libcamera: ipa: Raspberry Pi IPA

Initial implementation of the Raspberry Pi (BCM2835) libcamera IPA and
associated libraries.

All code is licensed under the BSD-2-Clause terms.
Copyright (c) 2019-2020 Raspberry Pi Trading Ltd.

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Naushir Patuck 2020-05-03 16:48:42 +01:00 committed by Laurent Pinchart
parent 740fd1b62f
commit 0db2c8dc75
69 changed files with 8242 additions and 0 deletions

View file

@ -0,0 +1,28 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* agc_algorithm.hpp - AGC/AEC control algorithm interface
*/
#pragma once
#include "algorithm.hpp"
namespace RPi {
class AgcAlgorithm : public Algorithm
{
public:
AgcAlgorithm(Controller *controller) : Algorithm(controller) {}
// An AGC algorithm must provide the following:
virtual void SetEv(double ev) = 0;
virtual void SetFlickerPeriod(double flicker_period) = 0;
virtual void SetFixedShutter(double fixed_shutter) = 0; // microseconds
virtual void SetFixedAnalogueGain(double fixed_analogue_gain) = 0;
virtual void SetMeteringMode(std::string const &metering_mode_name) = 0;
virtual void SetExposureMode(std::string const &exposure_mode_name) = 0;
virtual void
SetConstraintMode(std::string const &contraint_mode_name) = 0;
};
} // namespace RPi

View file

@ -0,0 +1,39 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* agc_status.h - AGC/AEC control algorithm status
*/
#pragma once
// The AGC algorithm should post the following structure into the image's
// "agc.status" metadata.
#ifdef __cplusplus
extern "C" {
#endif
// Note: total_exposure_value will be reported as zero until the algorithm has
// seen statistics and calculated meaningful values. The contents should be
// ignored until then.
struct AgcStatus {
double total_exposure_value; // value for all exposure and gain for this image
double target_exposure_value; // (unfiltered) target total exposure AGC is aiming for
double shutter_time;
double analogue_gain;
char exposure_mode[32];
char constraint_mode[32];
char metering_mode[32];
double ev;
double flicker_period;
int floating_region_enable;
double fixed_shutter;
double fixed_analogue_gain;
double digital_gain;
int locked;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,47 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* algorithm.cpp - ISP control algorithms
*/
#include "algorithm.hpp"
using namespace RPi;
void Algorithm::Read(boost::property_tree::ptree const &params)
{
(void)params;
}
void Algorithm::Initialise() {}
void Algorithm::SwitchMode(CameraMode const &camera_mode)
{
(void)camera_mode;
}
void Algorithm::Prepare(Metadata *image_metadata)
{
(void)image_metadata;
}
void Algorithm::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
(void)stats;
(void)image_metadata;
}
// For registering algorithms with the system:
static std::map<std::string, AlgoCreateFunc> algorithms;
std::map<std::string, AlgoCreateFunc> const &RPi::GetAlgorithms()
{
return algorithms;
}
RegisterAlgorithm::RegisterAlgorithm(char const *name,
AlgoCreateFunc create_func)
{
algorithms[std::string(name)] = create_func;
}

View file

@ -0,0 +1,62 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* algorithm.hpp - ISP control algorithm interface
*/
#pragma once
// All algorithms should be derived from this class and made available to the
// Controller.
#include <string>
#include <memory>
#include <map>
#include <atomic>
#include "logging.hpp"
#include "controller.hpp"
#include <boost/property_tree/ptree.hpp>
namespace RPi {
// This defines the basic interface for all control algorithms.
class Algorithm
{
public:
Algorithm(Controller *controller)
: controller_(controller), paused_(false)
{
}
virtual ~Algorithm() {}
virtual char const *Name() const = 0;
virtual bool IsPaused() const { return paused_; }
virtual void Pause() { paused_ = true; }
virtual void Resume() { paused_ = false; }
virtual void Read(boost::property_tree::ptree const &params);
virtual void Initialise();
virtual void SwitchMode(CameraMode const &camera_mode);
virtual void Prepare(Metadata *image_metadata);
virtual void Process(StatisticsPtr &stats, Metadata *image_metadata);
Metadata &GetGlobalMetadata() const
{
return controller_->GetGlobalMetadata();
}
private:
Controller *controller_;
std::atomic<bool> paused_;
};
// This code is for automatic registration of Front End algorithms with the
// system.
typedef Algorithm *(*AlgoCreateFunc)(Controller *controller);
struct RegisterAlgorithm {
RegisterAlgorithm(char const *name, AlgoCreateFunc create_func);
};
std::map<std::string, AlgoCreateFunc> const &GetAlgorithms();
} // namespace RPi

View file

@ -0,0 +1,27 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* alsc_status.h - ALSC (auto lens shading correction) control algorithm status
*/
#pragma once
// The ALSC algorithm should post the following structure into the image's
// "alsc.status" metadata.
#ifdef __cplusplus
extern "C" {
#endif
#define ALSC_CELLS_X 16
#define ALSC_CELLS_Y 12
struct AlscStatus {
double r[ALSC_CELLS_Y][ALSC_CELLS_X];
double g[ALSC_CELLS_Y][ALSC_CELLS_X];
double b[ALSC_CELLS_Y][ALSC_CELLS_X];
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* awb_algorithm.hpp - AWB control algorithm interface
*/
#pragma once
#include "algorithm.hpp"
namespace RPi {
class AwbAlgorithm : public Algorithm
{
public:
AwbAlgorithm(Controller *controller) : Algorithm(controller) {}
// An AWB algorithm must provide the following:
virtual void SetMode(std::string const &mode_name) = 0;
virtual void SetManualGains(double manual_r, double manual_b) = 0;
};
} // namespace RPi

View file

@ -0,0 +1,26 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* awb_status.h - AWB control algorithm status
*/
#pragma once
// The AWB algorithm places its results into both the image and global metadata,
// under the tag "awb.status".
#ifdef __cplusplus
extern "C" {
#endif
struct AwbStatus {
char mode[32];
double temperature_K;
double gain_r;
double gain_g;
double gain_b;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,23 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* black_level_status.h - black level control algorithm status
*/
#pragma once
// The "black level" algorithm stores the black levels to use.
#ifdef __cplusplus
extern "C" {
#endif
struct BlackLevelStatus {
uint16_t black_level_r; // out of 16 bits
uint16_t black_level_g;
uint16_t black_level_b;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,40 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019-2020, Raspberry Pi (Trading) Limited
*
* camera_mode.h - description of a particular operating mode of a sensor
*/
#pragma once
// Description of a "camera mode", holding enough information for control
// algorithms to adapt their behaviour to the different modes of the camera,
// including binning, scaling, cropping etc.
#ifdef __cplusplus
extern "C" {
#endif
#define CAMERA_MODE_NAME_LEN 32
struct CameraMode {
// bit depth of the raw camera output
uint32_t bitdepth;
// size in pixels of frames in this mode
uint16_t width, height;
// size of full resolution uncropped frame ("sensor frame")
uint16_t sensor_width, sensor_height;
// binning factor (1 = no binning, 2 = 2-pixel binning etc.)
uint8_t bin_x, bin_y;
// location of top left pixel in the sensor frame
uint16_t crop_x, crop_y;
// scaling factor (so if uncropped, width*scale_x is sensor_width)
double scale_x, scale_y;
// scaling of the noise compared to the native sensor mode
double noise_factor;
// line time in nanoseconds
double line_length;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,21 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* ccm_algorithm.hpp - CCM (colour correction matrix) control algorithm interface
*/
#pragma once
#include "algorithm.hpp"
namespace RPi {
class CcmAlgorithm : public Algorithm
{
public:
CcmAlgorithm(Controller *controller) : Algorithm(controller) {}
// A CCM algorithm must provide the following:
virtual void SetSaturation(double saturation) = 0;
};
} // namespace RPi

View file

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* ccm_status.h - CCM (colour correction matrix) control algorithm status
*/
#pragma once
// The "ccm" algorithm generates an appropriate colour matrix.
#ifdef __cplusplus
extern "C" {
#endif
struct CcmStatus {
double matrix[9];
double saturation;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* contrast_algorithm.hpp - contrast (gamma) control algorithm interface
*/
#pragma once
#include "algorithm.hpp"
namespace RPi {
class ContrastAlgorithm : public Algorithm
{
public:
ContrastAlgorithm(Controller *controller) : Algorithm(controller) {}
// A contrast algorithm must provide the following:
virtual void SetBrightness(double brightness) = 0;
virtual void SetContrast(double contrast) = 0;
};
} // namespace RPi

View file

@ -0,0 +1,31 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* contrast_status.h - contrast (gamma) control algorithm status
*/
#pragma once
// The "contrast" algorithm creates a gamma curve, optionally doing a little bit
// of contrast stretching based on the AGC histogram.
#ifdef __cplusplus
extern "C" {
#endif
#define CONTRAST_NUM_POINTS 33
struct ContrastPoint {
uint16_t x;
uint16_t y;
};
struct ContrastStatus {
struct ContrastPoint points[CONTRAST_NUM_POINTS];
double brightness;
double contrast;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,109 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* controller.cpp - ISP controller
*/
#include "algorithm.hpp"
#include "controller.hpp"
#include <boost/property_tree/json_parser.hpp>
#include <boost/property_tree/ptree.hpp>
using namespace RPi;
Controller::Controller()
: switch_mode_called_(false) {}
Controller::Controller(char const *json_filename)
: switch_mode_called_(false)
{
Read(json_filename);
Initialise();
}
Controller::~Controller() {}
void Controller::Read(char const *filename)
{
RPI_LOG("Controller starting");
boost::property_tree::ptree root;
boost::property_tree::read_json(filename, root);
for (auto const &key_and_value : root) {
Algorithm *algo = CreateAlgorithm(key_and_value.first.c_str());
if (algo) {
algo->Read(key_and_value.second);
algorithms_.push_back(AlgorithmPtr(algo));
} else
RPI_LOG("WARNING: No algorithm found for \""
<< key_and_value.first << "\"");
}
RPI_LOG("Controller finished");
}
Algorithm *Controller::CreateAlgorithm(char const *name)
{
auto it = GetAlgorithms().find(std::string(name));
return it != GetAlgorithms().end() ? (*it->second)(this) : nullptr;
}
void Controller::Initialise()
{
RPI_LOG("Controller starting");
for (auto &algo : algorithms_)
algo->Initialise();
RPI_LOG("Controller finished");
}
void Controller::SwitchMode(CameraMode const &camera_mode)
{
RPI_LOG("Controller starting");
for (auto &algo : algorithms_)
algo->SwitchMode(camera_mode);
switch_mode_called_ = true;
RPI_LOG("Controller finished");
}
void Controller::Prepare(Metadata *image_metadata)
{
RPI_LOG("Controller::Prepare starting");
assert(switch_mode_called_);
for (auto &algo : algorithms_)
if (!algo->IsPaused())
algo->Prepare(image_metadata);
RPI_LOG("Controller::Prepare finished");
}
void Controller::Process(StatisticsPtr stats, Metadata *image_metadata)
{
RPI_LOG("Controller::Process starting");
assert(switch_mode_called_);
for (auto &algo : algorithms_)
if (!algo->IsPaused())
algo->Process(stats, image_metadata);
RPI_LOG("Controller::Process finished");
}
Metadata &Controller::GetGlobalMetadata()
{
return global_metadata_;
}
Algorithm *Controller::GetAlgorithm(std::string const &name) const
{
// The passed name must be the entire algorithm name, or must match the
// last part of it with a period (.) just before.
size_t name_len = name.length();
for (auto &algo : algorithms_) {
char const *algo_name = algo->Name();
size_t algo_name_len = strlen(algo_name);
if (algo_name_len >= name_len &&
strcasecmp(name.c_str(),
algo_name + algo_name_len - name_len) == 0 &&
(name_len == algo_name_len ||
algo_name[algo_name_len - name_len - 1] == '.'))
return algo.get();
}
return nullptr;
}

View file

@ -0,0 +1,54 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* controller.hpp - ISP controller interface
*/
#pragma once
// The Controller is simply a container for a collecting together a number of
// "control algorithms" (such as AWB etc.) and for running them all in a
// convenient manner.
#include <vector>
#include <string>
#include <linux/bcm2835-isp.h>
#include "camera_mode.h"
#include "device_status.h"
#include "metadata.hpp"
namespace RPi {
class Algorithm;
typedef std::unique_ptr<Algorithm> AlgorithmPtr;
typedef std::shared_ptr<bcm2835_isp_stats> StatisticsPtr;
// The Controller holds a pointer to some global_metadata, which is how
// different controllers and control algorithms within them can exchange
// information. The Prepare method returns a pointer to metadata for this
// specific image, and which should be passed on to the Process method.
class Controller
{
public:
Controller();
Controller(char const *json_filename);
~Controller();
Algorithm *CreateAlgorithm(char const *name);
void Read(char const *filename);
void Initialise();
void SwitchMode(CameraMode const &camera_mode);
void Prepare(Metadata *image_metadata);
void Process(StatisticsPtr stats, Metadata *image_metadata);
Metadata &GetGlobalMetadata();
Algorithm *GetAlgorithm(std::string const &name) const;
protected:
Metadata global_metadata_;
std::vector<AlgorithmPtr> algorithms_;
bool switch_mode_called_;
};
} // namespace RPi

