#pragma once // MESSAGE OBSTACLE_DISTANCE PACKING #define MAVLINK_MSG_ID_OBSTACLE_DISTANCE 330 MAVPACKED( typedef struct __mavlink_obstacle_distance_t { uint64_t time_usec; /*< [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number.*/ uint16_t distances[72]; /*< [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm.*/ uint16_t min_distance; /*< [cm] Minimum distance the sensor can measure.*/ uint16_t max_distance; /*< [cm] Maximum distance the sensor can measure.*/ uint8_t sensor_type; /*< Class id of the distance sensor type.*/ uint8_t increment; /*< [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero.*/ float increment_f; /*< [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise.*/ float angle_offset; /*< [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise.*/ uint8_t frame; /*< Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned.*/ }) mavlink_obstacle_distance_t; #define MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN 167 #define MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN 158 #define MAVLINK_MSG_ID_330_LEN 167 #define MAVLINK_MSG_ID_330_MIN_LEN 158 #define MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC 23 #define MAVLINK_MSG_ID_330_CRC 23 #define MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN 72 #if MAVLINK_COMMAND_24BIT #define MAVLINK_MESSAGE_INFO_OBSTACLE_DISTANCE { \ 330, \ "OBSTACLE_DISTANCE", \ 9, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_obstacle_distance_t, time_usec) }, \ { "sensor_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 156, offsetof(mavlink_obstacle_distance_t, sensor_type) }, \ { "distances", NULL, MAVLINK_TYPE_UINT16_T, 72, 8, offsetof(mavlink_obstacle_distance_t, distances) }, \ { "increment", NULL, MAVLINK_TYPE_UINT8_T, 0, 157, offsetof(mavlink_obstacle_distance_t, increment) }, \ { "min_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 152, offsetof(mavlink_obstacle_distance_t, min_distance) }, \ { "max_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 154, offsetof(mavlink_obstacle_distance_t, max_distance) }, \ { "increment_f", NULL, MAVLINK_TYPE_FLOAT, 0, 158, offsetof(mavlink_obstacle_distance_t, increment_f) }, \ { "angle_offset", NULL, MAVLINK_TYPE_FLOAT, 0, 162, offsetof(mavlink_obstacle_distance_t, angle_offset) }, \ { "frame", NULL, MAVLINK_TYPE_UINT8_T, 0, 166, offsetof(mavlink_obstacle_distance_t, frame) }, \ } \ } #else #define MAVLINK_MESSAGE_INFO_OBSTACLE_DISTANCE { \ "OBSTACLE_DISTANCE", \ 9, \ { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_obstacle_distance_t, time_usec) }, \ { "sensor_type", NULL, MAVLINK_TYPE_UINT8_T, 0, 156, offsetof(mavlink_obstacle_distance_t, sensor_type) }, \ { "distances", NULL, MAVLINK_TYPE_UINT16_T, 72, 8, offsetof(mavlink_obstacle_distance_t, distances) }, \ { "increment", NULL, MAVLINK_TYPE_UINT8_T, 0, 157, offsetof(mavlink_obstacle_distance_t, increment) }, \ { "min_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 152, offsetof(mavlink_obstacle_distance_t, min_distance) }, \ { "max_distance", NULL, MAVLINK_TYPE_UINT16_T, 0, 154, offsetof(mavlink_obstacle_distance_t, max_distance) }, \ { "increment_f", NULL, MAVLINK_TYPE_FLOAT, 0, 158, offsetof(mavlink_obstacle_distance_t, increment_f) }, \ { "angle_offset", NULL, MAVLINK_TYPE_FLOAT, 0, 162, offsetof(mavlink_obstacle_distance_t, angle_offset) }, \ { "frame", NULL, MAVLINK_TYPE_UINT8_T, 0, 166, offsetof(mavlink_obstacle_distance_t, frame) }, \ } \ } #endif /** * @brief Pack a obstacle_distance message * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param sensor_type Class id of the distance sensor type. * @param distances [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm. * @param increment [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero. * @param min_distance [cm] Minimum distance the sensor can measure. * @param max_distance [cm] Maximum distance the sensor can measure. * @param increment_f [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise. * @param angle_offset [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise. * @param frame Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_obstacle_distance_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, uint64_t time_usec, uint8_t sensor_type, const uint16_t *distances, uint8_t increment, uint16_t min_distance, uint16_t max_distance, float increment_f, float angle_offset, uint8_t frame) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint16_t(buf, 152, min_distance); _mav_put_uint16_t(buf, 154, max_distance); _mav_put_uint8_t(buf, 156, sensor_type); _mav_put_uint8_t(buf, 157, increment); _mav_put_float(buf, 158, increment_f); _mav_put_float(buf, 