mirror of
https://github.com/iNavFlight/inav.git
synced 2025-07-25 09:16:01 +03:00
573 lines
17 KiB
C
573 lines
17 KiB
C
/*
|
|
* This file is part of Cleanflight.
|
|
*
|
|
* Cleanflight is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Cleanflight is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "platform.h"
|
|
|
|
FILE_COMPILE_FOR_SPEED
|
|
|
|
#include "build/build_config.h"
|
|
#include "build/debug.h"
|
|
|
|
#include "common/axis.h"
|
|
#include "common/calibration.h"
|
|
#include "common/filter.h"
|
|
#include "common/log.h"
|
|
#include "common/maths.h"
|
|
#include "common/utils.h"
|
|
|
|
#include "config/parameter_group.h"
|
|
#include "config/parameter_group_ids.h"
|
|
#include "config/feature.h"
|
|
|
|
#include "drivers/accgyro/accgyro.h"
|
|
#include "drivers/accgyro/accgyro_mpu.h"
|
|
#include "drivers/accgyro/accgyro_mpu6000.h"
|
|
#include "drivers/accgyro/accgyro_mpu6500.h"
|
|
#include "drivers/accgyro/accgyro_mpu9250.h"
|
|
|
|
#include "drivers/accgyro/accgyro_bmi088.h"
|
|
#include "drivers/accgyro/accgyro_bmi160.h"
|
|
#include "drivers/accgyro/accgyro_bmi270.h"
|
|
#include "drivers/accgyro/accgyro_icm20689.h"
|
|
#include "drivers/accgyro/accgyro_icm42605.h"
|
|
#include "drivers/accgyro/accgyro_fake.h"
|
|
#include "drivers/io.h"
|
|
|
|
#include "fc/config.h"
|
|
#include "fc/runtime_config.h"
|
|
#include "fc/rc_controls.h"
|
|
#include "fc/settings.h"
|
|
|
|
#include "io/beeper.h"
|
|
#include "io/statusindicator.h"
|
|
|
|
#include "scheduler/scheduler.h"
|
|
|
|
#include "sensors/boardalignment.h"
|
|
#include "sensors/gyro.h"
|
|
#include "sensors/sensors.h"
|
|
|
|
#include "flight/gyroanalyse.h"
|
|
#include "flight/rpm_filter.h"
|
|
#include "flight/kalman.h"
|
|
|
|
#ifdef USE_HARDWARE_REVISION_DETECTION
|
|
#include "hardware_revision.h"
|
|
#endif
|
|
|
|
FASTRAM gyro_t gyro; // gyro sensor object
|
|
|
|
#define MAX_GYRO_COUNT 1
|
|
|
|
STATIC_UNIT_TESTED gyroDev_t gyroDev[MAX_GYRO_COUNT]; // Not in FASTRAM since it may hold DMA buffers
|
|
STATIC_FASTRAM int16_t gyroTemperature[MAX_GYRO_COUNT];
|
|
STATIC_FASTRAM_UNIT_TESTED zeroCalibrationVector_t gyroCalibration[MAX_GYRO_COUNT];
|
|
|
|
STATIC_FASTRAM filterApplyFnPtr gyroLpfApplyFn;
|
|
STATIC_FASTRAM filter_t gyroLpfState[XYZ_AXIS_COUNT];
|
|
|
|
STATIC_FASTRAM filterApplyFnPtr gyroLpf2ApplyFn;
|
|
STATIC_FASTRAM filter_t gyroLpf2State[XYZ_AXIS_COUNT];
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
|
|
EXTENDED_FASTRAM gyroAnalyseState_t gyroAnalyseState;
|
|
EXTENDED_FASTRAM dynamicGyroNotchState_t dynamicGyroNotchState;
|
|
EXTENDED_FASTRAM secondaryDynamicGyroNotchState_t secondaryDynamicGyroNotchState;
|
|
|
|
#endif
|
|
|
|
PG_REGISTER_WITH_RESET_TEMPLATE(gyroConfig_t, gyroConfig, PG_GYRO_CONFIG, 5);
