zC; const float zxC = a->axis.z * xC; const float xs = a->axis.x * sang; const float ys = a->axis.y * sang; const float zs = a->axis.z * sang; rmat->m[0][X] = xxC + cang; rmat->m[0][Y] = xyC - zs; rmat->m[0][Z] = zxC + ys; rmat->m[1][X] = zxC + ys; rmat->m[1][Y] = yyC + cang; rmat->m[1][Z] = yzC - xs; rmat->m[2][X] = zxC - ys; rmat->m[2][Y] = yzC + xs; rmat->m[2][Z] = zzC + cang; } // Quick median filter implementation // (c) N. Devillard - 1998 // http://ndevilla.free.fr/median/median.pdf #define QMF_SORT(type,a,b) { if ((a)>(b)) QMF_SWAP(type, (a),(b)); } #define QMF_SWAP(type,a,b) { type temp=(a);(a)=(b);(b)=temp; } int32_t quickMedianFilter3(int32_t * v) { int32_t p[3]; memcpy(p, v, sizeof(p)); QMF_SORT(int32_t, p[0], p[1]); QMF_SORT(int32_t, p[1], p[2]); QMF_SORT(int32_t, p[0], p[1]) ; return p[1]; } int16_t quickMedianFilter3_16(int16_t * v) { int16_t p[3]; memcpy(p, v, sizeof(p)); QMF_SORT(int16_t, p[0], p[1]); QMF_SORT(int16_t, p[1], p[2]); QMF_SORT(int16_t, p[0], p[1]) ; return p[1]; } int32_t quickMedianFilter5(int32_t * v) { int32_t p[5]; memcpy(p, v, sizeof(p)); QMF_SORT(int32_t, p[0], p[1]); QMF_SORT(int32_t, p[3], p[4]); QMF_SORT(int32_t, p[0], p[3]); QMF_SORT(int32_t, p[1], p[4]); QMF_SORT(int32_t, p[1], p[2]); QMF_SORT(int32_t, p[2], p[3]); QMF_SORT(int32_t, p[1], p[2]); return p[2]; } int16_t quickMedianFilter5_16(int16_t * v) { int16_t p[5]; memcpy(p, v, sizeof(p)); QMF_SORT(int16_t, p[0], p[1]); QMF_SORT(int16_t, p[3], p[4]); QMF_SORT(int16_t, p[0], p[3]); QMF_SORT(int16_t, p[1], p[4]); QMF_SORT(int16_t, p[1], p[2]); QMF_SORT(int16_t, p[2], p[3]); QMF_SORT(int16_t, p[1], p[2]); return p[2]; } int32_t quickMedianFilter7(int32_t * v) { int32_t p[7]; memcpy(p, v, sizeof(p)); QMF_SORT(int32_t, p[0], p[5]); QMF_SORT(int32_t, p[0], p[3]); QMF_SORT(int32_t, p[1], p[6]); QMF_SORT(int32_t, p[2], p[4]); QMF_SORT(int32_t, p[0], p[1]); QMF_SORT(int32_t, p[3], p[5]); QMF_SORT(int32_t, p[2], p[6]); QMF_SORT(int32_t, p[2], p[3]); QMF_SORT(int32_t, p[3], p[6]); QMF_SORT(int32_t, p[4], p[5]); QMF_SORT(int32_t, p[1], p[4]); QMF_SORT(int32_t, p[1], p[3]); QMF_SORT(int32_t, p[3], p[4]); return p[3]; } int32_t quickMedianFilter9(int32_t * v) { int32_t p[9]; memcpy(p, v, sizeof(p)); QMF_SORT(int32_t, p[1], p[2]); QMF_SORT(int32_t, p[4], p[5]); QMF_SORT(int32_t, p[7], p[8]); QMF_SORT(int32_t, p[0], p[1]); QMF_SORT(int32_t, p[3], p[4]); QMF_SORT(int32_t, p[6], p[7]); QMF_SORT(int32_t, p[1], p[2]); QMF_SORT(int32_t, p[4], p[5]); QMF_SORT(int32_t, p[7], p[8]); QMF_SORT(int32_t, p[0], p[3]); QMF_SORT(int32_t, p[5], p[8]); QMF_SORT(int32_t, p[4], p[7]); QMF_SORT(int32_t, p[3], p[6]); QMF_SORT(int32_t, p[1], p[4]); QMF_SORT(int32_t, p[2], p[5]); QMF_SORT(int32_t, p[4], p[7]); QMF_SORT(int32_t, p[4], p[2]); QMF_SORT(int32_t, p[6], p[4]); QMF_SORT(int32_t, p[4], p[2]); return p[4]; } void arraySubInt32(int32_t *dest, int32_t *array1, int32_t *array2, int count) { for (int i = 0; i < count; i++) { dest[i] = array1[i] - array2[i]; } } /** * Sensor offset calculation code based on Freescale's AN4246 * Initial implementation by @HaukeRa * Modified to be re-usable by @DigitalEntity */ void sensorCalibrationResetState(sensorCalibrationState_t * state) { for (int i = 0; i < 4; i++){ for (int j = 0; j < 4; j++){ state->XtX[i][j] = 0; } state->XtY[i] = 0; } } void sensorCalibrationPushSampleForOffsetCalculation(sensorCalibrationState_t * state, int32_t