View file

@ -0,0 +1,30 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* device_status.h - device (image sensor) status
*/
#pragma once
// Definition of "device metadata" which stores things like shutter time and
// analogue gain that downstream control algorithms will want to know.
#ifdef __cplusplus
extern "C" {
#endif
struct DeviceStatus {
// time shutter is open, in microseconds
double shutter_speed;
double analogue_gain;
// 1.0/distance-in-metres, or 0 if unknown
double lens_position;
// 1/f so that brightness quadruples when this doubles, or 0 if unknown
double aperture;
// proportional to brightness with 0 = no flash, 1 = maximum flash
double flash_intensity;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,21 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* dpc_status.h - DPC (defective pixel correction) control algorithm status
*/
#pragma once
// The "DPC" algorithm sets defective pixel correction strength.
#ifdef __cplusplus
extern "C" {
#endif
struct DpcStatus {
int strength; // 0 = "off", 1 = "normal", 2 = "strong"
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* geq_status.h - GEQ (green equalisation) control algorithm status
*/
#pragma once
// The "GEQ" algorithm calculates the green equalisation thresholds
#ifdef __cplusplus
extern "C" {
#endif
struct GeqStatus {
uint16_t offset;
double slope;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,64 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* histogram.cpp - histogram calculations
*/
#include <math.h>
#include <stdio.h>
#include "histogram.hpp"
using namespace RPi;
uint64_t Histogram::CumulativeFreq(double bin) const
{
if (bin <= 0)
return 0;
else if (bin >= Bins())
return Total();
int b = (int)bin;
return cumulative_[b] +
(bin - b) * (cumulative_[b + 1] - cumulative_[b]);
}
double Histogram::Quantile(double q, int first, int last) const
{
if (first == -1)
first = 0;
if (last == -1)
last = cumulative_.size() - 2;
assert(first <= last);
uint64_t items = q * Total();
while (first < last) // binary search to find the right bin
{
int middle = (first + last) / 2;
if (cumulative_[middle + 1] > items)
last = middle; // between first and middle
else
first = middle + 1; // after middle
}
assert(items >= cumulative_[first] && items <= cumulative_[last + 1]);
double frac = cumulative_[first + 1] == cumulative_[first] ? 0
: (double)(items - cumulative_[first]) /
(cumulative_[first + 1] - cumulative_[first]);
return first + frac;
}
double Histogram::InterQuantileMean(double q_lo, double q_hi) const
{
assert(q_hi > q_lo);
double p_lo = Quantile(q_lo);
double p_hi = Quantile(q_hi, (int)p_lo);
double sum_bin_freq = 0, cumul_freq = 0;
for (double p_next = floor(p_lo) + 1.0; p_next <= ceil(p_hi);
p_lo = p_next, p_next += 1.0) {
int bin = floor(p_lo);
double freq = (cumulative_[bin + 1] - cumulative_[bin]) *
(std::min(p_next, p_hi) - p_lo);
sum_bin_freq += bin * freq;
cumul_freq += freq;
}
// add 0.5 to give an average for bin mid-points
return sum_bin_freq / cumul_freq + 0.5;
}

View file

@ -0,0 +1,44 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* histogram.hpp - histogram calculation interface
*/
#pragma once
#include <stdint.h>
#include <vector>
#include <cassert>
// A simple histogram class, for use in particular to find "quantiles" and
// averages between "quantiles".
namespace RPi {
class Histogram
{
public:
template<typename T> Histogram(T *histogram, int num)
{
assert(num);
cumulative_.reserve(num + 1);
cumulative_.push_back(0);
for (int i = 0; i < num; i++)
cumulative_.push_back(cumulative_.back() +
histogram[i]);
}
uint32_t Bins() const { return cumulative_.size() - 1; }
uint64_t Total() const { return cumulative_[cumulative_.size() - 1]; }
// Cumulative frequency up to a (fractional) point in a bin.
uint64_t CumulativeFreq(double bin) const;
// Return the (fractional) bin of the point q (0 <= q <= 1) through the
// histogram. Optionally provide limits to help.
double Quantile(double q, int first = -1, int last = -1) const;
// Return the average histogram bin value between the two quantiles.
double InterQuantileMean(double q_lo, double q_hi) const;
private:
std::vector<uint64_t> cumulative_;
};
} // namespace RPi

View file

@ -0,0 +1,30 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019-2020, Raspberry Pi (Trading) Limited
*
* logging.hpp - logging macros
*/
#pragma once
#include <iostream>
#ifndef RPI_LOGGING_ENABLE
#define RPI_LOGGING_ENABLE 0
#endif
#ifndef RPI_WARNING_ENABLE
#define RPI_WARNING_ENABLE 1
#endif
#define RPI_LOG(stuff) \
do { \
if (RPI_LOGGING_ENABLE) \
std::cout << __FUNCTION__ << ": " << stuff << "\n"; \
} while (0)
#define RPI_WARN(stuff) \
do { \
if (RPI_WARNING_ENABLE) \
std::cout << __FUNCTION__ << " ***WARNING*** " \
<< stuff << "\n"; \
} while (0)

View file

@ -0,0 +1,29 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* lux_status.h - Lux control algorithm status
*/
#pragma once
// The "lux" algorithm looks at the (AGC) histogram statistics of the frame and
// estimates the current lux level of the scene. It does this by a simple ratio
// calculation comparing to a reference image that was taken in known conditions
// with known statistics and a properly measured lux level. There is a slight
// problem with aperture, in that it may be variable without the system knowing
// or being aware of it. In this case an external application may set a
// "current_aperture" value if it wishes, which would be used in place of the
// (presumably meaningless) value in the image metadata.
#ifdef __cplusplus
extern "C" {
#endif
struct LuxStatus {
double lux;
double aperture;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,77 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* metadata.hpp - general metadata class
*/
#pragma once
// A simple class for carrying arbitrary metadata, for example about an image.
#include <string>
#include <mutex>
#include <map>
#include <memory>
#include <boost/any.hpp>
namespace RPi {
class Metadata
{
public:
template<typename T> void Set(std::string const &tag, T const &value)
{
std::lock_guard<std::mutex> lock(mutex_);
data_[tag] = value;
}
template<typename T> int Get(std::string const &tag, T &value) const
{
std::lock_guard<std::mutex> lock(mutex_);
auto it = data_.find(tag);
if (it == data_.end())
return -1;
value = boost::any_cast<T>(it->second);
return 0;
}
void Clear()
{
std::lock_guard<std::mutex> lock(mutex_);
data_.clear();
}
Metadata &operator=(Metadata const &other)
{
std::lock_guard<std::mutex> lock(mutex_);
std::lock_guard<std::mutex> other_lock(other.mutex_);
data_ = other.data_;
return *this;
}
template<typename T> T *GetLocked(std::string const &tag)
{
// This allows in-place access to the Metadata contents,
// for which you should be holding the lock.
auto it = data_.find(tag);
if (it == data_.end())
return nullptr;
return boost::any_cast<T>(&it->second);
}
template<typename T>
void SetLocked(std::string const &tag, T const &value)
{
// Use this only if you're holding the lock yourself.
data_[tag] = value;
}
// Note: use of (lowercase) lock and unlock means you can create scoped
// locks with the standard lock classes.
// e.g. std::lock_guard<PisP::Metadata> lock(metadata)
void lock() { mutex_.lock(); }
void unlock() { mutex_.unlock(); }
private:
mutable std::mutex mutex_;
std::map<std::string, boost::any> data_;
};
typedef std::shared_ptr<Metadata> MetadataPtr;
} // namespace RPi

View file

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* noise_status.h - Noise control algorithm status
*/
#pragma once
// The "noise" algorithm stores an estimate of the noise profile for this image.
#ifdef __cplusplus
extern "C" {
#endif
struct NoiseStatus {
double noise_constant;
double noise_slope;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,216 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* pwl.cpp - piecewise linear functions
*/
#include <cassert>
#include <stdexcept>
#include "pwl.hpp"
using namespace RPi;
void Pwl::Read(boost::property_tree::ptree const &params)
{
for (auto it = params.begin(); it != params.end(); it++) {
double x = it->second.get_value<double>();
assert(it == params.begin() || x > points_.back().x);
it++;
double y = it->second.get_value<double>();
points_.push_back(Point(x, y));
}
assert(points_.size() >= 2);
}
void Pwl::Append(double x, double y, const double eps)
{
if (points_.empty() || points_.back().x + eps < x)
points_.push_back(Point(x, y));
}
void Pwl::Prepend(double x, double y, const double eps)
{
if (points_.empty() || points_.front().x - eps > x)
points_.insert(points_.begin(), Point(x, y));
}
Pwl::Interval Pwl::Domain() const
{
return Interval(points_[0].x, points_[points_.size() - 1].x);
}
Pwl::Interval Pwl::Range() const
{
double lo = points_[0].y, hi = lo;
for (auto &p : points_)
lo = std::min(lo, p.y), hi = std::max(hi, p.y);
return Interval(lo, hi);
}
bool Pwl::Empty() const
{
return points_.empty();
}
double Pwl::Eval(double x, int *span_ptr, bool update_span) const
{
int span = findSpan(x, span_ptr && *span_ptr != -1
? *span_ptr
: points_.size() / 2 - 1);
if (span_ptr && update_span)
*span_ptr = span;
return points_[span].y +
(x - points_[span].x) * (points_[span + 1].y - points_[span].y) /
(points_[span + 1].x - points_[span].x);
}
int Pwl::findSpan(double x, int span) const
{
// Pwls are generally small, so linear search may well be faster than
// binary, though could review this if large PWls start turning up.
int last_span = points_.size() - 2;
// some algorithms may call us with span pointing directly at the last
// control point
span = std::max(0, std::min(last_span, span));
while (span < last_span && x >= points_[span + 1].x)
span++;
while (span && x < points_[span].x)
span--;
return span;
}
Pwl::PerpType Pwl::Invert(Point const &xy, Point &perp, int &span,
const double eps) const
{
assert(span >= -1);
bool prev_off_end = false;
for (span = span + 1; span < (int)points_.size() - 1; span++) {
Point span_vec = points_[span + 1] - points_[span];
double t = ((xy - points_[span]) % span_vec) / span_vec.Len2();
if (t < -eps) // off the start of this span
{
if (span == 0) {
perp = points_[span];
return PerpType::Start;
} else if (prev_off_end) {
perp = points_[span];
return PerpType::Vertex;
}
} else if (t > 1 + eps) // off the end of this span
{
if (span == (int)points_.size() - 2) {
perp = points_[span + 1];
return PerpType::End;
}
prev_off_end = true;
} else // a true perpendicular
{
perp = points_[span] + span_vec * t;
return PerpType::Perpendicular;
}
}
return PerpType::None;
}
Pwl Pwl::Compose(Pwl const &other, const double eps) const
{
double this_x = points_[0].x, this_y = points_[0].y;
int this_span = 0, other_span = other.findSpan(this_y, 0);
Pwl result({ { this_x, other.Eval(this_y, &other_span, false) } });
while (this_span != (int)points_.size() - 1) {
double dx = points_[this_span + 1].x - points_[this_span].x,
dy = points_[this_span + 1].y - points_[this_span].y;
if (abs(dy) > eps &&
other_span + 1 < (int)other.points_.size() &&
points_[this_span + 1].y >=
other.points_[other_span + 1].x + eps) {
// next control point in result will be where this
// function's y reaches the next span in other
this_x = points_[this_span].x +
(other.points_[other_span + 1].x -
points_[this_span].y) * dx / dy;
this_y = other.points_[++other_span].x;
} else if (abs(dy) > eps && other_span > 0 &&
points_[this_span + 1].y <=
other.points_[other_span - 1].x - eps) {
// next control point in result will be where this
// function's y reaches the previous span in other
this_x = points_[this_span].x +
(other.points_[other_span + 1].x -
points_[this_span].y) * dx / dy;
this_y = other.points_[--other_span].x;
} else {
// we stay in the same span in other
this_span++;
this_x = points_[this_span].x,
this_y = points_[this_span].y;
}
result.Append(this_x, other.Eval(this_y, &other_span, false),
eps);
}
return result;
}
void Pwl::Map(std::function<void(double x, double y)> f) const
{
for (auto &pt : points_)
f(pt.x, pt.y);
}
void Pwl::Map2(Pwl const &pwl0, Pwl const &pwl1,
std::function<void(double x, double y0, double y1)> f)
{
int span0 = 0, span1 = 0;
double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
f(x, pwl0.Eval(x, &span0, false), pwl1.Eval(x, &span1, false));
while (span0 < (int)pwl0.points_.size() - 1 ||
span1 < (int)pwl1.points_.size() - 1) {
if (span0 == (int)pwl0.points_.size() - 1)
x = pwl1.points_[++span1].x;
else if (span1 == (int)pwl1.points_.size() - 1)
x = pwl0.points_[++span0].x;
else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x)
x = pwl1.points_[++span1].x;
else
x = pwl0.points_[++span0].x;
f(x, pwl0.Eval(x, &span0, false), pwl1.Eval(x, &span1, false));
}
}
Pwl Pwl::Combine(Pwl const &pwl0, Pwl const &pwl1,
std::function<double(double x, double y0, double y1)> f,
const double eps)
{
Pwl result;
Map2(pwl0, pwl1, [&](double x, double y0, double y1) {
result.Append(x, f(x, y0, y1), eps);
});
return result;
}
void Pwl::MatchDomain(Interval const &domain, bool clip, const double eps)
{
int span = 0;
Prepend(domain.start, Eval(clip ? points_[0].x : domain.start, &span),
eps);
span = points_.size() - 2;
Append(domain.end, Eval(clip ? points_.back().x : domain.end, &span),
eps);
}
Pwl &Pwl::operator*=(double d)
{
for (auto &pt : points_)
pt.y *= d;
return *this;
}
void Pwl::Debug(FILE *fp) const
{
fprintf(fp, "Pwl {\n");
for (auto &p : points_)
fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
fprintf(fp, "}\n");
}

