mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-20 19:05:05 +03:00
py: cam: Move conversion funcs to helpers.py
Move conversion functions from cam_qt.py to helpers.py to clean up the code and so that they can be used from other cam renderers. Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
parent
679b73640a
commit
0971ea7c8b
2 changed files with 161 additions and 155 deletions
|
@ -1,16 +1,13 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
|
||||
#
|
||||
# Debayering code from PiCamera documentation
|
||||
|
||||
from helpers import mfb_to_rgb
|
||||
from io import BytesIO
|
||||
from numpy.lib.stride_tricks import as_strided
|
||||
from PIL import Image
|
||||
from PIL.ImageQt import ImageQt
|
||||
from PyQt5 import QtCore, QtGui, QtWidgets
|
||||
import libcamera as libcam
|
||||
import libcamera.utils
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
|
||||
|
@ -21,157 +18,6 @@ def rgb_to_pix(rgb):
|
|||
return pix
|
||||
|
||||
|
||||
def demosaic(data, r0, g0, g1, b0):
|
||||
# Separate the components from the Bayer data to RGB planes
|
||||
|
||||
rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
|
||||
rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2] # Red
|
||||
rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2] # Green
|
||||
rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2] # Green
|
||||
rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2] # Blue
|
||||
|
||||
# Below we present a fairly naive de-mosaic method that simply
|
||||
# calculates the weighted average of a pixel based on the pixels
|
||||
# surrounding it. The weighting is provided by a byte representation of
|
||||
# the Bayer filter which we construct first:
|
||||
|
||||
bayer = np.zeros(rgb.shape, dtype=np.uint8)
|
||||
bayer[r0[1]::2, r0[0]::2, 0] = 1 # Red
|
||||
bayer[g0[1]::2, g0[0]::2, 1] = 1 # Green
|
||||
bayer[g1[1]::2, g1[0]::2, 1] = 1 # Green
|
||||
bayer[b0[1]::2, b0[0]::2, 2] = 1 # Blue
|
||||
|
||||
# Allocate an array to hold our output with the same shape as the input
|
||||
# data. After this we define the size of window that will be used to
|
||||
# calculate each weighted average (3x3). Then we pad out the rgb and
|
||||
# bayer arrays, adding blank pixels at their edges to compensate for the
|
||||
# size of the window when calculating averages for edge pixels.
|
||||
|
||||
output = np.empty(rgb.shape, dtype=rgb.dtype)
|
||||
window = (3, 3)
|
||||
borders = (window[0] - 1, window[1] - 1)
|
||||
border = (borders[0] // 2, borders[1] // 2)
|
||||
|
||||
rgb = np.pad(rgb, [
|
||||
(border[0], border[0]),
|
||||
(border[1], border[1]),
|
||||
(0, 0),
|
||||
], 'constant')
|
||||
bayer = np.pad(bayer, [
|
||||
(border[0], border[0]),
|
||||
(border[1], border[1]),
|
||||
(0, 0),
|
||||
], 'constant')
|
||||
|
||||
# For each plane in the RGB data, we use a nifty numpy trick
|
||||
# (as_strided) to construct a view over the plane of 3x3 matrices. We do
|
||||
# the same for the bayer array, then use Einstein summation on each
|
