1
0
Fork 0
mirror of https://github.com/iNavFlight/inav.git synced 2025-07-25 01:05:21 +03:00
inav/src/main/fc/fc_core.c
2022-01-24 20:04:27 -03:00

1006 lines
31 KiB
C
Executable file

/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdlib.h>
#include <stdint.h>
#include "platform.h"
FILE_COMPILE_FOR_SPEED
#include "blackbox/blackbox.h"
#include "build/debug.h"
#include "common/maths.h"
#include "common/axis.h"
#include "common/color.h"
#include "common/utils.h"
#include "common/filter.h"
#include "drivers/light_led.h"
#include "drivers/serial.h"
#include "drivers/time.h"
#include "drivers/system.h"
#include "drivers/pwm_output.h"
#include "drivers/accgyro/accgyro_bno055.h"
#include "sensors/sensors.h"
#include "sensors/diagnostics.h"
#include "sensors/boardalignment.h"
#include "sensors/acceleration.h"
#include "sensors/barometer.h"
#include "sensors/compass.h"
#include "sensors/pitotmeter.h"
#include "sensors/gyro.h"
#include "sensors/battery.h"
#include "sensors/rangefinder.h"
#include "sensors/opflow.h"
#include "sensors/esc_sensor.h"
#include "fc/fc_core.h"
#include "fc/cli.h"
#include "fc/config.h"
#include "fc/controlrate_profile.h"
#include "fc/rc_adjustments.h"
#include "fc/rc_smoothing.h"
#include "fc/rc_controls.h"
#include "fc/rc_curves.h"
#include "fc/rc_modes.h"
#include "fc/runtime_config.h"
#include "io/beeper.h"
#include "io/dashboard.h"
#include "io/gps.h"
#include "io/serial.h"
#include "io/statusindicator.h"
#include "io/asyncfatfs/asyncfatfs.h"
#include "io/piniobox.h"
#include "msp/msp_serial.h"
#include "navigation/navigation.h"
#include "rx/rx.h"
#include "rx/msp.h"
#include "scheduler/scheduler.h"
#include "telemetry/telemetry.h"
#include "flight/mixer.h"
#include "flight/servos.h"
#include "flight/pid.h"
#include "flight/imu.h"
#include "flight/secondary_imu.h"
#include "flight/rate_dynamics.h"
#include "flight/failsafe.h"
#include "flight/power_limits.h"
#include "config/feature.h"
#include "common/vector.h"
#include "programming/pid.h"
// June 2013 V2.2-dev
enum {
ALIGN_GYRO = 0,
ALIGN_ACCEL = 1,
ALIGN_MAG = 2
};
#define EMERGENCY_ARMING_TIME_WINDOW_MS 10000
#define EMERGENCY_ARMING_COUNTER_STEP_MS 100
typedef struct emergencyArmingState_s {
bool armingSwitchWasOn;
// Each entry in the queue is an offset from start,
// in 0.1s increments. This lets us represent up to 25.5s
// so it will work fine as long as the window for the triggers
// is smaller (see EMERGENCY_ARMING_TIME_WINDOW_MS). First
// entry of the queue is implicit.