View file

@ -0,0 +1,109 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* pwl.hpp - piecewise linear functions interface
*/
#pragma once
#include <math.h>
#include <vector>
#include <boost/property_tree/ptree.hpp>
namespace RPi {
class Pwl
{
public:
struct Interval {
Interval(double _start, double _end) : start(_start), end(_end)
{
}
double start, end;
bool Contains(double value)
{
return value >= start && value <= end;
}
double Clip(double value)
{
return value < start ? start
: (value > end ? end : value);
}
double Len() const { return end - start; }
};
struct Point {
Point() : x(0), y(0) {}
Point(double _x, double _y) : x(_x), y(_y) {}
double x, y;
Point operator-(Point const &p) const
{
return Point(x - p.x, y - p.y);
}
Point operator+(Point const &p) const
{
return Point(x + p.x, y + p.y);
}
double operator%(Point const &p) const
{
return x * p.x + y * p.y;
}
Point operator*(double f) const { return Point(x * f, y * f); }
Point operator/(double f) const { return Point(x / f, y / f); }
double Len2() const { return x * x + y * y; }
double Len() const { return sqrt(Len2()); }
};
Pwl() {}
Pwl(std::vector<Point> const &points) : points_(points) {}
void Read(boost::property_tree::ptree const &params);
void Append(double x, double y, const double eps = 1e-6);
void Prepend(double x, double y, const double eps = 1e-6);
Interval Domain() const;
Interval Range() const;
bool Empty() const;
// Evaluate Pwl, optionally supplying an initial guess for the
// "span". The "span" may be optionally be updated. If you want to know
// the "span" value but don't have an initial guess you can set it to
// -1.
double Eval(double x, int *span_ptr = nullptr,
bool update_span = true) const;
// Find perpendicular closest to xy, starting from span+1 so you can
// call it repeatedly to check for multiple closest points (set span to
// -1 on the first call). Also returns "pseudo" perpendiculars; see
// PerpType enum.
enum class PerpType {
None, // no perpendicular found
Start, // start of Pwl is closest point
End, // end of Pwl is closest point
Vertex, // vertex of Pwl is closest point
Perpendicular // true perpendicular found
};
PerpType Invert(Point const &xy, Point &perp, int &span,
const double eps = 1e-6) const;
// Compose two Pwls together, doing "this" first and "other" after.
Pwl Compose(Pwl const &other, const double eps = 1e-6) const;
// Apply function to (x,y) values at every control point.
void Map(std::function<void(double x, double y)> f) const;
// Apply function to (x, y0, y1) values wherever either Pwl has a
// control point.
static void Map2(Pwl const &pwl0, Pwl const &pwl1,
std::function<void(double x, double y0, double y1)> f);
// Combine two Pwls, meaning we create a new Pwl where the y values are
// given by running f wherever either has a knot.
static Pwl
Combine(Pwl const &pwl0, Pwl const &pwl1,
std::function<double(double x, double y0, double y1)> f,
const double eps = 1e-6);
// Make "this" match (at least) the given domain. Any extension my be
// clipped or linear.
void MatchDomain(Interval const &domain, bool clip = true,
const double eps = 1e-6);
Pwl &operator*=(double d);
void Debug(FILE *fp = stdout) const;
private:
int findSpan(double x, int span) const;
std::vector<Point> points_;
};
} // namespace RPi