|
|
|
|
PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
|
|
.gyro_lpf = SETTING_GYRO_HARDWARE_LPF_DEFAULT,
|
|
.gyro_anti_aliasing_lpf_hz = SETTING_GYRO_ANTI_ALIASING_LPF_HZ_DEFAULT,
|
|
.gyro_anti_aliasing_lpf_type = SETTING_GYRO_ANTI_ALIASING_LPF_TYPE_DEFAULT,
|
|
.gyroMovementCalibrationThreshold = SETTING_MORON_THRESHOLD_DEFAULT,
|
|
.looptime = SETTING_LOOPTIME_DEFAULT,
|
|
#ifdef USE_DUAL_GYRO
|
|
.gyro_to_use = SETTING_GYRO_TO_USE_DEFAULT,
|
|
#endif
|
|
.gyro_main_lpf_hz = SETTING_GYRO_MAIN_LPF_HZ_DEFAULT,
|
|
.gyro_main_lpf_type = SETTING_GYRO_MAIN_LPF_TYPE_DEFAULT,
|
|
.useDynamicLpf = SETTING_GYRO_USE_DYN_LPF_DEFAULT,
|
|
.gyroDynamicLpfMinHz = SETTING_GYRO_DYN_LPF_MIN_HZ_DEFAULT,
|
|
.gyroDynamicLpfMaxHz = SETTING_GYRO_DYN_LPF_MAX_HZ_DEFAULT,
|
|
.gyroDynamicLpfCurveExpo = SETTING_GYRO_DYN_LPF_CURVE_EXPO_DEFAULT,
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
.dynamicGyroNotchQ = SETTING_DYNAMIC_GYRO_NOTCH_Q_DEFAULT,
|
|
.dynamicGyroNotchMinHz = SETTING_DYNAMIC_GYRO_NOTCH_MIN_HZ_DEFAULT,
|
|
.dynamicGyroNotchEnabled = SETTING_DYNAMIC_GYRO_NOTCH_ENABLED_DEFAULT,
|
|
.dynamicGyroNotchMode = SETTING_DYNAMIC_GYRO_NOTCH_MODE_DEFAULT,
|
|
.dynamicGyroNotch3dQ = SETTING_DYNAMIC_GYRO_NOTCH_3D_Q_DEFAULT,
|
|
#endif
|
|
#ifdef USE_GYRO_KALMAN
|
|
.kalman_q = SETTING_SETPOINT_KALMAN_Q_DEFAULT,
|
|
.kalmanEnabled = SETTING_SETPOINT_KALMAN_ENABLED_DEFAULT,
|
|
#endif
|
|
.init_gyro_cal_enabled = SETTING_INIT_GYRO_CAL_DEFAULT,
|
|
.gyro_zero_cal = {SETTING_GYRO_ZERO_X_DEFAULT, SETTING_GYRO_ZERO_Y_DEFAULT, SETTING_GYRO_ZERO_Z_DEFAULT},
|
|
.gravity_cmss_cal = SETTING_INS_GRAVITY_CMSS_DEFAULT,
|
|
);
|
|
|
|
STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev, gyroSensor_e gyroHardware)
|
|
{
|
|
dev->gyroAlign = ALIGN_DEFAULT;
|
|
|
|
switch (gyroHardware) {
|
|
case GYRO_AUTODETECT:
|
|
FALLTHROUGH;
|
|
|
|
#ifdef USE_IMU_MPU6000
|
|
case GYRO_MPU6000:
|
|
if (mpu6000GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6000;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#if defined(USE_IMU_MPU6500)
|
|
case GYRO_MPU6500:
|
|
if (mpu6500GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU6500;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_MPU9250
|
|
case GYRO_MPU9250:
|
|
if (mpu9250GyroDetect(dev)) {
|
|
gyroHardware = GYRO_MPU9250;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_BMI160
|
|
case GYRO_BMI160:
|
|
if (bmi160GyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI160;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_BMI088
|
|
case GYRO_BMI088:
|
|
if (bmi088GyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI088;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_ICM20689
|
|
case GYRO_ICM20689:
|
|