timeMs_t start;
uint8_t queue[9];
uint8_t queueCount;
} emergencyArmingState_t;
timeDelta_t cycleTime = 0; // this is the number in micro second to achieve a full loop, it can differ a little and is taken into account in the PID loop
static timeUs_t flightTime = 0;
static timeUs_t armTime = 0;
EXTENDED_FASTRAM float dT;
int16_t headFreeModeHold;
uint8_t motorControlEnable = false;
static bool isRXDataNew;
static disarmReason_t lastDisarmReason = DISARM_NONE;
timeUs_t lastDisarmTimeUs = 0;
static emergencyArmingState_t emergencyArming;
static bool prearmWasReset = false; // Prearm must be reset (RC Mode not active) before arming is possible
static timeMs_t prearmActivationTime = 0;
bool areSensorsCalibrating(void)
{
#ifdef USE_BARO
if (sensors(SENSOR_BARO) && !baroIsCalibrationComplete()) {
return true;
}
#endif
#ifdef USE_MAG
if (sensors(SENSOR_MAG) && !compassIsCalibrationComplete()) {
return true;
}
#endif
#ifdef USE_PITOT
if (sensors(SENSOR_PITOT) && !pitotIsCalibrationComplete()) {
return true;
}
#endif
if (!navIsCalibrationComplete()) {
return true;
}
if (!accIsCalibrationComplete() && sensors(SENSOR_ACC)) {
return true;
}
if (!gyroIsCalibrationComplete()) {
return true;
}
return false;
}
int16_t getAxisRcCommand(int16_t rawData, int16_t rate, int16_t deadband)
{
int16_t stickDeflection;
stickDeflection = constrain(rawData - PWM_RANGE_MIDDLE, -500, 500);
stickDeflection = applyDeadbandRescaled(stickDeflection, deadband, -500, 500);
return rcLookup(stickDeflection, rate);
}
static void updateArmingStatus(void)
{
if (ARMING_FLAG(ARMED)) {
LED0_ON;
} else {
/* CHECK: Run-time calibration */
static bool calibratingFinishedBeep = false;
if (areSensorsCalibrating()) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_SENSORS_CALIBRATING);
calibratingFinishedBeep = false;
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_SENSORS_CALIBRATING);
if (!calibratingFinishedBeep) {
calibratingFinishedBeep = true;
beeper(BEEPER_RUNTIME_CALIBRATION_DONE);
}
}
/* CHECK: RX signal */
if (!failsafeIsReceivingRxData()) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_RC_LINK);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_RC_LINK);
}
/* CHECK: Throttle */
if (!armingConfig()->fixed_wing_auto_arm) {
// Don't want this check if fixed_wing_auto_arm is in use - machine arms on throttle > LOW
if (calculateThrottleStatus(THROTTLE_STATUS_TYPE_RC) != THROTTLE_LOW) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_THROTTLE);
} else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_THROTTLE);
}
}
/* CHECK: pitch / roll sticks centered when NAV_LAUNCH_MODE enabled */
if (isNavLaunchEnabled()) {
if (isRollPitchStickDeflected()) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_ROLLPITCH_NOT_CENTERED);
} else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_ROLLPITCH_NOT_CENTERED);
}
}
/* CHECK: Angle */
if (!STATE(SMALL_ANGLE)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_NOT_LEVEL);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_NOT_LEVEL);
}
/* CHECK: CPU load */
if (isSystemOverloaded()) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_SYSTEM_OVERLOADED);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_SYSTEM_OVERLOADED);
}
/* CHECK: Navigation safety */
if (navigationIsBlockingArming(NULL) != NAV_ARMING_BLOCKER_NONE) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_NAVIGATION_UNSAFE);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_NAVIGATION_UNSAFE);