162, angle_offset); _mav_put_uint8_t(buf, 166, frame); _mav_put_uint16_t_array(buf, 8, distances, 72); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN); #else mavlink_obstacle_distance_t packet; packet.time_usec = time_usec; packet.min_distance = min_distance; packet.max_distance = max_distance; packet.sensor_type = sensor_type; packet.increment = increment; packet.increment_f = increment_f; packet.angle_offset = angle_offset; packet.frame = frame; mav_array_memcpy(packet.distances, distances, sizeof(uint16_t)*72); memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN); #endif msg->msgid = MAVLINK_MSG_ID_OBSTACLE_DISTANCE; return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); } /** * @brief Pack a obstacle_distance message on a channel * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param sensor_type Class id of the distance sensor type. * @param distances [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm. * @param increment [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero. * @param min_distance [cm] Minimum distance the sensor can measure. * @param max_distance [cm] Maximum distance the sensor can measure. * @param increment_f [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise. * @param angle_offset [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise. * @param frame Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned. * @return length of the message in bytes (excluding serial stream start sign) */ static inline uint16_t mavlink_msg_obstacle_distance_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, uint64_t time_usec,uint8_t sensor_type,const uint16_t *distances,uint8_t increment,uint16_t min_distance,uint16_t max_distance,float increment_f,float angle_offset,uint8_t frame) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint16_t(buf, 152, min_distance); _mav_put_uint16_t(buf, 154, max_distance); _mav_put_uint8_t(buf, 156, sensor_type); _mav_put_uint8_t(buf, 157, increment); _mav_put_float(buf, 158, increment_f); _mav_put_float(buf, 162, angle_offset); _mav_put_uint8_t(buf, 166, frame); _mav_put_uint16_t_array(buf, 8, distances, 72); memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN); #else mavlink_obstacle_distance_t packet; packet.time_usec = time_usec; packet.min_distance = min_distance; packet.max_distance = max_distance; packet.sensor_type = sensor_type; packet.increment = increment; packet.increment_f = increment_f; packet.angle_offset = angle_offset; packet.frame = frame; mav_array_memcpy(packet.distances, distances, sizeof(uint16_t)*72); memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN); #endif msg->msgid = MAVLINK_MSG_ID_OBSTACLE_DISTANCE; return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); } /** * @brief Encode a obstacle_distance struct * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param msg The MAVLink message to compress the data into * @param obstacle_distance C-struct to read the message contents from */ static inline uint16_t mavlink_msg_obstacle_distance_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_obstacle_distance_t* obstacle_distance) { return mavlink_msg_obstacle_distance_pack(system_id, component_id, msg, obstacle_distance->time_usec, obstacle_distance->sensor_type, obstacle_distance->distances, obstacle_distance->increment, obstacle_distance->min_distance, obstacle_distance->max_distance, obstacle_distance->increment_f, obstacle_distance->angle_offset, obstacle_distance->frame); } /** * @brief Encode a obstacle_distance struct on a channel * * @param system_id ID of this system * @param component_id ID of this component (e.g. 200 for IMU) * @param chan The MAVLink channel this message will be sent over * @param msg The MAVLink message to compress the data into * @param obstacle_distance C-struct to read the message contents from */ static inline uint16_t mavlink_msg_obstacle_distance_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_obstacle_distance_t* obstacle_distance) { return mavlink_msg_obstacle_distance_pack_chan(system_id, component_id, chan, msg, obstacle_distance->time_usec, obstacle_distance->sensor_type, obstacle_distance->distances, obstacle_distance->increment, obstacle_distance->min_distance, obstacle_distance->max_distance, obstacle_distance->increment_f, obstacle_distance->angle_offset, obstacle_distance->frame); } /** * @brief Send a obstacle_distance message * @param chan MAVLink channel to send the message * * @param time_usec [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. * @param sensor_type Class id of the distance sensor type. * @param distances [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm. * @param increment [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero. * @param min_distance [cm] Minimum distance the sensor can measure. * @param max_distance [cm] Maximum distance the sensor can measure. * @param increment_f [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise. * @param angle_offset [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise. * @param frame Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned. */ #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS static inline void mavlink_msg_obstacle_distance_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_type, const uint16_t *distances, uint8_t increment, uint16_t min_distance, uint16_t max_distance, float increment_f, float angle_offset, uint8_t frame) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char buf[MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN]; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint16_t(buf, 152, min_distance); _mav_put_uint16_t(buf, 154, max_distance); _mav_put_uint8_t(buf, 156, sensor_type); _mav_put_uint8_t(buf, 157, increment); _mav_put_float(buf, 158, increment_f); _mav_put_float(buf, 162, angle_offset); _mav_put_uint8_t(buf, 166, frame); _mav_put_uint16_t_array(buf, 8, distances, 72); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); #else mavlink_obstacle_distance_t packet; packet.time_usec = time_usec; packet.min_distance = min_distance; packet.max_distance = max_distance; packet.sensor_type = sensor_type; packet.increment = increment; packet.increment_f = increment_f; packet.angle_offset = angle_offset; packet.frame = frame; mav_array_memcpy(packet.distances, distances, sizeof(uint16_t)*72); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, (const char *)&packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); #endif } /** * @brief Send a obstacle_distance message * @param chan MAVLink channel to send the message * @param struct The MAVLink struct to serialize */ static inline void mavlink_msg_obstacle_distance_send_struct(mavlink_channel_t chan, const mavlink_obstacle_distance_t* obstacle_distance) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS mavlink_msg_obstacle_distance_send(chan, obstacle_distance->time_usec, obstacle_distance->sensor_type, obstacle_distance->distances, obstacle_distance->increment, obstacle_distance->min_distance, obstacle_distance->max_distance, obstacle_distance->increment_f, obstacle_distance->angle_offset, obstacle_distance->frame); #else _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, (const char *)obstacle_distance, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); #endif } #if MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN <= MAVLINK_MAX_PAYLOAD_LEN /* This varient of _send() can be used to save stack space by re-using memory from the receive buffer. The caller provides a mavlink_message_t which is the size of a full mavlink message. This is usually the receive buffer for the channel, and allows a reply to an incoming message with minimum stack space usage. */ static inline void mavlink_msg_obstacle_distance_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_type, const uint16_t *distances, uint8_t increment, uint16_t min_distance, uint16_t max_distance, float increment_f, float angle_offset, uint8_t frame) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS char *buf = (char *)msgbuf; _mav_put_uint64_t(buf, 0, time_usec); _mav_put_uint16_t(buf, 152, min_distance); _mav_put_uint16_t(buf, 154, max_distance); _mav_put_uint8_t(buf, 156, sensor_type); _mav_put_uint8_t(buf, 157, increment); _mav_put_float(buf, 158, increment_f); _mav_put_float(buf, 162, angle_offset); _mav_put_uint8_t(buf, 166, frame); _mav_put_uint16_t_array(buf, 8, distances, 72); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, buf, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); #else mavlink_obstacle_distance_t *packet = (mavlink_obstacle_distance_t *)msgbuf; packet->time_usec = time_usec; packet->min_distance = min_distance; packet->max_distance = max_distance; packet->sensor_type = sensor_type; packet->increment = increment; packet->increment_f = increment_f; packet->angle_offset = angle_offset; packet->frame = frame; mav_array_memcpy(packet->distances, distances, sizeof(uint16_t)*72); _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OBSTACLE_DISTANCE, (const char *)packet, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_MIN_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_CRC); #endif } #endif #endif // MESSAGE OBSTACLE_DISTANCE UNPACKING /** * @brief Get field time_usec from obstacle_distance message * * @return [us] Timestamp (UNIX Epoch time or time since system boot). The