if (icm20689GyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM20689;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_ICM42605
|
|
case GYRO_ICM42605:
|
|
if (icm42605GyroDetect(dev)) {
|
|
gyroHardware = GYRO_ICM42605;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_BMI270
|
|
case GYRO_BMI270:
|
|
if (bmi270GyroDetect(dev)) {
|
|
gyroHardware = GYRO_BMI270;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
#ifdef USE_IMU_FAKE
|
|
case GYRO_FAKE:
|
|
if (fakeGyroDetect(dev)) {
|
|
gyroHardware = GYRO_FAKE;
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
#endif
|
|
|
|
default:
|
|
case GYRO_NONE:
|
|
gyroHardware = GYRO_NONE;
|
|
}
|
|
|
|
return gyroHardware;
|
|
}
|
|
|
|
static void initGyroFilter(filterApplyFnPtr *applyFn, filter_t state[], uint8_t type, uint16_t cutoff, uint32_t looptime)
|
|
{
|
|
*applyFn = nullFilterApply;
|
|
if (cutoff > 0) {
|
|
switch (type)
|
|
{
|
|
case FILTER_PT1:
|
|
*applyFn = (filterApplyFnPtr)pt1FilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
pt1FilterInit(&state[axis].pt1, cutoff, looptime * 1e-6f);
|
|
}
|
|
break;
|
|
case FILTER_BIQUAD:
|
|
*applyFn = (filterApplyFnPtr)biquadFilterApply;
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
biquadFilterInitLPF(&state[axis].biquad, cutoff, looptime);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gyroInitFilters(void)
|
|
{
|
|
//First gyro LPF running at full gyro frequency 8kHz
|
|
initGyroFilter(&gyroLpfApplyFn, gyroLpfState, gyroConfig()->gyro_anti_aliasing_lpf_type, gyroConfig()->gyro_anti_aliasing_lpf_hz, getGyroLooptime());
|
|
|
|
//Second gyro LPF runnig and PID frequency - this filter is dynamic when gyro_use_dyn_lpf = ON
|
|
initGyroFilter(&gyroLpf2ApplyFn, gyroLpf2State, gyroConfig()->gyro_main_lpf_type, gyroConfig()->gyro_main_lpf_hz, getLooptime());
|
|
|
|
#ifdef USE_GYRO_KALMAN
|
|
if (gyroConfig()->kalmanEnabled) {
|
|
gyroKalmanInitialize(gyroConfig()->kalman_q);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool gyroInit(void)
|
|
{
|
|
memset(&gyro, 0, sizeof(gyro));
|
|
|
|
// Set inertial sensor tag (for dual-gyro selection)
|
|
#ifdef USE_DUAL_GYRO
|
|
gyroDev[0].imuSensorToUse = gyroConfig()->gyro_to_use;
|
|
#else
|
|
gyroDev[0].imuSensorToUse = 0;
|
|
#endif
|
|
|
|
// Detecting gyro0
|
|
gyroSensor_e gyroHardware = gyroDetect(&gyroDev[0], GYRO_AUTODETECT);
|
|
if (gyroHardware == GYRO_NONE) {
|
|
gyro.initialized = false;
|
|
detectedSensors[SENSOR_INDEX_GYRO] = GYRO_NONE;
|
|
return true;
|
|
}
|
|
|
|
// Gyro is initialized
|
|
gyro.initialized = true;
|
|
detectedSensors[SENSOR_INDEX_GYRO] = gyroHardware;
|
|
sensorsSet(SENSOR_GYRO);
|
|
|
|
// Driver initialisation
|
|
gyroDev[0].lpf = gyroConfig()->gyro_lpf;
|
|