}
#if defined(USE_MAG)
/* CHECK: */
if (sensors(SENSOR_MAG) && !STATE(COMPASS_CALIBRATED)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_COMPASS_NOT_CALIBRATED);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_COMPASS_NOT_CALIBRATED);
}
#endif
/* CHECK: */
if (sensors(SENSOR_ACC) && !STATE(ACCELEROMETER_CALIBRATED)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_ACCELEROMETER_NOT_CALIBRATED);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_ACCELEROMETER_NOT_CALIBRATED);
}
/* CHECK: */
if (!isHardwareHealthy()) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_HARDWARE_FAILURE);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_HARDWARE_FAILURE);
}
/* CHECK: BOXFAILSAFE */
if (IS_RC_MODE_ACTIVE(BOXFAILSAFE)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_BOXFAILSAFE);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_BOXFAILSAFE);
}
/* CHECK: BOXKILLSWITCH */
if (IS_RC_MODE_ACTIVE(BOXKILLSWITCH)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_BOXKILLSWITCH);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_BOXKILLSWITCH);
}
/* CHECK: Do not allow arming if Servo AutoTrim is enabled */
if (IS_RC_MODE_ACTIVE(BOXAUTOTRIM)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_SERVO_AUTOTRIM);
}
else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_SERVO_AUTOTRIM);
}
#ifdef USE_DSHOT
/* CHECK: Don't arm if the DShot beeper was used recently, as there is a minimum delay before sending the next DShot command */
if (micros() - getLastDshotBeeperCommandTimeUs() < getDShotBeaconGuardDelayUs()) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_DSHOT_BEEPER);
} else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_DSHOT_BEEPER);
}
#else
DISABLE_ARMING_FLAG(ARMING_DISABLED_DSHOT_BEEPER);
#endif
if (isModeActivationConditionPresent(BOXPREARM)) {
if (IS_RC_MODE_ACTIVE(BOXPREARM)) {
if (prearmWasReset && (armingConfig()->prearmTimeoutMs == 0 || millis() - prearmActivationTime < armingConfig()->prearmTimeoutMs)) {
DISABLE_ARMING_FLAG(ARMING_DISABLED_NO_PREARM);
} else {
ENABLE_ARMING_FLAG(ARMING_DISABLED_NO_PREARM);
}
} else {
prearmWasReset = true;
prearmActivationTime = millis();
ENABLE_ARMING_FLAG(ARMING_DISABLED_NO_PREARM);
}
} else {
DISABLE_ARMING_FLAG(ARMING_DISABLED_NO_PREARM);
}
/* CHECK: Arming switch */
// If arming is disabled and the ARM switch is on
// Note that this should be last check so all other blockers could be cleared correctly
// if blocking modes are linked to the same RC channel
if (isArmingDisabled() && IS_RC_MODE_ACTIVE(BOXARM)) {
ENABLE_ARMING_FLAG(ARMING_DISABLED_ARM_SWITCH);
} else if (!IS_RC_MODE_ACTIVE(BOXARM)) {
DISABLE_ARMING_FLAG(ARMING_DISABLED_ARM_SWITCH);
}
if (isArmingDisabled()) {
warningLedFlash();
} else {
warningLedDisable();
}
warningLedUpdate();
}
}
static bool emergencyArmingIsTriggered(void)
{
int threshold = (EMERGENCY_ARMING_TIME_WINDOW_MS / EMERGENCY_ARMING_COUNTER_STEP_MS);
return emergencyArming.queueCount == ARRAYLEN(emergencyArming.queue) + 1 &&
emergencyArming.queue[ARRAYLEN(emergencyArming.queue) - 1] < threshold &&
emergencyArming.start >= millis() - EMERGENCY_ARMING_TIME_WINDOW_MS;
}
static bool emergencyArmingCanOverrideArmingDisabled(void)
{
uint32_t armingPrevention = armingFlags & ARMING_DISABLED_ALL_FLAGS;
armingPrevention &= ~ARMING_DISABLED_EMERGENCY_OVERRIDE;