sample[3]) { state->XtX[0][0] += (float)sample[0] * sample[0]; state->XtX[0][1] += (float)sample[0] * sample[1]; state->XtX[0][2] += (float)sample[0] * sample[2]; state->XtX[0][3] += (float)sample[0]; state->XtX[1][0] += (float)sample[1] * sample[0]; state->XtX[1][1] += (float)sample[1] * sample[1]; state->XtX[1][2] += (float)sample[1] * sample[2]; state->XtX[1][3] += (float)sample[1]; state->XtX[2][0] += (float)sample[2] * sample[0]; state->XtX[2][1] += (float)sample[2] * sample[1]; state->XtX[2][2] += (float)sample[2] * sample[2]; state->XtX[2][3] += (float)sample[2]; state->XtX[3][0] += (float)sample[0]; state->XtX[3][1] += (float)sample[1]; state->XtX[3][2] += (float)sample[2]; state->XtX[3][3] += 1; float squareSum = ((float)sample[0] * sample[0]) + ((float)sample[1] * sample[1]) + ((float)sample[2] * sample[2]); state->XtY[0] += sample[0] * squareSum; state->XtY[1] += sample[1] * squareSum; state->XtY[2] += sample[2] * squareSum; state->XtY[3] += squareSum; } void sensorCalibrationPushSampleForScaleCalculation(sensorCalibrationState_t * state, int axis, int32_t sample[3], int target) { for (int i = 0; i < 3; i++) { float scaledSample = (float)sample[i] / (float)target; state->XtX[axis][i] += scaledSample * scaledSample; state->XtX[3][i] += scaledSample * scaledSample; } state->XtX[axis][3] += 1; state->XtY[axis] += 1; state->XtY[3] += 1; } static void sensorCalibration_gaussLR(float mat[4][4]) { uint8_t n = 4; int i, j, k; for (i = 0; i < 4; i++) { // Determine R for (j = i; j < 4; j++) { for (k = 0; k < i; k++) { mat[i][j] -= mat[i][k] * mat[k][j]; } } // Determine L for (j = i + 1; j < n; j++) { for (k = 0; k < i; k++) { mat[j][i] -= mat[j][k] * mat[k][i]; } mat[j][i] /= mat[i][i]; } } } void sensorCalibration_ForwardSubstitution(float LR[4][4], float y[4], float b[4]) { int i, k; for (i = 0; i < 4; ++i) { y[i] = b[i]; for (k = 0; k < i; ++k) { y[i] -= LR[i][k] * y[k]; } //y[i] /= MAT_ELEM_AT(LR,i,i); //Do not use, LR(i,i) is 1 anyways and not stored in this matrix } } void sensorCalibration_BackwardSubstitution(float LR[4][4], float x[4], float y[4]) { int i, k; for (i = 3 ; i >= 0; --i) { x[i] = y[i]; for (k = i + 1; k < 4; ++k) { x[i] -= LR[i][k] * x[k]; } x[i] /= LR[i][i]; } } // solve linear equation // https://en.wikipedia.org/wiki/Gaussian_elimination static void sensorCalibration_SolveLGS(float A[4][4], float x[4], float b[4]) { int i; float y[4]; sensorCalibration_gaussLR(A); for (i = 0; i < 4; ++i) { y[i] = 0; } sensorCalibration_ForwardSubstitution(A, y, b); sensorCalibration_BackwardSubstitution(A, x, y); } bool sensorCalibrationValidateResult(const float result[3]) { // Validate that result is not INF and not NAN for (int i = 0; i < 3; i++) { if (isnan(result[i]) && isinf(result[i])) { return false; } } return true; } bool sensorCalibrationSolveForOffset(sensorCalibrationState_t * state, float result[3]) { float beta[4]; sensorCalibration_SolveLGS(state->XtX, beta, state->XtY); for (int i = 0; i < 3; i++) { result[i] = beta[i] / 2; } return sensorCalibrationValidateResult(result); } bool sensorCalibrationSolveForScale(sensorCalibrationState_t * state, float result[3]) { float beta[4]; sensorCalibration_SolveLGS(state->XtX, beta, state->XtY); for (int i = 0; i < 3; i++) { result[i] = fast_fsqrtf(beta[i]); } return sensorCalibrationValidateResult(result); } float bellCurve(const float x, const float curveWidth) { return powf(M_Ef, -sq(x) / (2.0f * sq(curveWidth))); } float fast_fsqrtf(const double value) { float ret = 0.0f; #ifdef USE_ARM_MATH arm_sqrt_f32(value, &ret); #else ret = sqrtf(value); #endif if (isnan(ret)) { return 0; } return ret; }