View file

@ -0,0 +1,642 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* agc.cpp - AGC/AEC control algorithm
*/
#include <map>
#include "linux/bcm2835-isp.h"
#include "../awb_status.h"
#include "../device_status.h"
#include "../histogram.hpp"
#include "../logging.hpp"
#include "../lux_status.h"
#include "../metadata.hpp"
#include "agc.hpp"
using namespace RPi;
#define NAME "rpi.agc"
#define PIPELINE_BITS 13 // seems to be a 13-bit pipeline
void AgcMeteringMode::Read(boost::property_tree::ptree const &params)
{
int num = 0;
for (auto &p : params.get_child("weights")) {
if (num == AGC_STATS_SIZE)
throw std::runtime_error("AgcConfig: too many weights");
weights[num++] = p.second.get_value<double>();
}
if (num != AGC_STATS_SIZE)
throw std::runtime_error("AgcConfig: insufficient weights");
}
static std::string
read_metering_modes(std::map<std::string, AgcMeteringMode> &metering_modes,
boost::property_tree::ptree const &params)
{
std::string first;
for (auto &p : params) {
AgcMeteringMode metering_mode;
metering_mode.Read(p.second);
metering_modes[p.first] = std::move(metering_mode);
if (first.empty())
first = p.first;
}
return first;
}
static int read_double_list(std::vector<double> &list,
boost::property_tree::ptree const &params)
{
for (auto &p : params)
list.push_back(p.second.get_value<double>());
return list.size();
}
void AgcExposureMode::Read(boost::property_tree::ptree const &params)
{
int num_shutters =
read_double_list(shutter, params.get_child("shutter"));
int num_ags = read_double_list(gain, params.get_child("gain"));
if (num_shutters < 2 || num_ags < 2)
throw std::runtime_error(
"AgcConfig: must have at least two entries in exposure profile");
if (num_shutters != num_ags)
throw std::runtime_error(
"AgcConfig: expect same number of exposure and gain entries in exposure profile");
}
static std::string
read_exposure_modes(std::map<std::string, AgcExposureMode> &exposure_modes,
boost::property_tree::ptree const &params)
{
std::string first;
for (auto &p : params) {
AgcExposureMode exposure_mode;
exposure_mode.Read(p.second);
exposure_modes[p.first] = std::move(exposure_mode);
if (first.empty())
first = p.first;
}
return first;
}
void AgcConstraint::Read(boost::property_tree::ptree const &params)
{
std::string bound_string = params.get<std::string>("bound", "");
transform(bound_string.begin(), bound_string.end(),
bound_string.begin(), ::toupper);
if (bound_string != "UPPER" && bound_string != "LOWER")
throw std::runtime_error(
"AGC constraint type should be UPPER or LOWER");
bound = bound_string == "UPPER" ? Bound::UPPER : Bound::LOWER;
q_lo = params.get<double>("q_lo");
q_hi = params.get<double>("q_hi");
Y_target.Read(params.get_child("y_target"));
}
static AgcConstraintMode
read_constraint_mode(boost::property_tree::ptree const &params)
{
AgcConstraintMode mode;
for (auto &p : params) {
AgcConstraint constraint;
constraint.Read(p.second);
mode.push_back(std::move(constraint));
}
return mode;
}
static std::string read_constraint_modes(
std::map<std::string, AgcConstraintMode> &constraint_modes,
boost::property_tree::ptree const &params)
{
std::string first;
for (auto &p : params) {
constraint_modes[p.first] = read_constraint_mode(p.second);
if (first.empty())
first = p.first;
}
return first;
}
void AgcConfig::Read(boost::property_tree::ptree const &params)
{
RPI_LOG("AgcConfig");
default_metering_mode = read_metering_modes(
metering_modes, params.get_child("metering_modes"));
default_exposure_mode = read_exposure_modes(
exposure_modes, params.get_child("exposure_modes"));
default_constraint_mode = read_constraint_modes(
constraint_modes, params.get_child("constraint_modes"));
Y_target.Read(params.get_child("y_target"));
speed = params.get<double>("speed", 0.2);
startup_frames = params.get<uint16_t>("startup_frames", 10);
fast_reduce_threshold =
params.get<double>("fast_reduce_threshold", 0.4);
base_ev = params.get<double>("base_ev", 1.0);
}
Agc::Agc(Controller *controller)
: AgcAlgorithm(controller), metering_mode_(nullptr),
exposure_mode_(nullptr), constraint_mode_(nullptr),
frame_count_(0), lock_count_(0)
{
ev_ = status_.ev = 1.0;
flicker_period_ = status_.flicker_period = 0.0;
fixed_shutter_ = status_.fixed_shutter = 0;
fixed_analogue_gain_ = status_.fixed_analogue_gain = 0.0;
// set to zero initially, so we can tell it's not been calculated
status_.total_exposure_value = 0.0;
status_.target_exposure_value = 0.0;
status_.locked = false;
output_status_ = status_;
}
char const *Agc::Name() const
{
return NAME;
}
void Agc::Read(boost::property_tree::ptree const &params)
{
RPI_LOG("Agc");
config_.Read(params);
// Set the config's defaults (which are the first ones it read) as our
// current modes, until someone changes them. (they're all known to
// exist at this point)
metering_mode_name_ = config_.default_metering_mode;
metering_mode_ = &config_.metering_modes[metering_mode_name_];
exposure_mode_name_ = config_.default_exposure_mode;
exposure_mode_ = &config_.exposure_modes[exposure_mode_name_];
constraint_mode_name_ = config_.default_constraint_mode;
constraint_mode_ = &config_.constraint_modes[constraint_mode_name_];
}
void Agc::SetEv(double ev)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
ev_ = ev;
}
void Agc::SetFlickerPeriod(double flicker_period)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
flicker_period_ = flicker_period;
}
void Agc::SetFixedShutter(double fixed_shutter)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
fixed_shutter_ = fixed_shutter;
}
void Agc::SetFixedAnalogueGain(double fixed_analogue_gain)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
fixed_analogue_gain_ = fixed_analogue_gain;
}
void Agc::SetMeteringMode(std::string const &metering_mode_name)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
metering_mode_name_ = metering_mode_name;
}
void Agc::SetExposureMode(std::string const &exposure_mode_name)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
exposure_mode_name_ = exposure_mode_name;
}
void Agc::SetConstraintMode(std::string const &constraint_mode_name)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
constraint_mode_name_ = constraint_mode_name;
}
void Agc::Prepare(Metadata *image_metadata)
{
AgcStatus status;
{
std::unique_lock<std::mutex> lock(output_mutex_);
status = output_status_;
}
int lock_count = lock_count_;
lock_count_ = 0;
status.digital_gain = 1.0;
if (status_.total_exposure_value) {
// Process has run, so we have meaningful values.
DeviceStatus device_status;
if (image_metadata->Get("device.status", device_status) == 0) {
double actual_exposure = device_status.shutter_speed *
device_status.analogue_gain;
if (actual_exposure) {
status.digital_gain =
status_.total_exposure_value /
actual_exposure;
RPI_LOG("Want total exposure " << status_.total_exposure_value);
// Never ask for a gain < 1.0, and also impose
// some upper limit. Make it customisable?
status.digital_gain = std::max(
1.0,
std::min(status.digital_gain, 4.0));
RPI_LOG("Actual exposure " << actual_exposure);
RPI_LOG("Use digital_gain " << status.digital_gain);
RPI_LOG("Effective exposure " << actual_exposure * status.digital_gain);
// Decide whether AEC/AGC has converged.
// Insist AGC is steady for MAX_LOCK_COUNT
// frames before we say we are "locked".
// (The hard-coded constants may need to
// become customisable.)
if (status.target_exposure_value) {
#define MAX_LOCK_COUNT 3
double err = 0.10 * status.target_exposure_value + 200;
if (actual_exposure <
status.target_exposure_value + err
&& actual_exposure >
status.target_exposure_value - err)
lock_count_ =
std::min(lock_count + 1,
MAX_LOCK_COUNT);
else if (actual_exposure <
status.target_exposure_value
+ 1.5 * err &&
actual_exposure >
status.target_exposure_value
- 1.5 * err)
lock_count_ = lock_count;
RPI_LOG("Lock count: " << lock_count_);
}
}
} else
RPI_LOG(Name() << ": no device metadata");
status.locked = lock_count_ >= MAX_LOCK_COUNT;
//printf("%s\n", status.locked ? "+++++++++" : "-");
image_metadata->Set("agc.status", status);
}
}
void Agc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
frame_count_++;
// First a little bit of housekeeping, fetching up-to-date settings and
// configuration, that kind of thing.
housekeepConfig();
// Get the current exposure values for the frame that's just arrived.
fetchCurrentExposure(image_metadata);
// Compute the total gain we require relative to the current exposure.
double gain, target_Y;
computeGain(stats.get(), image_metadata, gain, target_Y);
// Now compute the target (final) exposure which we think we want.
computeTargetExposure(gain);
// Some of the exposure has to be applied as digital gain, so work out
// what that is. This function also tells us whether it's decided to
// "desaturate" the image more quickly.
bool desaturate = applyDigitalGain(image_metadata, gain, target_Y);
// The results have to be filtered so as not to change too rapidly.
filterExposure(desaturate);
// The last thing is to divvy up the exposure value into a shutter time
// and analogue_gain, according to the current exposure mode.
divvyupExposure();
// Finally advertise what we've done.
writeAndFinish(image_metadata, desaturate);
}
static void copy_string(std::string const &s, char *d, size_t size)
{
size_t length = s.copy(d, size - 1);
d[length] = '\0';
}
void Agc::housekeepConfig()
{
// First fetch all the up-to-date settings, so no one else has to do it.
std::string new_exposure_mode_name, new_constraint_mode_name,
new_metering_mode_name;
{
std::unique_lock<std::mutex> lock(settings_mutex_);
new_metering_mode_name = metering_mode_name_;
new_exposure_mode_name = exposure_mode_name_;
new_constraint_mode_name = constraint_mode_name_;
status_.ev = ev_;
status_.fixed_shutter = fixed_shutter_;
status_.fixed_analogue_gain = fixed_analogue_gain_;
status_.flicker_period = flicker_period_;
}
RPI_LOG("ev " << status_.ev << " fixed_shutter "
<< status_.fixed_shutter << " fixed_analogue_gain "
<< status_.fixed_analogue_gain);
// Make sure the "mode" pointers point to the up-to-date things, if
// they've changed.
if (strcmp(new_metering_mode_name.c_str(), status_.metering_mode)) {
auto it = config_.metering_modes.find(new_metering_mode_name);
if (it == config_.metering_modes.end())
throw std::runtime_error("Agc: no metering mode " +
new_metering_mode_name);
metering_mode_ = &it->second;
copy_string(new_metering_mode_name, status_.metering_mode,
sizeof(status_.metering_mode));
}
if (strcmp(new_exposure_mode_name.c_str(), status_.exposure_mode)) {
auto it = config_.exposure_modes.find(new_exposure_mode_name);
if (it == config_.exposure_modes.end())
throw std::runtime_error("Agc: no exposure profile " +
new_exposure_mode_name);
exposure_mode_ = &it->second;
copy_string(new_exposure_mode_name, status_.exposure_mode,
sizeof(status_.exposure_mode));
}
if (strcmp(new_constraint_mode_name.c_str(), status_.constraint_mode)) {
auto it =
config_.constraint_modes.find(new_constraint_mode_name);
if (it == config_.constraint_modes.end())
throw std::runtime_error("Agc: no constraint list " +
new_constraint_mode_name);
constraint_mode_ = &it->second;
copy_string(new_constraint_mode_name, status_.constraint_mode,
sizeof(status_.constraint_mode));
}
RPI_LOG("exposure_mode "
<< new_exposure_mode_name << " constraint_mode "
<< new_constraint_mode_name << " metering_mode "
<< new_metering_mode_name);
}
void Agc::fetchCurrentExposure(Metadata *image_metadata)
{
std::unique_lock<Metadata> lock(*image_metadata);
DeviceStatus *device_status =
image_metadata->GetLocked<DeviceStatus>("device.status");
if (!device_status)
throw std::runtime_error("Agc: no device metadata");
current_.shutter = device_status->shutter_speed;
current_.analogue_gain = device_status->analogue_gain;
AgcStatus *agc_status =
image_metadata->GetLocked<AgcStatus>("agc.status");
current_.total_exposure = agc_status ? agc_status->total_exposure_value : 0;
current_.total_exposure_no_dg = current_.shutter * current_.analogue_gain;
}
static double compute_initial_Y(bcm2835_isp_stats *stats, Metadata *image_metadata,
double weights[])
{
bcm2835_isp_stats_region *regions = stats->agc_stats;
struct AwbStatus awb;
awb.gain_r = awb.gain_g = awb.gain_b = 1.0; // in case no metadata
if (image_metadata->Get("awb.status", awb) != 0)
RPI_WARN("Agc: no AWB status found");
double Y_sum = 0, weight_sum = 0;
for (int i = 0; i < AGC_STATS_SIZE; i++) {