return armingPrevention == 0;
}
static bool emergencyArmingIsEnabled(void)
{
return emergencyArmingIsTriggered() && emergencyArmingCanOverrideArmingDisabled();
}
void annexCode(float dT)
{
int32_t throttleValue;
if (failsafeShouldApplyControlInput()) {
// Failsafe will apply rcCommand for us
failsafeApplyControlInput();
}
else {
// Compute ROLL PITCH and YAW command
rcCommand[ROLL] = getAxisRcCommand(rxGetChannelValue(ROLL), FLIGHT_MODE(MANUAL_MODE) ? currentControlRateProfile->manual.rcExpo8 : currentControlRateProfile->stabilized.rcExpo8, rcControlsConfig()->deadband);
rcCommand[PITCH] = getAxisRcCommand(rxGetChannelValue(PITCH), FLIGHT_MODE(MANUAL_MODE) ? currentControlRateProfile->manual.rcExpo8 : currentControlRateProfile->stabilized.rcExpo8, rcControlsConfig()->deadband);
rcCommand[YAW] = -getAxisRcCommand(rxGetChannelValue(YAW), FLIGHT_MODE(MANUAL_MODE) ? currentControlRateProfile->manual.rcYawExpo8 : currentControlRateProfile->stabilized.rcYawExpo8, rcControlsConfig()->yaw_deadband);
// Apply manual control rates
if (FLIGHT_MODE(MANUAL_MODE)) {
rcCommand[ROLL] = rcCommand[ROLL] * currentControlRateProfile->manual.rates[FD_ROLL] / 100L;
rcCommand[PITCH] = rcCommand[PITCH] * currentControlRateProfile->manual.rates[FD_PITCH] / 100L;
rcCommand[YAW] = rcCommand[YAW] * currentControlRateProfile->manual.rates[FD_YAW] / 100L;
} else {
DEBUG_SET(DEBUG_RATE_DYNAMICS, 0, rcCommand[ROLL]);
rcCommand[ROLL] = applyRateDynamics(rcCommand[ROLL], ROLL, dT);
DEBUG_SET(DEBUG_RATE_DYNAMICS, 1, rcCommand[ROLL]);
DEBUG_SET(DEBUG_RATE_DYNAMICS, 2, rcCommand[PITCH]);
rcCommand[PITCH] = applyRateDynamics(rcCommand[PITCH], PITCH, dT);
DEBUG_SET(DEBUG_RATE_DYNAMICS, 3, rcCommand[PITCH]);
DEBUG_SET(DEBUG_RATE_DYNAMICS, 4, rcCommand[YAW]);
rcCommand[YAW] = applyRateDynamics(rcCommand[YAW], YAW, dT);
DEBUG_SET(DEBUG_RATE_DYNAMICS, 5, rcCommand[YAW]);
}
//Compute THROTTLE command
throttleValue = constrain(rxGetChannelValue(THROTTLE), rxConfig()->mincheck, PWM_RANGE_MAX);
throttleValue = (uint32_t)(throttleValue - rxConfig()->mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - rxConfig()->mincheck); // [MINCHECK;2000] -> [0;1000]
rcCommand[THROTTLE] = rcLookupThrottle(throttleValue);
// Signal updated rcCommand values to Failsafe system
failsafeUpdateRcCommandValues();
if (FLIGHT_MODE(HEADFREE_MODE)) {
const float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
const float cosDiff = cos_approx(radDiff);
const float sinDiff = sin_approx(radDiff);
const int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
rcCommand[PITCH] = rcCommand_PITCH;
}
}
updateArmingStatus();
}
void disarm(disarmReason_t disarmReason)
{
if (ARMING_FLAG(ARMED)) {
lastDisarmReason = disarmReason;
lastDisarmTimeUs = micros();
DISABLE_ARMING_FLAG(ARMED);
#ifdef USE_BLACKBOX
if (feature(FEATURE_BLACKBOX)) {
blackboxFinish();
}
#endif
#ifdef USE_DSHOT
if (FLIGHT_MODE(TURTLE_MODE)) {
sendDShotCommand(DSHOT_CMD_SPIN_DIRECTION_NORMAL);
DISABLE_FLIGHT_MODE(TURTLE_MODE);
}
#endif
statsOnDisarm();
logicConditionReset();
#ifdef USE_PROGRAMMING_FRAMEWORK
programmingPidReset();
#endif
beeper(BEEPER_DISARMING); // emit disarm tone
prearmWasReset = false;
}
}
timeUs_t getLastDisarmTimeUs(void) {
return lastDisarmTimeUs;
}
disarmReason_t getDisarmReason(void)
{
return lastDisarmReason;
}
void emergencyArmingUpdate(bool armingSwitchIsOn)
{
if (armingSwitchIsOn == emergencyArming.armingSwitchWasOn) {