||||
# (np.sum is simpler, but copies the data so it's slower), and divide
|
||||
# the results to get our weighted average:
|
||||
|
||||
for plane in range(3):
|
||||
p = rgb[..., plane]
|
||||
b = bayer[..., plane]
|
||||
pview = as_strided(p, shape=(
|
||||
p.shape[0] - borders[0],
|
||||
p.shape[1] - borders[1]) + window, strides=p.strides * 2)
|
||||
bview = as_strided(b, shape=(
|
||||
b.shape[0] - borders[0],
|
||||
b.shape[1] - borders[1]) + window, strides=b.strides * 2)
|
||||
psum = np.einsum('ijkl->ij', pview)
|
||||
bsum = np.einsum('ijkl->ij', bview)
|
||||
output[..., plane] = psum // bsum
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def to_rgb(fmt, size, data):
|
||||
w = size.width
|
||||
h = size.height
|
||||
|
||||
if fmt == libcam.formats.YUYV:
|
||||
# YUV422
|
||||
yuyv = data.reshape((h, w // 2 * 4))
|
||||
|
||||
# YUV444
|
||||
yuv = np.empty((h, w, 3), dtype=np.uint8)
|
||||
yuv[:, :, 0] = yuyv[:, 0::2] # Y
|
||||
yuv[:, :, 1] = yuyv[:, 1::4].repeat(2, axis=1) # U
|
||||
yuv[:, :, 2] = yuyv[:, 3::4].repeat(2, axis=1) # V
|
||||
|
||||
m = np.array([
|
||||
[1.0, 1.0, 1.0],
|
||||
[-0.000007154783816076815, -0.3441331386566162, 1.7720025777816772],
|
||||
[1.4019975662231445, -0.7141380310058594, 0.00001542569043522235]
|
||||
])
|
||||
|
||||
rgb = np.dot(yuv, m)
|
||||
rgb[:, :, 0] -= 179.45477266423404
|
||||
rgb[:, :, 1] += 135.45870971679688
|
||||
rgb[:, :, 2] -= 226.8183044444304
|
||||
rgb = rgb.astype(np.uint8)
|
||||
|
||||
elif fmt == libcam.formats.RGB888:
|
||||
rgb = data.reshape((h, w, 3))
|
||||
rgb[:, :, [0, 1, 2]] = rgb[:, :, [2, 1, 0]]
|
||||
|
||||
elif fmt == libcam.formats.BGR888:
|
||||
rgb = data.reshape((h, w, 3))
|
||||
|
||||
elif fmt in [libcam.formats.ARGB8888, libcam.formats.XRGB8888]:
|
||||
rgb = data.reshape((h, w, 4))
|
||||
rgb = np.flip(rgb, axis=2)
|
||||
# drop alpha component
|
||||
rgb = np.delete(rgb, np.s_[0::4], axis=2)
|
||||
|
||||
elif str(fmt).startswith('S'):
|
||||
fmt = str(fmt)
|
||||
bayer_pattern = fmt[1:5]
|
||||
bitspp = int(fmt[5:])
|
||||
|
||||
# \todo shifting leaves the lowest bits 0
|
||||
if bitspp == 8:
|
||||
data = data.reshape((h, w))
|
||||
data = data.astype(np.uint16) << 8
|
||||
elif bitspp in [10, 12]:
|
||||
data = data.view(np.uint16)
|
||||
data = data.reshape((h, w))
|
||||
data = data << (16 - bitspp)
|
||||
else:
|
||||
raise Exception('Bad bitspp:' + str(bitspp))
|
||||
|
||||
idx = bayer_pattern.find('R')
|
||||
assert(idx != -1)
|
||||
r0 = (idx % 2, idx // 2)
|
||||
|
||||
idx = bayer_pattern.find('G')
|
||||
assert(idx != -1)
|
||||
g0 = (idx % 2, idx // 2)
|
||||
|
||||
idx = bayer_pattern.find('G', idx + 1)
|
||||
assert(idx != -1)
|
||||
g1 = (idx % 2, idx // 2)
|
||||
|
||||
idx = bayer_pattern.find('B')
|
||||
assert(idx != -1)
|
||||
b0 = (idx % 2, idx // 2)
|
||||
|
||||
rgb = demosaic(data, r0, g0, g1, b0)
|
||||
rgb = (rgb >> 8).astype(np.uint8)
|
||||
|
||||
else:
|
||||
rgb = None
|
||||
|
||||
return rgb
|
||||
|
||||
|
||||