if (regions[i].counted == 0)
continue;
weight_sum += weights[i];
double Y = regions[i].r_sum * awb.gain_r * .299 +
regions[i].g_sum * awb.gain_g * .587 +
regions[i].b_sum * awb.gain_b * .114;
Y /= regions[i].counted;
Y_sum += Y * weights[i];
}
return Y_sum / weight_sum / (1 << PIPELINE_BITS);
}
// We handle extra gain through EV by adjusting our Y targets. However, you
// simply can't monitor histograms once they get very close to (or beyond!)
// saturation, so we clamp the Y targets to this value. It does mean that EV
// increases don't necessarily do quite what you might expect in certain
// (contrived) cases.
#define EV_GAIN_Y_TARGET_LIMIT 0.9
static double constraint_compute_gain(AgcConstraint &c, Histogram &h,
double lux, double ev_gain,
double &target_Y)
{
target_Y = c.Y_target.Eval(c.Y_target.Domain().Clip(lux));
target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
double iqm = h.InterQuantileMean(c.q_lo, c.q_hi);
return (target_Y * NUM_HISTOGRAM_BINS) / iqm;
}
void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata,
double &gain, double &target_Y)
{
struct LuxStatus lux = {};
lux.lux = 400; // default lux level to 400 in case no metadata found
if (image_metadata->Get("lux.status", lux) != 0)
RPI_WARN("Agc: no lux level found");
Histogram h(statistics->hist[0].g_hist, NUM_HISTOGRAM_BINS);
double ev_gain = status_.ev * config_.base_ev;
// The initial gain and target_Y come from some of the regions. After
// that we consider the histogram constraints.
target_Y =
config_.Y_target.Eval(config_.Y_target.Domain().Clip(lux.lux));
target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
double initial_Y = compute_initial_Y(statistics, image_metadata,
metering_mode_->weights);
gain = std::min(10.0, target_Y / (initial_Y + .001));
RPI_LOG("Initially Y " << initial_Y << " target " << target_Y
<< " gives gain " << gain);
for (auto &c : *constraint_mode_) {
double new_target_Y;
double new_gain =
constraint_compute_gain(c, h, lux.lux, ev_gain,
new_target_Y);
RPI_LOG("Constraint has target_Y "
<< new_target_Y << " giving gain " << new_gain);
if (c.bound == AgcConstraint::Bound::LOWER &&
new_gain > gain) {
RPI_LOG("Lower bound constraint adopted");
gain = new_gain, target_Y = new_target_Y;
} else if (c.bound == AgcConstraint::Bound::UPPER &&
new_gain < gain) {
RPI_LOG("Upper bound constraint adopted");
gain = new_gain, target_Y = new_target_Y;
}
}
RPI_LOG("Final gain " << gain << " (target_Y " << target_Y << " ev "
<< status_.ev << " base_ev " << config_.base_ev
<< ")");
}
void Agc::computeTargetExposure(double gain)
{
// The statistics reflect the image without digital gain, so the final
// total exposure we're aiming for is:
target_.total_exposure = current_.total_exposure_no_dg * gain;
// The final target exposure is also limited to what the exposure
// mode allows.
double max_total_exposure =
(status_.fixed_shutter != 0.0
? status_.fixed_shutter
: exposure_mode_->shutter.back()) *
(status_.fixed_analogue_gain != 0.0
? status_.fixed_analogue_gain
: exposure_mode_->gain.back());
target_.total_exposure = std::min(target_.total_exposure,
max_total_exposure);
RPI_LOG("Target total_exposure " << target_.total_exposure);
}
bool Agc::applyDigitalGain(Metadata *image_metadata, double gain,
double target_Y)
{
double dg = 1.0;
// I think this pipeline subtracts black level and rescales before we
// get the stats, so no need to worry about it.
struct AwbStatus awb;
if (image_metadata->Get("awb.status", awb) == 0) {
double min_gain = std::min(awb.gain_r,
std::min(awb.gain_g, awb.gain_b));
dg *= std::max(1.0, 1.0 / min_gain);
} else
RPI_WARN("Agc: no AWB status found");
RPI_LOG("after AWB, target dg " << dg << " gain " << gain
<< " target_Y " << target_Y);
// Finally, if we're trying to reduce exposure but the target_Y is
// "close" to 1.0, then the gain computed for that constraint will be
// only slightly less than one, because the measured Y can never be
// larger than 1.0. When this happens, demand a large digital gain so
// that the exposure can be reduced, de-saturating the image much more
// quickly (and we then approach the correct value more quickly from
// below).
bool desaturate = target_Y > config_.fast_reduce_threshold &&
gain < sqrt(target_Y);
if (desaturate)
dg /= config_.fast_reduce_threshold;
RPI_LOG("Digital gain " << dg << " desaturate? " << desaturate);
target_.total_exposure_no_dg = target_.total_exposure / dg;
RPI_LOG("Target total_exposure_no_dg " << target_.total_exposure_no_dg);
return desaturate;
}
void Agc::filterExposure(bool desaturate)
{
double speed = frame_count_ <= config_.startup_frames ? 1.0 : config_.speed;
if (filtered_.total_exposure == 0.0) {
filtered_.total_exposure = target_.total_exposure;
filtered_.total_exposure_no_dg = target_.total_exposure_no_dg;
} else {
// If close to the result go faster, to save making so many
// micro-adjustments on the way. (Make this customisable?)
if (filtered_.total_exposure < 1.2 * target_.total_exposure &&
filtered_.total_exposure > 0.8 * target_.total_exposure)
speed = sqrt(speed);
filtered_.total_exposure = speed * target_.total_exposure +
filtered_.total_exposure * (1.0 - speed);
// When desaturing, take a big jump down in exposure_no_dg,
// which we'll hide with digital gain.
if (desaturate)
filtered_.total_exposure_no_dg =
target_.total_exposure_no_dg;
else
filtered_.total_exposure_no_dg =
speed * target_.total_exposure_no_dg +
filtered_.total_exposure_no_dg * (1.0 - speed);
}
// We can't let the no_dg exposure deviate too far below the
// total exposure, as there might not be enough digital gain available
// in the ISP to hide it (which will cause nasty oscillation).
if (filtered_.total_exposure_no_dg <
filtered_.total_exposure * config_.fast_reduce_threshold)
filtered_.total_exposure_no_dg = filtered_.total_exposure *
config_.fast_reduce_threshold;
RPI_LOG("After filtering, total_exposure " << filtered_.total_exposure <<
" no dg " << filtered_.total_exposure_no_dg);
}
void Agc::divvyupExposure()
{
// Sending the fixed shutter/gain cases through the same code may seem
// unnecessary, but it will make more sense when extend this to cover
// variable aperture.
double exposure_value = filtered_.total_exposure_no_dg;
double shutter_time, analogue_gain;
shutter_time = status_.fixed_shutter != 0.0
? status_.fixed_shutter
: exposure_mode_->shutter[0];
analogue_gain = status_.fixed_analogue_gain != 0.0
? status_.fixed_analogue_gain
: exposure_mode_->gain[0];
if (shutter_time * analogue_gain < exposure_value) {
for (unsigned int stage = 1;
stage < exposure_mode_->gain.size(); stage++) {
if (status_.fixed_shutter == 0.0) {
if (exposure_mode_->shutter[stage] *
analogue_gain >=
exposure_value) {
shutter_time =
exposure_value / analogue_gain;
break;
}
shutter_time = exposure_mode_->shutter[stage];
}
if (status_.fixed_analogue_gain == 0.0) {
if (exposure_mode_->gain[stage] *
shutter_time >=
exposure_value) {
analogue_gain =
exposure_value / shutter_time;
break;
}
analogue_gain = exposure_mode_->gain[stage];
}
}
}
RPI_LOG("Divided up shutter and gain are " << shutter_time << " and "
<< analogue_gain);
// Finally adjust shutter time for flicker avoidance (require both
// shutter and gain not to be fixed).
if (status_.fixed_shutter == 0.0 &&
status_.fixed_analogue_gain == 0.0 &&
status_.flicker_period != 0.0) {
int flicker_periods = shutter_time / status_.flicker_period;
if (flicker_periods > 0) {
double new_shutter_time = flicker_periods * status_.flicker_period;
analogue_gain *= shutter_time / new_shutter_time;
// We should still not allow the ag to go over the
// largest value in the exposure mode. Note that this
// may force more of the total exposure into the digital
// gain as a side-effect.
analogue_gain = std::min(analogue_gain,
exposure_mode_->gain.back());
shutter_time = new_shutter_time;
}
RPI_LOG("After flicker avoidance, shutter "
<< shutter_time << " gain " << analogue_gain);
}
filtered_.shutter = shutter_time;
filtered_.analogue_gain = analogue_gain;
}
void Agc::writeAndFinish(Metadata *image_metadata, bool desaturate)
{
status_.total_exposure_value = filtered_.total_exposure;
status_.target_exposure_value = desaturate ? 0 : target_.total_exposure_no_dg;
status_.shutter_time = filtered_.shutter;
status_.analogue_gain = filtered_.analogue_gain;
{
std::unique_lock<std::mutex> lock(output_mutex_);
output_status_ = status_;
}
// Write to metadata as well, in case anyone wants to update the camera
// immediately.
image_metadata->Set("agc.status", status_);
RPI_LOG("Output written, total exposure requested is "
<< filtered_.total_exposure);
RPI_LOG("Camera exposure update: shutter time " << filtered_.shutter <<
" analogue gain " << filtered_.analogue_gain);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Agc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,123 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* agc.hpp - AGC/AEC control algorithm
*/
#pragma once
#include <vector>
#include <mutex>
#include "../agc_algorithm.hpp"
#include "../agc_status.h"
#include "../pwl.hpp"
// This is our implementation of AGC.
// This is the number actually set up by the firmware, not the maximum possible
// number (which is 16).
#define AGC_STATS_SIZE 15
namespace RPi {
struct AgcMeteringMode {
double weights[AGC_STATS_SIZE];
void Read(boost::property_tree::ptree const &params);
};
struct AgcExposureMode {
std::vector<double> shutter;
std::vector<double> gain;
void Read(boost::property_tree::ptree const &params);
};
struct AgcConstraint {
enum class Bound { LOWER = 0, UPPER = 1 };
Bound bound;
double q_lo;
double q_hi;
Pwl Y_target;
void Read(boost::property_tree::ptree const &params);
};
typedef std::vector<AgcConstraint> AgcConstraintMode;
struct AgcConfig {
void Read(boost::property_tree::ptree const &params);
std::map<std::string, AgcMeteringMode> metering_modes;
std::map<std::string, AgcExposureMode> exposure_modes;
std::map<std::string, AgcConstraintMode> constraint_modes;
Pwl Y_target;
double speed;
uint16_t startup_frames;
double max_change;
double min_change;
double fast_reduce_threshold;
double speed_up_threshold;
std::string default_metering_mode;
std::string default_exposure_mode;
std::string default_constraint_mode;
double base_ev;
};
class Agc : public AgcAlgorithm
{
public:
Agc(Controller *controller);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void SetEv(double ev) override;
void SetFlickerPeriod(double flicker_period) override;
void SetFixedShutter(double fixed_shutter) override; // microseconds
void SetFixedAnalogueGain(double fixed_analogue_gain) override;
void SetMeteringMode(std::string const &metering_mode_name) override;
void SetExposureMode(std::string const &exposure_mode_name) override;
void SetConstraintMode(std::string const &contraint_mode_name) override;
void Prepare(Metadata *image_metadata) override;
void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
private:
AgcConfig config_;
void housekeepConfig();
void fetchCurrentExposure(Metadata *image_metadata);
void computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata,
double &gain, double &target_Y);
void computeTargetExposure(double gain);
bool applyDigitalGain(Metadata *image_metadata, double gain,
double target_Y);
void filterExposure(bool desaturate);
void divvyupExposure();
void writeAndFinish(Metadata *image_metadata, bool desaturate);
AgcMeteringMode *metering_mode_;
AgcExposureMode *exposure_mode_;
AgcConstraintMode *constraint_mode_;
uint64_t frame_count_;
struct ExposureValues {
ExposureValues() : shutter(0), analogue_gain(0),
total_exposure(0), total_exposure_no_dg(0) {}
double shutter;
double analogue_gain;
double total_exposure;
double total_exposure_no_dg; // without digital gain
};
ExposureValues current_; // values for the current frame
ExposureValues target_; // calculate the values we want here
ExposureValues filtered_; // these values are filtered towards target
AgcStatus status_; // to "latch" settings so they can't change
AgcStatus output_status_; // the status we will write out
std::mutex output_mutex_;
int lock_count_;
// Below here the "settings" that applications can change.
std::mutex settings_mutex_;
std::string metering_mode_name_;
std::string exposure_mode_name_;
std::string constraint_mode_name_;
double ev_;
double flicker_period_;
double fixed_shutter_;
double fixed_analogue_gain_;
};
} // namespace RPi