gyroDev[0].requestedSampleIntervalUs = TASK_GYRO_LOOPTIME;
|
|
gyroDev[0].sampleRateIntervalUs = TASK_GYRO_LOOPTIME;
|
|
gyroDev[0].initFn(&gyroDev[0]);
|
|
|
|
// initFn will initialize sampleRateIntervalUs to actual gyro sampling rate (if driver supports it). Calculate target looptime using that value
|
|
gyro.targetLooptime = gyroDev[0].sampleRateIntervalUs;
|
|
|
|
gyroInitFilters();
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
// Dynamic notch running at PID frequency
|
|
dynamicGyroNotchFiltersInit(&dynamicGyroNotchState);
|
|
|
|
secondaryDynamicGyroNotchFiltersInit(&secondaryDynamicGyroNotchState);
|
|
|
|
gyroDataAnalyseStateInit(
|
|
&gyroAnalyseState,
|
|
gyroConfig()->dynamicGyroNotchMinHz,
|
|
getLooptime()
|
|
);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
void gyroStartCalibration(void)
|
|
{
|
|
if (!gyro.initialized) {
|
|
return;
|
|
}
|
|
|
|
#ifndef USE_IMU_FAKE // fixes Test Unit compilation error
|
|
if (!gyroConfig()->init_gyro_cal_enabled) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
zeroCalibrationStartV(&gyroCalibration[0], CALIBRATING_GYRO_TIME_MS, gyroConfig()->gyroMovementCalibrationThreshold, false);
|
|
}
|
|
|
|
bool gyroIsCalibrationComplete(void)
|
|
{
|
|
if (!gyro.initialized) {
|
|
return true;
|
|
}
|
|
|
|
#ifndef USE_IMU_FAKE // fixes Test Unit compilation error
|
|
if (!gyroConfig()->init_gyro_cal_enabled) {
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
return zeroCalibrationIsCompleteV(&gyroCalibration[0]) && zeroCalibrationIsSuccessfulV(&gyroCalibration[0]);
|
|
}
|
|
|
|
STATIC_UNIT_TESTED void performGyroCalibration(gyroDev_t *dev, zeroCalibrationVector_t *gyroCalibration)
|
|
{
|
|
fpVector3_t v;
|
|
|
|
// Consume gyro reading
|
|
v.v[X] = dev->gyroADCRaw[X];
|
|
v.v[Y] = dev->gyroADCRaw[Y];
|
|
v.v[Z] = dev->gyroADCRaw[Z];
|
|
|
|
zeroCalibrationAddValueV(gyroCalibration, &v);
|
|
|
|
// Check if calibration is complete after this cycle
|
|
if (zeroCalibrationIsCompleteV(gyroCalibration)) {
|
|
zeroCalibrationGetZeroV(gyroCalibration, &v);
|
|
dev->gyroZero[X] = v.v[X];
|
|
dev->gyroZero[Y] = v.v[Y];
|
|
dev->gyroZero[Z] = v.v[Z];
|
|
|
|
#ifndef USE_IMU_FAKE // fixes Test Unit compilation error
|
|
setGyroCalibrationAndWriteEEPROM(dev->gyroZero);
|
|
#endif
|
|
|
|
LOG_D(GYRO, "Gyro calibration complete (%d, %d, %d)", dev->gyroZero[X], dev->gyroZero[Y], dev->gyroZero[Z]);
|
|
schedulerResetTaskStatistics(TASK_SELF); // so calibration cycles do not pollute tasks statistics
|
|
} else {
|
|
dev->gyroZero[X] = 0;
|
|
dev->gyroZero[Y] = 0;
|
|
dev->gyroZero[Z] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate rotation rate in rad/s in body frame
|
|
*/
|
|
void gyroGetMeasuredRotationRate(fpVector3_t *measuredRotationRate)
|
|
{