# A naive format conversion to 24-bit RGB
|
||||
def mfb_to_rgb(mfb, cfg):
|
||||
data = np.array(mfb.planes[0], dtype=np.uint8)
|
||||
rgb = to_rgb(cfg.pixel_format, cfg.size, data)
|
||||
return rgb
|
||||
|
||||
|
||||
class QtRenderer:
|
||||
def __init__(self, state):
|
||||
self.state = state
|
||||
|
|
160
src/py/cam/helpers.py
Normal file
160
src/py/cam/helpers.py
Normal file
|
@ -0,0 +1,160 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
|
||||
#
|
||||
# Debayering code from PiCamera documentation
|
||||
|
||||
from numpy.lib.stride_tricks import as_strided
|
||||
import libcamera as libcam
|
||||
import libcamera.utils
|
||||
import numpy as np
|
||||
|
||||
|
||||
def demosaic(data, r0, g0, g1, b0):
|
||||
# Separate the components from the Bayer data to RGB planes
|
||||
|
||||
rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
|
||||
rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2] # Red
|
||||
rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2] # Green
|
||||
rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2] # Green
|
||||
rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2] # Blue
|
||||
|
||||
# Below we present a fairly naive de-mosaic method that simply
|
||||
# calculates the weighted average of a pixel based on the pixels
|
||||
# surrounding it. The weighting is provided by a byte representation of
|
||||
# the Bayer filter which we construct first:
|
||||
|
||||
bayer = np.zeros(rgb.shape, dtype=np.uint8)
|
||||
bayer[r0[1]::2, r0[0]::2, 0] = 1 # Red
|
||||
bayer[g0[1]::2, g0[0]::2, 1] = 1 # Green
|
||||
bayer[g1[1]::2, g1[0]::2, 1] = 1 # Green
|
||||
bayer[b0[1]::2, b0[0]::2, 2] = 1 # Blue
|
||||
|
||||
# Allocate an array to hold our output with the same shape as the input
|
||||
# data. After this we define the size of window that will be used to
|
||||
# calculate each weighted average (3x3). Then we pad out the rgb and
|
||||
# bayer arrays, adding blank pixels at their edges to compensate for the
|
||||
# size of the window when calculating averages for edge pixels.
|
||||
|
||||
output = np.empty(rgb.shape, dtype=rgb.dtype)
|
||||
window = (3, 3)
|
||||
borders = (window[0] - 1, window[1] - 1)
|
||||
border = (borders[0] // 2, borders[1] // 2)
|
||||
|
||||
rgb = np.pad(rgb, [
|
||||
(border[0], border[0]),
|
||||
(border[1], border[1]),
|
||||
(0, 0),
|
||||
], 'constant')
|
||||
bayer = np.pad(bayer, [
|
||||
(border[0], border[0]),
|
||||
(border[1], border[1]),
|
||||
(0, 0),
|
||||
], 'constant')
|
||||
|
||||
# For each plane in the RGB data, we use a nifty numpy trick
|
||||
# (as_strided) to construct a view over the plane of 3x3 matrices. We do
|
||||
# the same for the bayer array, then use Einstein summation on each
|
||||
# (np.sum is simpler, but copies the data so it's slower), and divide
|
||||
# the results to get our weighted average:
|
||||
|
||||
for plane in range(3):
|
||||
p = rgb[..., plane]
|
||||
b = bayer[..., plane]
|
||||
pview = as_strided(p, shape=(
|
||||
p.shape[0] - borders[0],
|
||||