View file

@ -0,0 +1,705 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* alsc.cpp - ALSC (auto lens shading correction) control algorithm
*/
#include <math.h>
#include "../awb_status.h"
#include "alsc.hpp"
// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.
using namespace RPi;
#define NAME "rpi.alsc"
static const int X = ALSC_CELLS_X;
static const int Y = ALSC_CELLS_Y;
static const int XY = X * Y;
static const double INSUFFICIENT_DATA = -1.0;
Alsc::Alsc(Controller *controller)
: Algorithm(controller)
{
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
}
Alsc::~Alsc()
{
{
std::lock_guard<std::mutex> lock(mutex_);
async_abort_ = true;
async_signal_.notify_one();
}
async_thread_.join();
}
char const *Alsc::Name() const
{
return NAME;
}
static void generate_lut(double *lut, boost::property_tree::ptree const &params)
{
double cstrength = params.get<double>("corner_strength", 2.0);
if (cstrength <= 1.0)
throw std::runtime_error("Alsc: corner_strength must be > 1.0");
double asymmetry = params.get<double>("asymmetry", 1.0);
if (asymmetry < 0)
throw std::runtime_error("Alsc: asymmetry must be >= 0");
double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
int num = 0;
for (int y = 0; y < Y; y++) {
for (int x = 0; x < X; x++) {
double dy = y - Y / 2 + 0.5,
dx = (x - X / 2 + 0.5) * asymmetry;
double r2 = (dx * dx + dy * dy) / R2;
lut[num++] =
(f1 * r2 + f2) * (f1 * r2 + f2) /
(f2 * f2); // this reproduces the cos^4 rule
}
}
}
static void read_lut(double *lut, boost::property_tree::ptree const &params)
{
int num = 0;
const int max_num = XY;
for (auto &p : params) {
if (num == max_num)
throw std::runtime_error(
"Alsc: too many entries in LSC table");
lut[num++] = p.second.get_value<double>();
}
if (num < max_num)
throw std::runtime_error("Alsc: too few entries in LSC table");
}
static void read_calibrations(std::vector<AlscCalibration> &calibrations,
boost::property_tree::ptree const &params,
std::string const &name)
{
if (params.get_child_optional(name)) {
double last_ct = 0;
for (auto &p : params.get_child(name)) {
double ct = p.second.get<double>("ct");
if (ct <= last_ct)
throw std::runtime_error(
"Alsc: entries in " + name +
" must be in increasing ct order");
AlscCalibration calibration;
calibration.ct = last_ct = ct;
boost::property_tree::ptree const &table =
p.second.get_child("table");
int num = 0;
for (auto it = table.begin(); it != table.end(); it++) {
if (num == XY)
throw std::runtime_error(
"Alsc: too many values for ct " +
std::to_string(ct) + " in " +
name);
calibration.table[num++] =
it->second.get_value<double>();
}
if (num != XY)
throw std::runtime_error(
"Alsc: too few values for ct " +
std::to_string(ct) + " in " + name);
calibrations.push_back(calibration);
RPI_LOG("Read " << name << " calibration for ct "
<< ct);
}
}
}
void Alsc::Read(boost::property_tree::ptree const &params)
{
RPI_LOG("Alsc");
config_.frame_period = params.get<uint16_t>("frame_period", 12);
config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
config_.speed = params.get<double>("speed", 0.05);
double sigma = params.get<double>("sigma", 0.01);
config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
config_.min_count = params.get<double>("min_count", 10.0);
config_.min_G = params.get<uint16_t>("min_G", 50);
config_.omega = params.get<double>("omega", 1.3);
config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
config_.luminance_strength =
params.get<double>("luminance_strength", 1.0);
for (int i = 0; i < XY; i++)
config_.luminance_lut[i] = 1.0;
if (params.get_child_optional("corner_strength"))
generate_lut(config_.luminance_lut, params);
else if (params.get_child_optional("luminance_lut"))
read_lut(config_.luminance_lut,
params.get_child("luminance_lut"));
else
RPI_WARN("Alsc: no luminance table - assume unity everywhere");
read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
config_.default_ct = params.get<double>("default_ct", 4500.0);
config_.threshold = params.get<double>("threshold", 1e-3);
}
static void get_cal_table(double ct,
std::vector<AlscCalibration> const &calibrations,
double cal_table[XY]);
static void resample_cal_table(double const cal_table_in[XY],
CameraMode const &camera_mode,
double cal_table_out[XY]);
static void compensate_lambdas_for_cal(double const cal_table[XY],
double const old_lambdas[XY],
double new_lambdas[XY]);
static void add_luminance_to_tables(double results[3][Y][X],
double const lambda_r[XY], double lambda_g,
double const lambda_b[XY],
double const luminance_lut[XY],
double luminance_strength);
void Alsc::Initialise()
{
RPI_LOG("Alsc");
frame_count2_ = frame_count_ = frame_phase_ = 0;
first_time_ = true;
// Initialise the lambdas. Each call to Process then restarts from the
// previous results. Also initialise the previous frame tables to the
// same harmless values.
for (int i = 0; i < XY; i++)
lambda_r_[i] = lambda_b_[i] = 1.0;
}
void Alsc::SwitchMode(CameraMode const &camera_mode)
{
// There's a bit of a question what we should do if the "crop" of the
// camera mode has changed. Any calculation currently in flight would
// not be useful to the new mode, so arguably we should abort it, and
// generate a new table (like the "first_time" code already here). When
// the crop doesn't change, we can presumably just leave things
// alone. For now, I think we'll just wait and see. When the crop does
// change, any effects should be transient, and if they're not transient
// enough, we'll revisit the question then.
camera_mode_ = camera_mode;
if (first_time_) {
// On the first time, arrange for something sensible in the
// initial tables. Construct the tables for some default colour
// temperature. This echoes the code in doAlsc, without the
// adaptive algorithm.
double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
get_cal_table(4000, config_.calibrations_Cr, cal_table_tmp);
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
get_cal_table(4000, config_.calibrations_Cb, cal_table_tmp);
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
compensate_lambdas_for_cal(cal_table_r, lambda_r_,
async_lambda_r_);
compensate_lambdas_for_cal(cal_table_b, lambda_b_,
async_lambda_b_);
add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
async_lambda_b_, config_.luminance_lut,
config_.luminance_strength);
memcpy(prev_sync_results_, sync_results_,
sizeof(prev_sync_results_));
first_time_ = false;
}
}
void Alsc::fetchAsyncResults()
{
RPI_LOG("Fetch ALSC results");
async_finished_ = false;
async_started_ = false;
memcpy(sync_results_, async_results_, sizeof(sync_results_));
}
static double get_ct(Metadata *metadata, double default_ct)
{
AwbStatus awb_status;
awb_status.temperature_K = default_ct; // in case nothing found
if (metadata->Get("awb.status", awb_status) != 0)
RPI_WARN("Alsc: no AWB results found, using "
<< awb_status.temperature_K);
else
RPI_LOG("Alsc: AWB results found, using "
<< awb_status.temperature_K);
return awb_status.temperature_K;
}
static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
AlscStatus const &status)
{
bcm2835_isp_stats_region *input_regions = stats->awb_stats;
double *r_table = (double *)status.r;
double *g_table = (double *)status.g;
double *b_table = (double *)status.b;
for (int i = 0; i < XY; i++) {
regions[i].r_sum = input_regions[i].r_sum / r_table[i];
regions[i].g_sum = input_regions[i].g_sum / g_table[i];
regions[i].b_sum = input_regions[i].b_sum / b_table[i];
regions[i].counted = input_regions[i].counted;
// (don't care about the uncounted value)
}
}
void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
{
RPI_LOG("Starting ALSC thread");
// Get the current colour temperature. It's all we need from the
// metadata.
ct_ = get_ct(image_metadata, config_.default_ct);
// We have to copy the statistics here, dividing out our best guess of
// the LSC table that the pipeline applied to them.
AlscStatus alsc_status;
if (image_metadata->Get("alsc.status", alsc_status) != 0) {
RPI_WARN("No ALSC status found for applied gains!");
for (int y = 0; y < Y; y++)
for (int x = 0; x < X; x++) {
alsc_status.r[y][x] = 1.0;
alsc_status.g[y][x] = 1.0;
alsc_status.b[y][x] = 1.0;
}
}
copy_stats(statistics_, stats, alsc_status);
frame_phase_ = 0;
// copy the camera mode so it won't change during the calculations
async_camera_mode_ = camera_mode_;
async_start_ = true;
async_started_ = true;
async_signal_.notify_one();
}
void Alsc::Prepare(Metadata *image_metadata)
{
// Count frames since we started, and since we last poked the async
// thread.
if (frame_count_ < (int)config_.startup_frames)
frame_count_++;
double speed = frame_count_ < (int)config_.startup_frames
? 1.0
: config_.speed;
RPI_LOG("Alsc: frame_count " << frame_count_ << " speed " << speed);
{
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ && async_finished_) {
RPI_LOG("ALSC thread finished");
fetchAsyncResults();
}
}
// Apply IIR filter to results and program into the pipeline.
double *ptr = (double *)sync_results_,
*pptr = (double *)prev_sync_results_;
for (unsigned int i = 0;
i < sizeof(sync_results_) / sizeof(double); i++)
pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
// Put output values into status metadata.
AlscStatus status;
memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
image_metadata->Set("alsc.status", status);
}
void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
// Count frames since we started, and since we last poked the async
// thread.
if (frame_phase_ < (int)config_.frame_period)
frame_phase_++;
if (frame_count2_ < (int)config_.startup_frames)
frame_count2_++;
RPI_LOG("Alsc: frame_phase " << frame_phase_);
if (frame_phase_ >= (int)config_.frame_period ||
frame_count2_ < (int)config_.startup_frames) {
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ == false) {
RPI_LOG("ALSC thread starting");
restartAsync(stats, image_metadata);
}
}
}
void Alsc::asyncFunc()
{
while (true) {
{
std::unique_lock<std::mutex> lock(mutex_);
async_signal_.wait(lock, [&] {
return async_start_ || async_abort_;
});
async_start_ = false;
if (async_abort_)
break;
}
doAlsc();
{
std::lock_guard<std::mutex> lock(mutex_);
async_finished_ = true;
sync_signal_.notify_one();
}
}
}
void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations,
double cal_table[XY])
{
if (calibrations.empty()) {
for (int i = 0; i < XY; i++)
cal_table[i] = 1.0;
RPI_LOG("Alsc: no calibrations found");
} else if (ct <= calibrations.front().ct) {
memcpy(cal_table, calibrations.front().table,
XY * sizeof(double));
RPI_LOG("Alsc: using calibration for "
<< calibrations.front().ct);
} else if (ct >= calibrations.back().ct) {
memcpy(cal_table, calibrations.back().table,
XY * sizeof(double));
RPI_LOG("Alsc: using calibration for "
<< calibrations.front().ct);
} else {
int idx = 0;
while (ct > calibrations[idx + 1].ct)
idx++;
double ct0 = calibrations[idx].ct,
ct1 = calibrations[idx + 1].ct;
RPI_LOG("Alsc: ct is " << ct << ", interpolating between "
<< ct0 << " and " << ct1);
for (int i = 0; i < XY; i++)
cal_table[i] =
(calibrations[idx].table[i] * (ct1 - ct) +
calibrations[idx + 1].table[i] * (ct - ct0)) /
(ct1 - ct0);
}
}
void resample_cal_table(double const cal_table_in[XY],
CameraMode const &camera_mode, double cal_table_out[XY])
{
// Precalculate and cache the x sampling locations and phases to save
// recomputing them on every row.
int x_lo[X], x_hi[X];
double xf[X];
double scale_x = camera_mode.sensor_width /
(camera_mode.width * camera_mode.scale_x);
double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width;
double x = .5 / scale_x + x_off * X - .5;
double x_inc = 1 / scale_x;
for (int i = 0; i < X; i++, x += x_inc) {
x_lo[i] = floor(x);
xf[i] = x - x_lo[i];
x_hi[i] = std::min(x_lo[i] + 1, X - 1);
x_lo[i] = std::max(x_lo[i], 0);
}
// Now march over the output table generating the new values.
double scale_y = camera_mode.sensor_height /
(camera_mode.height * camera_mode.scale_y);
double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height;
double y = .5 / scale_y + y_off * Y - .5;
double y_inc = 1 / scale_y;
for (int j = 0; j < Y; j++, y += y_inc) {
int y_lo = floor(y);
double yf = y - y_lo;
int y_hi = std::min(y_lo + 1, Y - 1);
y_lo = std::max(y_lo, 0);
double const *row_above = cal_table_in + X * y_lo;
double const *row_below = cal_table_in + X * y_hi;
for (int i = 0; i < X; i++) {
double above = row_above[x_lo[i]] * (1 - xf[i]) +
row_above[x_hi[i]] * xf[i];
double below = row_below[x_lo[i]] * (1 - xf[i]) +
row_below[x_hi[i]] * xf[i];
*(cal_table_out++) = above * (1 - yf) + below * yf;
}
}
}
// Calculate chrominance statistics (R/G and B/G) for each region.
static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY],
double Cb[XY], uint32_t min_count, uint16_t min_G)
{
for (int i = 0; i < XY; i++) {
bcm2835_isp_stats_region &zone = awb_region[i];
if (zone.counted <= min_count ||
zone.g_sum / zone.counted <= min_G) {
Cr[i] = Cb[i] = INSUFFICIENT_DATA;
continue;
}
Cr[i] = zone.r_sum / (double)zone.g_sum;
Cb[i] = zone.b_sum / (double)zone.g_sum;
}
}
static void apply_cal_table(double const cal_table[XY], double C[XY])
{
for (int i = 0; i < XY; i++)
if (C[i] != INSUFFICIENT_DATA)
C[i] *= cal_table[i];
}
void compensate_lambdas_for_cal(double const cal_table[XY],
double const old_lambdas[XY],
double new_lambdas[XY])
{
double min_new_lambda = std::numeric_limits<double>::max();
for (int i = 0; i < XY; i++) {
new_lambdas[i] = old_lambdas[i] * cal_table[i];
min_new_lambda = std::min(min_new_lambda, new_lambdas[i]);
}
for (int i = 0; i < XY; i++)
new_lambdas[i] /= min_new_lambda;
}
static void print_cal_table(double const C[XY])
{
printf("table: [\n");
for (int j = 0; j < Y; j++) {
for (int i = 0; i < X; i++) {
printf("%5.3f", 1.0 / C[j * X + i]);
if (i != X - 1 || j != Y - 1)
printf(",");
}
printf("\n");
}
printf("]\n");
}
// Compute weight out of 1.0 which reflects how similar we wish to make the
// colours of these two regions.
static double compute_weight(double C_i, double C_j, double sigma)
{
if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA)
return 0;
double diff = (C_i - C_j) / sigma;
return exp(-diff * diff / 2);
}
// Compute all weights.
static void compute_W(double const C[XY], double sigma, double W[XY][4])
{
for (int i = 0; i < XY; i++) {
// Start with neighbour above and go clockwise.
W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0;
W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma)
: 0;
W[i][2] =
i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0;
W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0;
}
}
// Compute M, the large but sparse matrix such that M * lambdas = 0.
static void construct_M(double const C[XY], double const W[XY][4],
double M[XY][4])
{
double epsilon = 0.001;
for (int i = 0; i < XY; i++) {
// Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
// be zero so the equation is still set up correctly.
int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
!!(i % X); // total number of neighbours
// we'll divide the diagonal out straight away
double diagonal =
(epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) *
C[i];
M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) /
diagonal
: 0;
M[i][1] = i % X < X - 1
? (W[i][1] * C[i + 1] + epsilon / m * C[i]) /
diagonal
: 0;
M[i][2] = i < XY - X
? (W[i][2] * C[i + X] + epsilon / m * C[i]) /
diagonal
: 0;
M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) /
diagonal
: 0;
}
}
// In the compute_lambda_ functions, note that the matrix coefficients for the
// left/right neighbours are zero down the left/right edges, so we don't need
// need to test the i value to exclude them.
static double compute_lambda_bottom(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
M[i][3] * lambda[i - 1];
}
static double compute_lambda_bottom_start(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
}
static double compute_lambda_interior(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
}
static double compute_lambda_top(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
M[i][3] * lambda[i - 1];
}
static double compute_lambda_top_end(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
}
// Gauss-Seidel iteration with over-relaxation.
static double gauss_seidel2_SOR(double const M[XY][4], double omega,
double lambda[XY])
{
double old_lambda[XY];
for (int i = 0; i < XY; i++)
old_lambda[i] = lambda[i];
int i;
lambda[0] = compute_lambda_bottom_start(0, M, lambda);
for (i = 1; i < X; i++)
lambda[i] = compute_lambda_bottom(i, M, lambda);
for (; i < XY - X; i++)
lambda[i] = compute_lambda_interior(i, M, lambda);
for (; i < XY - 1; i++)
lambda[i] = compute_lambda_top(i, M, lambda);
lambda[i] = compute_lambda_top_end(i, M, lambda);
// Also solve the system from bottom to top, to help spread the updates
// better.
lambda[i] = compute_lambda_top_end(i, M, lambda);
for (i = XY - 2; i >= XY - X; i--)
lambda[i] = compute_lambda_top(i, M, lambda);
for (; i >= X; i--)
lambda[i] = compute_lambda_interior(i, M, lambda);
for (; i >= 1; i--)
lambda[i] = compute_lambda_bottom(i, M, lambda);
lambda[0] = compute_lambda_bottom_start(0, M, lambda);
double max_diff = 0;
for (int i = 0; i < XY; i++) {
lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff))
max_diff = lambda[i] - old_lambda[i];
}
return max_diff;
}
// Normalise the values so that the smallest value is 1.
static void normalise(double *ptr, size_t n)
{
double minval = ptr[0];
for (size_t i = 1; i < n; i++)
minval = std::min(minval, ptr[i]);
for (size_t i = 0; i < n; i++)
ptr[i] /= minval;
}
static void run_matrix_iterations(double const C[XY], double lambda[XY],
double const W[XY][4], double omega,
int n_iter, double threshold)
{
double M[XY][4];
construct_M(C, W, M);
double last_max_diff = std::numeric_limits<double>::max();
for (int i = 0; i < n_iter; i++) {
double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda));
if (max_diff < threshold) {
RPI_LOG("Stop after " << i + 1 << " iterations");
break;
}
// this happens very occasionally (so make a note), though
// doesn't seem to matter
if (max_diff > last_max_diff)
RPI_LOG("Iteration " << i << ": max_diff gone up "
<< last_max_diff << " to "
<< max_diff);
last_max_diff = max_diff;
}
// We're going to normalise the lambdas so the smallest is 1. Not sure
// this is really necessary as they get renormalised later, but I
// suppose it does stop these quantities from wandering off...
normalise(lambda, XY);
}
static void add_luminance_rb(double result[XY], double const lambda[XY],
double const luminance_lut[XY],
double luminance_strength)
{
for (int i = 0; i < XY; i++)
result[i] = lambda[i] *
((luminance_lut[i] - 1) * luminance_strength + 1);
}
static void add_luminance_g(double result[XY], double lambda,
double const luminance_lut[XY],
double luminance_strength)
{
for (int i = 0; i < XY; i++)
result[i] = lambda *
((luminance_lut[i] - 1) * luminance_strength + 1);
}
void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY],
double lambda_g, double const lambda_b[XY],
double const luminance_lut[XY],
double luminance_strength)
{
add_luminance_rb((double *)results[0], lambda_r, luminance_lut,
luminance_strength);
add_luminance_g((double *)results[1], lambda_g, luminance_lut,
luminance_strength);
add_luminance_rb((double *)results[2], lambda_b, luminance_lut,
luminance_strength);
normalise((double *)results, 3 * XY);
}
void Alsc::doAlsc()
{
double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY],
cal_table_b[XY], cal_table_tmp[XY];
// Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
// usable.
calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G);
// Fetch the new calibrations (if any) for this CT. Resample them in
// case the camera mode is not full-frame.
get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
resample_cal_table(cal_table_tmp, async_camera_mode_, cal_table_r);
get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
resample_cal_table(cal_table_tmp, async_camera_mode_, cal_table_b);
// You could print out the cal tables for this image here, if you're
// tuning the algorithm...
(void)print_cal_table;
// Apply any calibration to the statistics, so the adaptive algorithm
// makes only the extra adjustments.
apply_cal_table(cal_table_r, Cr);
apply_cal_table(cal_table_b, Cb);
// Compute weights between zones.
compute_W(Cr, config_.sigma_Cr, Wr);
compute_W(Cb, config_.sigma_Cb, Wb);
// Run Gauss-Seidel iterations over the resulting matrix, for R and B.
run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
config_.threshold);
run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
config_.threshold);
// Fold the calibrated gains into our final lambda values. (Note that on
// the next run, we re-start with the lambda values that don't have the
// calibration gains included.)
compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_);
compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_);
// Fold in the luminance table at the appropriate strength.
add_luminance_to_tables(async_results_, async_lambda_r_, 1.0,
async_lambda_b_, config_.luminance_lut,
config_.luminance_strength);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Alsc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,104 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* alsc.hpp - ALSC (auto lens shading correction) control algorithm
*/
#pragma once
#include <mutex>
#include <condition_variable>
#include <thread>
#include "../algorithm.hpp"
#include "../alsc_status.h"
namespace RPi {
// Algorithm to generate automagic LSC (Lens Shading Correction) tables.
struct AlscCalibration {
double ct;
double table[ALSC_CELLS_X * ALSC_CELLS_Y];
};
struct AlscConfig {
// Only repeat the ALSC calculation every "this many" frames
uint16_t frame_period;
// number of initial frames for which speed taken as 1.0 (maximum)
uint16_t startup_frames;
// IIR filter speed applied to algorithm results
double speed;
double sigma_Cr;
double sigma_Cb;
double min_count;
uint16_t min_G;
double omega;
uint32_t n_iter;
double luminance_lut[ALSC_CELLS_X * ALSC_CELLS_Y];
double luminance_strength;
std::vector<AlscCalibration> calibrations_Cr;
std::vector<AlscCalibration> calibrations_Cb;
double default_ct; // colour temperature if no metadata found
double threshold; // iteration termination threshold
};
class Alsc : public Algorithm
{
public:
Alsc(Controller *controller = NULL);
~Alsc();
char const *Name() const override;
void Initialise() override;
void SwitchMode(CameraMode const &camera_mode) override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
private:
// configuration is read-only, and available to both threads
AlscConfig config_;
bool first_time_;
std::atomic<CameraMode> camera_mode_;
std::thread async_thread_;
void asyncFunc(); // asynchronous thread function
std::mutex mutex_;
CameraMode async_camera_mode_;
// condvar for async thread to wait on
std::condition_variable async_signal_;
// condvar for synchronous thread to wait on
std::condition_variable sync_signal_;
// for sync thread to check if async thread finished (requires mutex)
bool async_finished_;
// for async thread to check if it's been told to run (requires mutex)
bool async_start_;
// for async thread to check if it's been told to quit (requires mutex)
bool async_abort_;
// The following are only for the synchronous thread to use:
// for sync thread to note its has asked async thread to run
bool async_started_;
// counts up to frame_period before restarting the async thread
int frame_phase_;
// counts up to startup_frames
int frame_count_;
// counts up to startup_frames for Process method
int frame_count2_;
double sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X];
double prev_sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X];
// The following are for the asynchronous thread to use, though the main
// thread can set/reset them if the async thread is known to be idle:
void restartAsync(StatisticsPtr &stats, Metadata *image_metadata);
// copy out the results from the async thread so that it can be restarted
void fetchAsyncResults();
double ct_;
bcm2835_isp_stats_region statistics_[ALSC_CELLS_Y * ALSC_CELLS_X];
double async_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X];
double async_lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y];
double async_lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y];
void doAlsc();
double lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y];
double lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y];
};
} // namespace RPi