return;
}
if (armingSwitchIsOn) {
timeMs_t now = millis();
if (emergencyArming.queueCount == 0) {
emergencyArming.queueCount = 1;
emergencyArming.start = now;
} else {
while (emergencyArming.start < now - EMERGENCY_ARMING_TIME_WINDOW_MS || emergencyArmingIsTriggered()) {
if (emergencyArming.queueCount > 1) {
uint8_t delta = emergencyArming.queue[0];
emergencyArming.start += delta * EMERGENCY_ARMING_COUNTER_STEP_MS;
for (int ii = 0; ii < emergencyArming.queueCount - 2; ii++) {
emergencyArming.queue[ii] = emergencyArming.queue[ii + 1] - delta;
}
emergencyArming.queueCount--;
} else {
emergencyArming.start = now;
}
}
uint8_t delta = (now - emergencyArming.start) / EMERGENCY_ARMING_COUNTER_STEP_MS;
if (delta > 0) {
emergencyArming.queue[emergencyArming.queueCount - 1] = delta;
emergencyArming.queueCount++;
}
}
}
emergencyArming.armingSwitchWasOn = !emergencyArming.armingSwitchWasOn;
}
#define TELEMETRY_FUNCTION_MASK (FUNCTION_TELEMETRY_FRSKY | FUNCTION_TELEMETRY_HOTT | FUNCTION_TELEMETRY_SMARTPORT | FUNCTION_TELEMETRY_LTM | FUNCTION_TELEMETRY_MAVLINK | FUNCTION_TELEMETRY_IBUS)
void releaseSharedTelemetryPorts(void) {
serialPort_t *sharedPort = findSharedSerialPort(TELEMETRY_FUNCTION_MASK, FUNCTION_MSP);
while (sharedPort) {
mspSerialReleasePortIfAllocated(sharedPort);
sharedPort = findNextSharedSerialPort(TELEMETRY_FUNCTION_MASK, FUNCTION_MSP);
}
}
void tryArm(void)
{
#ifdef USE_MULTI_MISSION
setMultiMissionOnArm();
#endif
updateArmingStatus();
#ifdef USE_DSHOT
if (
STATE(MULTIROTOR) &&
IS_RC_MODE_ACTIVE(BOXTURTLE) &&
emergencyArmingCanOverrideArmingDisabled() &&
isMotorProtocolDshot() &&
!ARMING_FLAG(ARMED) &&
!FLIGHT_MODE(TURTLE_MODE)
) {
sendDShotCommand(DSHOT_CMD_SPIN_DIRECTION_REVERSED);
ENABLE_ARMING_FLAG(ARMED);
enableFlightMode(TURTLE_MODE);
return;
}
#endif
#ifdef USE_PROGRAMMING_FRAMEWORK
if (
!isArmingDisabled() ||
emergencyArmingIsEnabled() ||
LOGIC_CONDITION_GLOBAL_FLAG(LOGIC_CONDITION_GLOBAL_FLAG_OVERRIDE_ARMING_SAFETY)
) {
#else
if (
!isArmingDisabled() ||
emergencyArmingIsEnabled()
) {
#endif
if (ARMING_FLAG(ARMED)) {
return;
}
// If nav_extra_arming_safety was bypassed we always
// allow bypassing it even without the sticks set
// in the correct position to allow re-arming quickly
// in case of a mid-air accidental disarm.
bool usedBypass = false;
navigationIsBlockingArming(&usedBypass);
if (usedBypass) {
ENABLE_STATE(NAV_EXTRA_ARMING_SAFETY_BYPASSED);
}
lastDisarmReason = DISARM_NONE;
ENABLE_ARMING_FLAG(ARMED);
ENABLE_ARMING_FLAG(WAS_EVER_ARMED);
//It is required to inform the mixer that arming was executed and it has to switch to the FORWARD direction
ENABLE_STATE(SET_REVERSIBLE_MOTORS_FORWARD);
logicConditionReset();
#ifdef USE_PROGRAMMING_FRAMEWORK
programmingPidReset();
#endif
headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw);
resetHeadingHoldTarget(DECIDEGREES_TO_DEGREES(attitude.values.yaw));
#ifdef USE_BLACKBOX
if (feature(FEATURE_BLACKBOX)) {
serialPort_t *sharedBlackboxAndMspPort = findSharedSerialPort(FUNCTION_BLACKBOX, FUNCTION_MSP);
if (sharedBlackboxAndMspPort) {
mspSerialReleasePortIfAllocated(sharedBlackboxAndMspPort);
}
blackboxStart();
}
#endif
//beep to indicate arming
if (navigationPositionEstimateIsHealthy()) {
beeper(BEEPER_ARMING_GPS_FIX);
} else {
beeper(BEEPER_ARMING);
}
statsOnArm();
return;
}
if (!ARMING_FLAG(ARMED)) {
beeperConfirmationBeeps(1);
}
}
void processRx(timeUs_t currentTimeUs)