p.shape[1] - borders[1]) + window, strides=p.strides * 2)
|
||||
bview = as_strided(b, shape=(
|
||||
b.shape[0] - borders[0],
|
||||
b.shape[1] - borders[1]) + window, strides=b.strides * 2)
|
||||
psum = np.einsum('ijkl->ij', pview)
|
||||
bsum = np.einsum('ijkl->ij', bview)
|
||||
output[..., plane] = psum // bsum
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def to_rgb(fmt, size, data):
|
||||
w = size.width
|
||||
h = size.height
|
||||
|
||||
if fmt == libcam.formats.YUYV:
|
||||
# YUV422
|
||||
yuyv = data.reshape((h, w // 2 * 4))
|
||||
|
||||
# YUV444
|
||||
yuv = np.empty((h, w, 3), dtype=np.uint8)
|
||||
yuv[:, :, 0] = yuyv[:, 0::2] # Y
|
||||
yuv[:, :, 1] = yuyv[:, 1::4].repeat(2, axis=1) # U
|
||||
yuv[:, :, 2] = yuyv[:, 3::4].repeat(2, axis=1) # V
|
||||
|
||||
m = np.array([
|
||||
[1.0, 1.0, 1.0],
|
||||
[-0.000007154783816076815, -0.3441331386566162, 1.7720025777816772],
|
||||
[1.4019975662231445, -0.7141380310058594, 0.00001542569043522235]
|
||||
])
|
||||
|
||||
rgb = np.dot(yuv, m)
|
||||
rgb[:, :, 0] -= 179.45477266423404
|
||||
rgb[:, :, 1] += 135.45870971679688
|
||||
rgb[:, :, 2] -= 226.8183044444304
|
||||
rgb = rgb.astype(np.uint8)
|
||||
|
||||
elif fmt == libcam.formats.RGB888:
|
||||
rgb = data.reshape((h, w, 3))
|
||||
rgb[:, :, [0, 1, 2]] = rgb[:, :, [2, 1, 0]]
|
||||
|
||||
elif fmt == libcam.formats.BGR888:
|
||||
rgb = data.reshape((h, w, 3))
|
||||
|
||||
elif fmt in [libcam.formats.ARGB8888, libcam.formats.XRGB8888]:
|
||||
rgb = data.reshape((h, w, 4))
|
||||
rgb = np.flip(rgb, axis=2)
|
||||
# drop alpha component
|
||||
rgb = np.delete(rgb, np.s_[0::4], axis=2)
|
||||
|
||||
elif str(fmt).startswith('S'):
|
||||
fmt = str(fmt)
|
||||
bayer_pattern = fmt[1:5]
|
||||
bitspp = int(fmt[5:])
|
||||
|
||||
# \todo shifting leaves the lowest bits 0
|
||||
if bitspp == 8:
|
||||
data = data.reshape((h, w))
|
||||
data = data.astype(np.uint16) << 8
|
||||
elif bitspp in [10, 12]:
|
||||
data = data.view(np.uint16)
|
||||
data = data.reshape((h, w))
|
||||
data = data << (16 - bitspp)
|
||||
else:
|
||||
raise Exception('Bad bitspp:' + str(bitspp))
|
||||
|
||||
idx = bayer_pattern.find('R')
|
||||
assert(idx != -1)
|
||||
r0 = (idx % 2, idx // 2)
|
||||
|
||||
idx = bayer_pattern.find('G')
|
||||
assert(idx != -1)
|
||||
g0 = (idx % 2, idx // 2)
|
||||
|
||||
idx = bayer_pattern.find('G', idx + 1)
|
||||
assert(idx != -1)
|
||||
g1 = (idx % 2, idx // 2)
|
||||
|
||||
idx = bayer_pattern.find('B')
|
||||
assert(idx != -1)
|
||||
b0 = (idx % 2, idx // 2)
|
||||
|
||||
rgb = demosaic(data, r0, g0, g1, b0)
|
||||
rgb = (rgb >> 8).astype(np.uint8)
|
||||
|
||||
else:
|
||||
rgb = None
|
||||
|
||||
return rgb
|
||||
|
||||
|
||||
# A naive format conversion to 24-bit RGB
|
||||
def mfb_to_rgb(mfb: libcamera.utils.MappedFrameBuffer, cfg: libcam.StreamConfiguration):
|
||||
data = np.array(mfb.planes[0], dtype=np.uint8)
|
||||
rgb = to_rgb(cfg.pixel_format, cfg.size, data)
|
||||
return rgb
|
Loading…
Add table
Add a link
Reference in a new issue