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
measuredRotationRate->v[axis] = DEGREES_TO_RADIANS(gyro.gyroADCf[axis]);
|
|
}
|
|
}
|
|
|
|
static bool FAST_CODE NOINLINE gyroUpdateAndCalibrate(gyroDev_t * gyroDev, zeroCalibrationVector_t * gyroCal, float * gyroADCf)
|
|
{
|
|
|
|
// range: +/- 8192; +/- 2000 deg/sec
|
|
if (gyroDev->readFn(gyroDev)) {
|
|
|
|
#ifndef USE_IMU_FAKE // fixes Test Unit compilation error
|
|
if (!gyroConfig()->init_gyro_cal_enabled) {
|
|
// marks that the gyro calibration has ended
|
|
gyroCalibration[0].params.state = ZERO_CALIBRATION_DONE;
|
|
// pass the calibration values
|
|
gyroDev->gyroZero[X] = gyroConfig()->gyro_zero_cal[X];
|
|
gyroDev->gyroZero[Y] = gyroConfig()->gyro_zero_cal[Y];
|
|
gyroDev->gyroZero[Z] = gyroConfig()->gyro_zero_cal[Z];
|
|
}
|
|
#endif
|
|
|
|
if (zeroCalibrationIsCompleteV(gyroCal)) {
|
|
int32_t gyroADCtmp[XYZ_AXIS_COUNT];
|
|
|
|
// Copy gyro value into int32_t (to prevent overflow) and then apply calibration and alignment
|
|
gyroADCtmp[X] = (int32_t)gyroDev->gyroADCRaw[X] - (int32_t)gyroDev->gyroZero[X];
|
|
gyroADCtmp[Y] = (int32_t)gyroDev->gyroADCRaw[Y] - (int32_t)gyroDev->gyroZero[Y];
|
|
gyroADCtmp[Z] = (int32_t)gyroDev->gyroADCRaw[Z] - (int32_t)gyroDev->gyroZero[Z];
|
|
|
|
// Apply sensor alignment
|
|
applySensorAlignment(gyroADCtmp, gyroADCtmp, gyroDev->gyroAlign);
|
|
applyBoardAlignment(gyroADCtmp);
|
|
|
|
// Convert to deg/s and store in unified data
|
|
gyroADCf[X] = (float)gyroADCtmp[X] * gyroDev->scale;
|
|
gyroADCf[Y] = (float)gyroADCtmp[Y] * gyroDev->scale;
|
|
gyroADCf[Z] = (float)gyroADCtmp[Z] * gyroDev->scale;
|
|
|
|
return true;
|
|
} else {
|
|
performGyroCalibration(gyroDev, gyroCal);
|
|
|
|
// Reset gyro values to zero to prevent other code from using uncalibrated data
|
|
gyroADCf[X] = 0.0f;
|
|
gyroADCf[Y] = 0.0f;
|
|
gyroADCf[Z] = 0.0f;
|
|
|
|
return false;
|
|
}
|
|
} else {
|
|
// no gyro reading to process
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void FAST_CODE NOINLINE gyroFilter()
|
|
{
|
|
if (!gyro.initialized) {
|
|
return;
|
|
}
|
|
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
float gyroADCf = gyro.gyroADCf[axis];
|
|
|
|
#ifdef USE_RPM_FILTER
|
|
gyroADCf = rpmFilterGyroApply(axis, gyroADCf);
|
|
#endif
|
|
|
|
gyroADCf = gyroLpf2ApplyFn((filter_t *) &gyroLpf2State[axis], gyroADCf);
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
if (dynamicGyroNotchState.enabled) {
|
|
gyroDataAnalysePush(&gyroAnalyseState, axis, gyroADCf);
|
|
gyroADCf = dynamicGyroNotchFiltersApply(&dynamicGyroNotchState, axis, gyroADCf);
|
|
}
|
|
|
|
/**
|
|
* Secondary dynamic notch filter.
|
|
* In some cases, noise amplitude is high enough not to be filtered by the primary filter.