{
// Calculate RPY channel data
calculateRxChannelsAndUpdateFailsafe(currentTimeUs);
// in 3D mode, we need to be able to disarm by switch at any time
if (feature(FEATURE_REVERSIBLE_MOTORS)) {
if (!IS_RC_MODE_ACTIVE(BOXARM)) {
disarm(DISARM_SWITCH_3D);
}
}
updateRSSI(currentTimeUs);
// Update failsafe monitoring system
if (currentTimeUs > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) {
failsafeStartMonitoring();
}
failsafeUpdateState();
const throttleStatus_e throttleStatus = calculateThrottleStatus(THROTTLE_STATUS_TYPE_RC);
// When armed and motors aren't spinning, do beeps periodically
if (ARMING_FLAG(ARMED) && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING_LEGACY)) {
static bool armedBeeperOn = false;
if (throttleStatus == THROTTLE_LOW) {
beeper(BEEPER_ARMED);
armedBeeperOn = true;
} else if (armedBeeperOn) {
beeperSilence();
armedBeeperOn = false;
}
}
processRcStickPositions(throttleStatus);
processAirmode();
updateActivatedModes();
#ifdef USE_PINIOBOX
pinioBoxUpdate();
#endif
if (!cliMode) {
bool canUseRxData = rxIsReceivingSignal() && !FLIGHT_MODE(FAILSAFE_MODE);
updateAdjustmentStates(canUseRxData);
processRcAdjustments(CONST_CAST(controlRateConfig_t*, currentControlRateProfile), canUseRxData);
}
bool canUseHorizonMode = true;
if ((IS_RC_MODE_ACTIVE(BOXANGLE) || failsafeRequiresAngleMode() || navigationRequiresAngleMode()) && sensors(SENSOR_ACC)) {
// bumpless transfer to Level mode
canUseHorizonMode = false;
if (!FLIGHT_MODE(ANGLE_MODE)) {
ENABLE_FLIGHT_MODE(ANGLE_MODE);
}
} else {
DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support
}
if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) {
DISABLE_FLIGHT_MODE(ANGLE_MODE);
if (!FLIGHT_MODE(HORIZON_MODE)) {
ENABLE_FLIGHT_MODE(HORIZON_MODE);
}
} else {
DISABLE_FLIGHT_MODE(HORIZON_MODE);
}
if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
LED1_ON;
} else {
LED1_OFF;
}
/* Flaperon mode */
if (IS_RC_MODE_ACTIVE(BOXFLAPERON) && STATE(FLAPERON_AVAILABLE)) {
if (!FLIGHT_MODE(FLAPERON)) {
ENABLE_FLIGHT_MODE(FLAPERON);
}
} else {
DISABLE_FLIGHT_MODE(FLAPERON);
}
/* Turn assistant mode */
if (IS_RC_MODE_ACTIVE(BOXTURNASSIST)) {
if (!FLIGHT_MODE(TURN_ASSISTANT)) {
ENABLE_FLIGHT_MODE(TURN_ASSISTANT);
}
} else {
DISABLE_FLIGHT_MODE(TURN_ASSISTANT);
}
if (sensors(SENSOR_ACC)) {
if (IS_RC_MODE_ACTIVE(BOXHEADINGHOLD)) {
if (!FLIGHT_MODE(HEADING_MODE)) {
resetHeadingHoldTarget(DECIDEGREES_TO_DEGREES(attitude.values.yaw));
ENABLE_FLIGHT_MODE(HEADING_MODE);
}
} else {
DISABLE_FLIGHT_MODE(HEADING_MODE);
}
}
#if defined(USE_MAG)
if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) {
if (!FLIGHT_MODE(HEADFREE_MODE)) {
ENABLE_FLIGHT_MODE(HEADFREE_MODE);
}
} else {
DISABLE_FLIGHT_MODE(HEADFREE_MODE);
}
if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) {
headFreeModeHold = DECIDEGREES_TO_DEGREES(attitude.values.yaw); // acquire new heading
}
}
#endif
// Handle passthrough mode
if (STATE(FIXED_WING_LEGACY)) {
if ((IS_RC_MODE_ACTIVE(BOXMANUAL) && !navigationRequiresAngleMode() && !failsafeRequiresAngleMode()) || // Normal activation of passthrough
(!ARMING_FLAG(ARMED) && areSensorsCalibrating())){ // Backup - if we are not armed - enforce passthrough while calibrating
ENABLE_FLIGHT_MODE(MANUAL_MODE);
} else {
DISABLE_FLIGHT_MODE(MANUAL_MODE);
}
}
/* In airmode Iterm should be prevented to grow when Low thottle and Roll + Pitch Centered.