View file

@ -0,0 +1,608 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* awb.cpp - AWB control algorithm
*/
#include "../logging.hpp"
#include "../lux_status.h"
#include "awb.hpp"
using namespace RPi;
#define NAME "rpi.awb"
#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y
const double Awb::RGB::INVALID = -1.0;
void AwbMode::Read(boost::property_tree::ptree const &params)
{
ct_lo = params.get<double>("lo");
ct_hi = params.get<double>("hi");
}
void AwbPrior::Read(boost::property_tree::ptree const &params)
{
lux = params.get<double>("lux");
prior.Read(params.get_child("prior"));
}
static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
boost::property_tree::ptree const &params)
{
int num = 0;
for (auto it = params.begin(); it != params.end(); it++) {
double ct = it->second.get_value<double>();
assert(it == params.begin() || ct != ct_r.Domain().end);
if (++it == params.end())
throw std::runtime_error(
"AwbConfig: incomplete CT curve entry");
ct_r.Append(ct, it->second.get_value<double>());
if (++it == params.end())
throw std::runtime_error(
"AwbConfig: incomplete CT curve entry");
ct_b.Append(ct, it->second.get_value<double>());
num++;
}
if (num < 2)
throw std::runtime_error(
"AwbConfig: insufficient points in CT curve");
}
void AwbConfig::Read(boost::property_tree::ptree const &params)
{
RPI_LOG("AwbConfig");
bayes = params.get<int>("bayes", 1);
frame_period = params.get<uint16_t>("frame_period", 10);
startup_frames = params.get<uint16_t>("startup_frames", 10);
speed = params.get<double>("speed", 0.05);
if (params.get_child_optional("ct_curve"))
read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
if (params.get_child_optional("priors")) {
for (auto &p : params.get_child("priors")) {
AwbPrior prior;
prior.Read(p.second);
if (!priors.empty() && prior.lux <= priors.back().lux)
throw std::runtime_error(
"AwbConfig: Prior must be ordered in increasing lux value");
priors.push_back(prior);
}
if (priors.empty())
throw std::runtime_error(
"AwbConfig: no AWB priors configured");
}
if (params.get_child_optional("modes")) {
for (auto &p : params.get_child("modes")) {
modes[p.first].Read(p.second);
if (default_mode == nullptr)
default_mode = &modes[p.first];
}
if (default_mode == nullptr)
throw std::runtime_error(
"AwbConfig: no AWB modes configured");
}
min_pixels = params.get<double>("min_pixels", 16.0);
min_G = params.get<uint16_t>("min_G", 32);
min_regions = params.get<uint32_t>("min_regions", 10);
delta_limit = params.get<double>("delta_limit", 0.2);
coarse_step = params.get<double>("coarse_step", 0.2);
transverse_pos = params.get<double>("transverse_pos", 0.01);
transverse_neg = params.get<double>("transverse_neg", 0.01);
if (transverse_pos <= 0 || transverse_neg <= 0)
throw std::runtime_error(
"AwbConfig: transverse_pos/neg must be > 0");
sensitivity_r = params.get<double>("sensitivity_r", 1.0);
sensitivity_b = params.get<double>("sensitivity_b", 1.0);
if (bayes) {
if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
default_mode == nullptr) {
RPI_WARN(
"Bayesian AWB mis-configured - switch to Grey method");
bayes = false;
}
}
fast = params.get<int>(
"fast", bayes); // default to fast for Bayesian, otherwise slow
whitepoint_r = params.get<double>("whitepoint_r", 0.0);
whitepoint_b = params.get<double>("whitepoint_b", 0.0);
if (bayes == false)
sensitivity_r = sensitivity_b =
1.0; // nor do sensitivities make any sense
}
Awb::Awb(Controller *controller)
: AwbAlgorithm(controller)
{
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
mode_ = nullptr;
manual_r_ = manual_b_ = 0.0;
async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
}
Awb::~Awb()
{
{
std::lock_guard<std::mutex> lock(mutex_);
async_abort_ = true;
async_signal_.notify_one();
}
async_thread_.join();
}
char const *Awb::Name() const
{
return NAME;
}
void Awb::Read(boost::property_tree::ptree const &params)
{
config_.Read(params);
}
void Awb::Initialise()
{
frame_count2_ = frame_count_ = frame_phase_ = 0;
// Put something sane into the status that we are filtering towards,
// just in case the first few frames don't have anything meaningful in
// them.
if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
sync_results_.gain_r =
1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
sync_results_.gain_g = 1.0;
sync_results_.gain_b =
1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
} else {
// random values just to stop the world blowing up
sync_results_.temperature_K = 4500;
sync_results_.gain_r = sync_results_.gain_g =
sync_results_.gain_b = 1.0;
}
prev_sync_results_ = sync_results_;
}
void Awb::SetMode(std::string const &mode_name)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
mode_name_ = mode_name;
}
void Awb::SetManualGains(double manual_r, double manual_b)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
// If any of these are 0.0, we swich back to auto.
manual_r_ = manual_r;
manual_b_ = manual_b;
}
void Awb::fetchAsyncResults()
{
RPI_LOG("Fetch AWB results");
async_finished_ = false;
async_started_ = false;
sync_results_ = async_results_;
}
void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name,
double lux)
{
RPI_LOG("Starting AWB thread");
// this makes a new reference which belongs to the asynchronous thread
statistics_ = stats;
// store the mode as it could technically change
auto m = config_.modes.find(mode_name);
mode_ = m != config_.modes.end()
? &m->second
: (mode_ == nullptr ? config_.default_mode : mode_);
lux_ = lux;
frame_phase_ = 0;
async_start_ = true;
async_started_ = true;
size_t len = mode_name.copy(async_results_.mode,
sizeof(async_results_.mode) - 1);
async_results_.mode[len] = '\0';
async_signal_.notify_one();
}
void Awb::Prepare(Metadata *image_metadata)
{
if (frame_count_ < (int)config_.startup_frames)
frame_count_++;
double speed = frame_count_ < (int)config_.startup_frames
? 1.0
: config_.speed;
RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed);
{
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ && async_finished_) {
RPI_LOG("AWB thread finished");
fetchAsyncResults();
}
}
// Finally apply IIR filter to results and put into metadata.
memcpy(prev_sync_results_.mode, sync_results_.mode,
sizeof(prev_sync_results_.mode));
prev_sync_results_.temperature_K =
speed * sync_results_.temperature_K +
(1.0 - speed) * prev_sync_results_.temperature_K;
prev_sync_results_.gain_r = speed * sync_results_.gain_r +
(1.0 - speed) * prev_sync_results_.gain_r;
prev_sync_results_.gain_g = speed * sync_results_.gain_g +
(1.0 - speed) * prev_sync_results_.gain_g;
prev_sync_results_.gain_b = speed * sync_results_.gain_b +
(1.0 - speed) * prev_sync_results_.gain_b;
image_metadata->Set("awb.status", prev_sync_results_);
RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g "
<< prev_sync_results_.gain_g << " b "
<< prev_sync_results_.gain_b);
}
void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
// Count frames since we last poked the async thread.
if (frame_phase_ < (int)config_.frame_period)
frame_phase_++;
if (frame_count2_ < (int)config_.startup_frames)
frame_count2_++;
RPI_LOG("Awb: frame_phase " << frame_phase_);
if (frame_phase_ >= (int)config_.frame_period ||
frame_count2_ < (int)config_.startup_frames) {
// Update any settings and any image metadata that we need.
std::string mode_name;
{
std::unique_lock<std::mutex> lock(settings_mutex_);
mode_name = mode_name_;
}
struct LuxStatus lux_status = {};
lux_status.lux = 400; // in case no metadata
if (image_metadata->Get("lux.status", lux_status) != 0)
RPI_LOG("No lux metadata found");
RPI_LOG("Awb lux value is " << lux_status.lux);
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ == false) {
RPI_LOG("AWB thread starting");
restartAsync(stats, mode_name, lux_status.lux);
}
}
}
void Awb::asyncFunc()
{
while (true) {
{
std::unique_lock<std::mutex> lock(mutex_);
async_signal_.wait(lock, [&] {
return async_start_ || async_abort_;
});
async_start_ = false;
if (async_abort_)
break;
}
doAwb();
{
std::lock_guard<std::mutex> lock(mutex_);
async_finished_ = true;
sync_signal_.notify_one();
}
}
}
static void generate_stats(std::vector<Awb::RGB> &zones,
bcm2835_isp_stats_region *stats, double min_pixels,
double min_G)
{
for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
Awb::RGB zone; // this is "invalid", unless R gets overwritten later
double counted = stats[i].counted;
if (counted >= min_pixels) {
zone.G = stats[i].g_sum / counted;
if (zone.G >= min_G) {
zone.R = stats[i].r_sum / counted;
zone.B = stats[i].b_sum / counted;
}
}
zones.push_back(zone);
}
}
void Awb::prepareStats()
{
zones_.clear();
// LSC has already been applied to the stats in this pipeline, so stop
// any LSC compensation. We also ignore config_.fast in this version.
generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
config_.min_G);
// we're done with these; we may as well relinquish our hold on the
// pointer.
statistics_.reset();
// apply sensitivities, so values appear to come from our "canonical"
// sensor.
for (auto &zone : zones_)
zone.R *= config_.sensitivity_r,
zone.B *= config_.sensitivity_b;
}
double Awb::computeDelta2Sum(double gain_r, double gain_b)
{
// Compute the sum of the squared colour error (non-greyness) as it
// appears in the log likelihood equation.
double delta2_sum = 0;
for (auto &z : zones_) {
double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
double delta2 = delta_r * delta_r + delta_b * delta_b;
//RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2);
delta2 = std::min(delta2, config_.delta_limit);
delta2_sum += delta2;
}
return delta2_sum;
}
Pwl Awb::interpolatePrior()
{
// Interpolate the prior log likelihood function for our current lux
// value.
if (lux_ <= config_.priors.front().lux)
return config_.priors.front().prior;
else if (lux_ >= config_.priors.back().lux)
return config_.priors.back().prior;
else {
int idx = 0;
// find which two we lie between
while (config_.priors[idx + 1].lux < lux_)
idx++;
double lux0 = config_.priors[idx].lux,
lux1 = config_.priors[idx + 1].lux;
return Pwl::Combine(config_.priors[idx].prior,
config_.priors[idx + 1].prior,
[&](double /*x*/, double y0, double y1) {
return y0 + (y1 - y0) *
(lux_ - lux0) / (lux1 - lux0);
});
}
}
static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
Pwl::Point const &C)
{
// Given 3 points on a curve, find the extremum of the function in that
// interval by fitting a quadratic.
const double eps = 1e-3;
Pwl::Point CA = C - A, BA = B - A;
double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
if (abs(denominator) > eps) {
double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
double result = numerator / denominator + A.x;
return std::max(A.x, std::min(C.x, result));
}
// has degenerated to straight line segment
return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
}
double Awb::coarseSearch(Pwl const &prior)
{
points_.clear(); // assume doesn't deallocate memory
size_t best_point = 0;
double t = mode_->ct_lo;
int span_r = 0, span_b = 0;
// Step down the CT curve evaluating log likelihood.
while (true) {
double r = config_.ct_r.Eval(t, &span_r);
double b = config_.ct_b.Eval(t, &span_b);
double gain_r = 1 / r, gain_b = 1 / b;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
double prior_log_likelihood =
prior.Eval(prior.Domain().Clip(t));
double final_log_likelihood = delta2_sum - prior_log_likelihood;
RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b "
<< gain_b << " delta2_sum " << delta2_sum
<< " prior " << prior_log_likelihood << " final "
<< final_log_likelihood);
points_.push_back(Pwl::Point(t, final_log_likelihood));
if (points_.back().y < points_[best_point].y)
best_point = points_.size() - 1;
if (t == mode_->ct_hi)
break;
// for even steps along the r/b curve scale them by the current t
t = std::min(t + t / 10 * config_.coarse_step,
mode_->ct_hi);
}
t = points_[best_point].x;
RPI_LOG("Coarse search found CT " << t);
// We have the best point of the search, but refine it with a quadratic
// interpolation around its neighbours.
if (points_.size() > 2) {
unsigned long bp = std::min(best_point, points_.size() - 2);
best_point = std::max(1UL, bp);
t = interpolate_quadatric(points_[best_point - 1],
points_[best_point],
points_[best_point + 1]);
RPI_LOG("After quadratic refinement, coarse search has CT "
<< t);
}
return t;
}
void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
{
int span_r, span_b;
config_.ct_r.Eval(t, &span_r);
config_.ct_b.Eval(t, &span_b);