receiving end can infer timestamp format (since 1.1.1970 or since system boot) by checking for the magnitude of the number. */ static inline uint64_t mavlink_msg_obstacle_distance_get_time_usec(const mavlink_message_t* msg) { return _MAV_RETURN_uint64_t(msg, 0); } /** * @brief Get field sensor_type from obstacle_distance message * * @return Class id of the distance sensor type. */ static inline uint8_t mavlink_msg_obstacle_distance_get_sensor_type(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 156); } /** * @brief Get field distances from obstacle_distance message * * @return [cm] Distance of obstacles around the vehicle with index 0 corresponding to north + angle_offset, unless otherwise specified in the frame. A value of 0 is valid and means that the obstacle is practically touching the sensor. A value of max_distance +1 means no obstacle is present. A value of UINT16_MAX for unknown/not used. In a array element, one unit corresponds to 1cm. */ static inline uint16_t mavlink_msg_obstacle_distance_get_distances(const mavlink_message_t* msg, uint16_t *distances) { return _MAV_RETURN_uint16_t_array(msg, distances, 72, 8); } /** * @brief Get field increment from obstacle_distance message * * @return [deg] Angular width in degrees of each array element. Increment direction is clockwise. This field is ignored if increment_f is non-zero. */ static inline uint8_t mavlink_msg_obstacle_distance_get_increment(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 157); } /** * @brief Get field min_distance from obstacle_distance message * * @return [cm] Minimum distance the sensor can measure. */ static inline uint16_t mavlink_msg_obstacle_distance_get_min_distance(const mavlink_message_t* msg) { return _MAV_RETURN_uint16_t(msg, 152); } /** * @brief Get field max_distance from obstacle_distance message * * @return [cm] Maximum distance the sensor can measure. */ static inline uint16_t mavlink_msg_obstacle_distance_get_max_distance(const mavlink_message_t* msg) { return _MAV_RETURN_uint16_t(msg, 154); } /** * @brief Get field increment_f from obstacle_distance message * * @return [deg] Angular width in degrees of each array element as a float. If non-zero then this value is used instead of the uint8_t increment field. Positive is clockwise direction, negative is counter-clockwise. */ static inline float mavlink_msg_obstacle_distance_get_increment_f(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 158); } /** * @brief Get field angle_offset from obstacle_distance message * * @return [deg] Relative angle offset of the 0-index element in the distances array. Value of 0 corresponds to forward. Positive is clockwise direction, negative is counter-clockwise. */ static inline float mavlink_msg_obstacle_distance_get_angle_offset(const mavlink_message_t* msg) { return _MAV_RETURN_float(msg, 162); } /** * @brief Get field frame from obstacle_distance message * * @return Coordinate frame of reference for the yaw rotation and offset of the sensor data. Defaults to MAV_FRAME_GLOBAL, which is north aligned. For body-mounted sensors use MAV_FRAME_BODY_FRD, which is vehicle front aligned. */ static inline uint8_t mavlink_msg_obstacle_distance_get_frame(const mavlink_message_t* msg) { return _MAV_RETURN_uint8_t(msg, 166); } /** * @brief Decode a obstacle_distance message into a struct * * @param msg The message to decode * @param obstacle_distance C-struct to decode the message contents into */ static inline void mavlink_msg_obstacle_distance_decode(const mavlink_message_t* msg, mavlink_obstacle_distance_t* obstacle_distance) { #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS obstacle_distance->time_usec = mavlink_msg_obstacle_distance_get_time_usec(msg); mavlink_msg_obstacle_distance_get_distances(msg, obstacle_distance->distances); obstacle_distance->min_distance = mavlink_msg_obstacle_distance_get_min_distance(msg); obstacle_distance->max_distance = mavlink_msg_obstacle_distance_get_max_distance(msg); obstacle_distance->sensor_type = mavlink_msg_obstacle_distance_get_sensor_type(msg); obstacle_distance->increment = mavlink_msg_obstacle_distance_get_increment(msg); obstacle_distance->increment_f = mavlink_msg_obstacle_distance_get_increment_f(msg); obstacle_distance->angle_offset = mavlink_msg_obstacle_distance_get_angle_offset(msg); obstacle_distance->frame = mavlink_msg_obstacle_distance_get_frame(msg); #else uint8_t len = msg->len < MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN? msg->len : MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN; memset(obstacle_distance, 0, MAVLINK_MSG_ID_OBSTACLE_DISTANCE_LEN); memcpy(obstacle_distance, _MAV_PAYLOAD(msg), len); #endif }