This is needed to prevent Iterm winding on the ground, but keep full stabilisation on 0 throttle while in air
Low Throttle + roll and Pitch centered is assuming the copter is on the ground. Done to prevent complex air/ground detections */
if (!ARMING_FLAG(ARMED)) {
DISABLE_STATE(ANTI_WINDUP_DEACTIVATED);
}
const rollPitchStatus_e rollPitchStatus = calculateRollPitchCenterStatus();
// In MANUAL mode we reset integrators prevent I-term wind-up (PID output is not used in MANUAL)
if (FLIGHT_MODE(MANUAL_MODE) || !ARMING_FLAG(ARMED)) {
DISABLE_STATE(ANTI_WINDUP);
pidResetErrorAccumulators();
}
else if (rcControlsConfig()->airmodeHandlingType == STICK_CENTER) {
if (throttleStatus == THROTTLE_LOW) {
if (STATE(AIRMODE_ACTIVE) && !failsafeIsActive()) {
if ((rollPitchStatus == CENTERED) || (feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING_LEGACY))) {
ENABLE_STATE(ANTI_WINDUP);
}
else {
DISABLE_STATE(ANTI_WINDUP);
}
}
else {
DISABLE_STATE(ANTI_WINDUP);
pidResetErrorAccumulators();
}
}
else {
DISABLE_STATE(ANTI_WINDUP);
}
}
else if (rcControlsConfig()->airmodeHandlingType == STICK_CENTER_ONCE) {
if (throttleStatus == THROTTLE_LOW) {
if (STATE(AIRMODE_ACTIVE) && !failsafeIsActive()) {
if ((rollPitchStatus == CENTERED) && !STATE(ANTI_WINDUP_DEACTIVATED)) {
ENABLE_STATE(ANTI_WINDUP);
}
else {
DISABLE_STATE(ANTI_WINDUP);
}
}
else {
DISABLE_STATE(ANTI_WINDUP);
pidResetErrorAccumulators();
}
}
else {
DISABLE_STATE(ANTI_WINDUP);
if (rollPitchStatus != CENTERED) {
ENABLE_STATE(ANTI_WINDUP_DEACTIVATED);
}
}
}
else if (rcControlsConfig()->airmodeHandlingType == THROTTLE_THRESHOLD) {
DISABLE_STATE(ANTI_WINDUP);
//This case applies only to MR when Airmode management is throttle threshold activated
if (throttleStatus == THROTTLE_LOW && !STATE(AIRMODE_ACTIVE)) {
pidResetErrorAccumulators();
}
}
//---------------------------------------------------------
if (mixerConfig()->platformType == PLATFORM_AIRPLANE) {
DISABLE_FLIGHT_MODE(HEADFREE_MODE);
}
#if defined(USE_AUTOTUNE_FIXED_WING) || defined(USE_AUTOTUNE_MULTIROTOR)
autotuneUpdateState();
#endif
#ifdef USE_TELEMETRY
if (feature(FEATURE_TELEMETRY)) {
if ((!telemetryConfig()->telemetry_switch && ARMING_FLAG(ARMED)) ||
(telemetryConfig()->telemetry_switch && IS_RC_MODE_ACTIVE(BOXTELEMETRY))) {
releaseSharedTelemetryPorts();
} else {
// the telemetry state must be checked immediately so that shared serial ports are released.
telemetryCheckState();
mspSerialAllocatePorts();
}
}
#endif
}
// Function for loop trigger
void FAST_CODE taskGyro(timeUs_t currentTimeUs) {
UNUSED(currentTimeUs);
// getTaskDeltaTime() returns delta time frozen at the moment of entering the scheduler. currentTime is frozen at the very same point.