|
|
* This happens on the first frequency with the biggest aplitude
|
|
*/
|
|
gyroADCf = secondaryDynamicGyroNotchFiltersApply(&secondaryDynamicGyroNotchState, axis, gyroADCf);
|
|
|
|
#endif
|
|
|
|
#ifdef USE_GYRO_KALMAN
|
|
if (gyroConfig()->kalmanEnabled) {
|
|
gyroADCf = gyroKalmanUpdate(axis, gyroADCf);
|
|
}
|
|
#endif
|
|
|
|
gyro.gyroADCf[axis] = gyroADCf;
|
|
}
|
|
|
|
#ifdef USE_DYNAMIC_FILTERS
|
|
if (dynamicGyroNotchState.enabled) {
|
|
gyroDataAnalyse(&gyroAnalyseState);
|
|
|
|
if (gyroAnalyseState.filterUpdateExecute) {
|
|
dynamicGyroNotchFiltersUpdate(
|
|
&dynamicGyroNotchState,
|
|
gyroAnalyseState.filterUpdateAxis,
|
|
gyroAnalyseState.centerFrequency[gyroAnalyseState.filterUpdateAxis]
|
|
);
|
|
|
|
secondaryDynamicGyroNotchFiltersUpdate(
|
|
&secondaryDynamicGyroNotchState,
|
|
gyroAnalyseState.filterUpdateAxis,
|
|
gyroAnalyseState.centerFrequency[gyroAnalyseState.filterUpdateAxis]
|
|
);
|
|
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
void FAST_CODE NOINLINE gyroUpdate()
|
|
{
|
|
if (!gyro.initialized) {
|
|
return;
|
|
}
|
|
|
|
if (!gyroUpdateAndCalibrate(&gyroDev[0], &gyroCalibration[0], gyro.gyroADCf)) {
|
|
return;
|
|
}
|
|
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
// At this point gyro.gyroADCf contains unfiltered gyro value [deg/s]
|
|
float gyroADCf = gyro.gyroADCf[axis];
|
|
|
|
// Set raw gyro for blackbox purposes
|
|
gyro.gyroRaw[axis] = gyroADCf;
|
|
|
|
/*
|
|
* First gyro LPF is the only filter applied with the full gyro sampling speed
|
|
*/
|
|
gyroADCf = gyroLpfApplyFn((filter_t *) &gyroLpfState[axis], gyroADCf);
|
|
|
|
gyro.gyroADCf[axis] = gyroADCf;
|
|
}
|
|
}
|
|
|
|
bool gyroReadTemperature(void)
|
|
{
|
|
if (!gyro.initialized) {
|
|
return false;
|
|
}
|
|
|
|
// Read gyro sensor temperature. temperatureFn returns temperature in [degC * 10]
|
|
if (gyroDev[0].temperatureFn) {
|
|
return gyroDev[0].temperatureFn(&gyroDev[0], &gyroTemperature[0]);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int16_t gyroGetTemperature(void)
|
|
{
|
|
if (!gyro.initialized) {
|
|
return 0;
|
|
}
|
|
|
|
return gyroTemperature[0];
|
|
}
|
|
|
|
int16_t gyroRateDps(int axis)
|
|
{
|
|
if (!gyro.initialized) {
|
|
return 0;
|
|
}
|
|
|
|
return lrintf(gyro.gyroADCf[axis]);
|
|
}
|
|
|
|
void gyroUpdateDynamicLpf(float cutoffFreq) {
|
|
if (gyroConfig()->gyro_main_lpf_type == FILTER_PT1) {
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
pt1FilterUpdateCutoff(&gyroLpf2State[axis].pt1, cutoffFreq);
|
|
}
|
|
} else if (gyroConfig()->gyro_main_lpf_type == FILTER_BIQUAD) {
|
|
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
|
biquadFilterUpdate(&gyroLpf2State[axis].biquad, cutoffFreq, getLooptime(), BIQUAD_Q, FILTER_LPF);
|
|
}
|
|
}
|
|
}
|
|
|
|
float averageAbsGyroRates(void)
|
|
{
|
|
return (fabsf(gyro.gyroADCf[ROLL]) + fabsf(gyro.gyroADCf[PITCH]) + fabsf(gyro.gyroADCf[YAW])) / 3.0f;
|
|
}
|