// To make busy-waiting timeout work we need to account for time spent within busy-waiting loop
const timeDelta_t currentDeltaTime = getTaskDeltaTime(TASK_SELF);
/* Update actual hardware readings */
gyroUpdate();
#ifdef USE_OPFLOW
if (sensors(SENSOR_OPFLOW)) {
opflowGyroUpdateCallback(currentDeltaTime);
}
#endif
}
static float calculateThrottleTiltCompensationFactor(uint8_t throttleTiltCompensationStrength)
{
if (throttleTiltCompensationStrength) {
float tiltCompFactor = 1.0f / constrainf(calculateCosTiltAngle(), 0.6f, 1.0f); // max tilt about 50 deg
return 1.0f + (tiltCompFactor - 1.0f) * (throttleTiltCompensationStrength / 100.f);
} else {
return 1.0f;
}
}
void taskMainPidLoop(timeUs_t currentTimeUs)
{
cycleTime = getTaskDeltaTime(TASK_SELF);
dT = (float)cycleTime * 0.000001f;
if (ARMING_FLAG(ARMED) && (!STATE(FIXED_WING_LEGACY) || !isNavLaunchEnabled() || (isNavLaunchEnabled() && fixedWingLaunchStatus() >= FW_LAUNCH_DETECTED))) {
flightTime += cycleTime;
armTime += cycleTime;
updateAccExtremes();
}
if (!ARMING_FLAG(ARMED)) {
armTime = 0;
}
gyroFilter();
imuUpdateAccelerometer();
imuUpdateAttitude(currentTimeUs);
annexCode(dT);
if (rxConfig()->rcFilterFrequency) {
rcInterpolationApply(isRXDataNew);
}
if (isRXDataNew) {
updateWaypointsAndNavigationMode();
}
isRXDataNew = false;
updatePositionEstimator();
applyWaypointNavigationAndAltitudeHold();
// Apply throttle tilt compensation
if (!STATE(FIXED_WING_LEGACY)) {
int16_t thrTiltCompStrength = 0;
if (navigationRequiresThrottleTiltCompensation()) {
thrTiltCompStrength = 100;
}
else if (systemConfig()->throttle_tilt_compensation_strength && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
thrTiltCompStrength = systemConfig()->throttle_tilt_compensation_strength;
}
if (thrTiltCompStrength) {
rcCommand[THROTTLE] = constrain(getThrottleIdleValue()
+ (rcCommand[THROTTLE] - getThrottleIdleValue()) * calculateThrottleTiltCompensationFactor(thrTiltCompStrength),
getThrottleIdleValue(),
motorConfig()->maxthrottle);
}
}
else {
// FIXME: throttle pitch comp for FW
}
#ifdef USE_POWER_LIMITS
powerLimiterApply(&rcCommand[THROTTLE]);
#endif
// Calculate stabilisation
pidController(dT);
#ifdef HIL
if (hilActive) {
hilUpdateControlState();
motorControlEnable = false;
}
#endif
mixTable();
if (isMixerUsingServos()) {
servoMixer(dT);
processServoAutotrim(dT);
}
//Servos should be filtered or written only when mixer is using servos or special feaures are enabled
if (isServoOutputEnabled()) {
writeServos();
}
if (motorControlEnable) {
writeMotors();
}
#ifdef USE_BLACKBOX
if (!cliMode && feature(FEATURE_BLACKBOX)) {
blackboxUpdate(micros());
}
#endif
}
// This function is called in a busy-loop, everything called from here should do it's own
// scheduling and avoid doing heavy calculations
void taskRunRealtimeCallbacks(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
#ifdef USE_SDCARD
afatfs_poll();
#endif
#ifdef USE_DSHOT
pwmCompleteMotorUpdate();
#endif
#ifdef USE_ESC_SENSOR
escSensorUpdate(currentTimeUs);
#endif
}
bool taskUpdateRxCheck(timeUs_t currentTimeUs, timeDelta_t currentDeltaTime)
{
UNUSED(currentDeltaTime);
return rxUpdateCheck(currentTimeUs, currentDeltaTime);
}
void taskUpdateRxMain(timeUs_t currentTimeUs)
{
processRx(currentTimeUs);
isRXDataNew = true;
}
// returns seconds
float getFlightTime()
{
return US2S(flightTime);
}
float getArmTime()
{
return US2S(armTime);
}
void fcReboot(bool bootLoader)
{
// stop motor/servo outputs
stopMotors();
stopPwmAllMotors();
// extra delay before reboot to give ESCs chance to reset
delay(1000);
if (bootLoader) {
systemResetToBootloader();
}
else {
systemReset();
}
while (true);
}