double step = t / 10 * config_.coarse_step * 0.1;
int nsteps = 5;
double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
config_.ct_r.Eval(t - nsteps * step, &span_r);
double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
config_.ct_b.Eval(t - nsteps * step, &span_b);
Pwl::Point transverse(b_diff, -r_diff);
if (transverse.Len2() < 1e-6)
return;
// unit vector orthogonal to the b vs. r function (pointing outwards
// with r and b increasing)
transverse = transverse / transverse.Len();
double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
double transverse_range =
config_.transverse_neg + config_.transverse_pos;
const int MAX_NUM_DELTAS = 12;
// a transverse step approximately every 0.01 r/b units
int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
num_deltas = num_deltas < 3 ? 3 :
(num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
// Step down CT curve. March a bit further if the transverse range is
// large.
nsteps += num_deltas;
for (int i = -nsteps; i <= nsteps; i++) {
double t_test = t + i * step;
double prior_log_likelihood =
prior.Eval(prior.Domain().Clip(t_test));
double r_curve = config_.ct_r.Eval(t_test, &span_r);
double b_curve = config_.ct_b.Eval(t_test, &span_b);
// x will be distance off the curve, y the log likelihood there
Pwl::Point points[MAX_NUM_DELTAS];
int best_point = 0;
// Take some measurements transversely *off* the CT curve.
for (int j = 0; j < num_deltas; j++) {
points[j].x = -config_.transverse_neg +
(transverse_range * j) / (num_deltas - 1);
Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
transverse * points[j].x;
double r_test = rb_test.x, b_test = rb_test.y;
double gain_r = 1 / r_test, gain_b = 1 / b_test;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
points[j].y = delta2_sum - prior_log_likelihood;
RPI_LOG("At t " << t_test << " r " << r_test << " b "
<< b_test << ": " << points[j].y);
if (points[j].y < points[best_point].y)
best_point = j;
}
// We have NUM_DELTAS points transversely across the CT curve,
// now let's do a quadratic interpolation for the best result.
best_point = std::max(1, std::min(best_point, num_deltas - 2));
Pwl::Point rb_test =
Pwl::Point(r_curve, b_curve) +
transverse *
interpolate_quadatric(points[best_point - 1],
points[best_point],
points[best_point + 1]);
double r_test = rb_test.x, b_test = rb_test.y;
double gain_r = 1 / r_test, gain_b = 1 / b_test;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
double final_log_likelihood = delta2_sum - prior_log_likelihood;
RPI_LOG("Finally "
<< t_test << " r " << r_test << " b " << b_test << ": "
<< final_log_likelihood
<< (final_log_likelihood < best_log_likelihood ? " BEST"
: ""));
if (best_t == 0 || final_log_likelihood < best_log_likelihood)
best_log_likelihood = final_log_likelihood,
best_t = t_test, best_r = r_test, best_b = b_test;
}
t = best_t, r = best_r, b = best_b;
RPI_LOG("Fine search found t " << t << " r " << r << " b " << b);
}
void Awb::awbBayes()
{
// May as well divide out G to save computeDelta2Sum from doing it over
// and over.
for (auto &z : zones_)
z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
// Get the current prior, and scale according to how many zones are
// valid... not entirely sure about this.
Pwl prior = interpolatePrior();
prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
prior.Map([](double x, double y) {
RPI_LOG("(" << x << "," << y << ")");
});
double t = coarseSearch(prior);
double r = config_.ct_r.Eval(t);
double b = config_.ct_b.Eval(t);
RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")");
// Not entirely sure how to handle the fine search yet. Mostly the
// estimated CT is already good enough, but the fine search allows us to
// wander transverely off the CT curve. Under some illuminants, where
// there may be more or less green light, this may prove beneficial,
// though I probably need more real datasets before deciding exactly how
// this should be controlled and tuned.
fineSearch(t, r, b, prior);
RPI_LOG("After fine search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")");
// Write results out for the main thread to pick up. Remember to adjust
// the gains from the ones that the "canonical sensor" would require to
// the ones needed by *this* sensor.
async_results_.temperature_K = t;
async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
async_results_.gain_g = 1.0;
async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
}
void Awb::awbGrey()
{
RPI_LOG("Grey world AWB");
// Make a separate list of the derivatives for each of red and blue, so
// that we can sort them to exclude the extreme gains. We could
// consider some variations, such as normalising all the zones first, or
// doing an L2 average etc.
std::vector<RGB> &derivs_R(zones_);
std::vector<RGB> derivs_B(derivs_R);
std::sort(derivs_R.begin(), derivs_R.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.R < b.G * a.R;
});
std::sort(derivs_B.begin(), derivs_B.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.B < b.G * a.B;
});
// Average the middle half of the values.
int discard = derivs_R.size() / 4;
RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
for (auto ri = derivs_R.begin() + discard,
bi = derivs_B.begin() + discard;
ri != derivs_R.end() - discard; ri++, bi++)
sum_R += *ri, sum_B += *bi;
double gain_r = sum_R.G / (sum_R.R + 1),
gain_b = sum_B.G / (sum_B.B + 1);
async_results_.temperature_K = 4500; // don't know what it is
async_results_.gain_r = gain_r;
async_results_.gain_g = 1.0;
async_results_.gain_b = gain_b;
}
void Awb::doAwb()
{
if (manual_r_ != 0.0 && manual_b_ != 0.0) {
async_results_.temperature_K = 4500; // don't know what it is
async_results_.gain_r = manual_r_;
async_results_.gain_g = 1.0;
async_results_.gain_b = manual_b_;
RPI_LOG("Using manual white balance: gain_r "
<< async_results_.gain_r << " gain_b "
<< async_results_.gain_b);
} else {
prepareStats();
RPI_LOG("Valid zones: " << zones_.size());
if (zones_.size() > config_.min_regions) {
if (config_.bayes)
awbBayes();
else
awbGrey();
RPI_LOG("CT found is "
<< async_results_.temperature_K
<< " with gains r " << async_results_.gain_r
<< " and b " << async_results_.gain_b);
}
}
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Awb(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,178 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* awb.hpp - AWB control algorithm
*/
#pragma once
#include <mutex>
#include <condition_variable>
#include <thread>
#include "../awb_algorithm.hpp"
#include "../pwl.hpp"
#include "../awb_status.h"
namespace RPi {
// Control algorithm to perform AWB calculations.
struct AwbMode {
void Read(boost::property_tree::ptree const &params);
double ct_lo; // low CT value for search
double ct_hi; // high CT value for search
};
struct AwbPrior {
void Read(boost::property_tree::ptree const &params);
double lux; // lux level
Pwl prior; // maps CT to prior log likelihood for this lux level
};
struct AwbConfig {
AwbConfig() : default_mode(nullptr) {}
void Read(boost::property_tree::ptree const &params);
// Only repeat the AWB calculation every "this many" frames
uint16_t frame_period;
// number of initial frames for which speed taken as 1.0 (maximum)
uint16_t startup_frames;
double speed; // IIR filter speed applied to algorithm results
bool fast; // "fast" mode uses a 16x16 rather than 32x32 grid
Pwl ct_r; // function maps CT to r (= R/G)
Pwl ct_b; // function maps CT to b (= B/G)
// table of illuminant priors at different lux levels
std::vector<AwbPrior> priors;
// AWB "modes" (determines the search range)
std::map<std::string, AwbMode> modes;
AwbMode *default_mode; // mode used if no mode selected
// minimum proportion of pixels counted within AWB region for it to be
// "useful"
double min_pixels;
// minimum G value of those pixels, to be regarded a "useful"
uint16_t min_G;
// number of AWB regions that must be "useful" in order to do the AWB
// calculation
uint32_t min_regions;
// clamp on colour error term (so as not to penalise non-grey excessively)
double delta_limit;
// step size control in coarse search
double coarse_step;
// how far to wander off CT curve towards "more purple"
double transverse_pos;
// how far to wander off CT curve towards "more green"
double transverse_neg;
// red sensitivity ratio (set to canonical sensor's R/G divided by this
// sensor's R/G)
double sensitivity_r;
// blue sensitivity ratio (set to canonical sensor's B/G divided by this
// sensor's B/G)
double sensitivity_b;
// The whitepoint (which we normally "aim" for) can be moved.
double whitepoint_r;
double whitepoint_b;
bool bayes; // use Bayesian algorithm
};
class Awb : public AwbAlgorithm
{
public:
Awb(Controller *controller = NULL);
~Awb();
char const *Name() const override;
void Initialise() override;
void Read(boost::property_tree::ptree const &params) override;
void SetMode(std::string const &name) override;
void SetManualGains(double manual_r, double manual_b) override;
void Prepare(Metadata *image_metadata) override;
void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
struct RGB {
RGB(double _R = INVALID, double _G = INVALID,
double _B = INVALID)
: R(_R), G(_G), B(_B)
{
}
double R, G, B;
static const double INVALID;
bool Valid() const { return G != INVALID; }
bool Invalid() const { return G == INVALID; }
RGB &operator+=(RGB const &other)
{
R += other.R, G += other.G, B += other.B;
return *this;
}
RGB Square() const { return RGB(R * R, G * G, B * B); }
};
private:
// configuration is read-only, and available to both threads
AwbConfig config_;
std::thread async_thread_;
void asyncFunc(); // asynchronous thread function
std::mutex mutex_;
// condvar for async thread to wait on
std::condition_variable async_signal_;
// condvar for synchronous thread to wait on
std::condition_variable sync_signal_;
// for sync thread to check if async thread finished (requires mutex)
bool async_finished_;
// for async thread to check if it's been told to run (requires mutex)
bool async_start_;
// for async thread to check if it's been told to quit (requires mutex)
bool async_abort_;
// The following are only for the synchronous thread to use:
// for sync thread to note its has asked async thread to run
bool async_started_;
// counts up to frame_period before restarting the async thread
int frame_phase_;
int frame_count_; // counts up to startup_frames
int frame_count2_; // counts up to startup_frames for Process method
AwbStatus sync_results_;
AwbStatus prev_sync_results_;
std::string mode_name_;
std::mutex settings_mutex_;
// The following are for the asynchronous thread to use, though the main
// thread can set/reset them if the async thread is known to be idle:
void restartAsync(StatisticsPtr &stats, std::string const &mode_name,
double lux);
// copy out the results from the async thread so that it can be restarted
void fetchAsyncResults();
StatisticsPtr statistics_;
AwbMode *mode_;
double lux_;
AwbStatus async_results_;
void doAwb();
void awbBayes();
void awbGrey();
void prepareStats();
double computeDelta2Sum(double gain_r, double gain_b);
Pwl interpolatePrior();
double coarseSearch(Pwl const &prior);
void fineSearch(double &t, double &r, double &b, Pwl const &prior);
std::vector<RGB> zones_;
std::vector<Pwl::Point> points_;
// manual r setting
double manual_r_;
// manual b setting
double manual_b_;
};
static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b)
{
return Awb::RGB(a.R + b.R, a.G + b.G, a.B + b.B);
}
static inline Awb::RGB operator-(Awb::RGB const &a, Awb::RGB const &b)
{
return Awb::RGB(a.R - b.R, a.G - b.G, a.B - b.B);
}
static inline Awb::RGB operator*(double d, Awb::RGB const &rgb)
{
return Awb::RGB(d * rgb.R, d * rgb.G, d * rgb.B);
}
static inline Awb::RGB operator*(Awb::RGB const &rgb, double d)
{
return d * rgb;
}
} // namespace RPi

View file

@ -0,0 +1,56 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* black_level.cpp - black level control algorithm
*/
#include <math.h>
#include <stdint.h>
#include "../black_level_status.h"
#include "../logging.hpp"
#include "black_level.hpp"
using namespace RPi;
#define NAME "rpi.black_level"
BlackLevel::BlackLevel(Controller *controller)
: Algorithm(controller)
{
}
char const *BlackLevel::Name() const
{
return NAME;
}
void BlackLevel::Read(boost::property_tree::ptree const &params)
{
RPI_LOG(Name());
uint16_t black_level = params.get<uint16_t>(
"black_level", 4096); // 64 in 10 bits scaled to 16 bits
black_level_r_ = params.get<uint16_t>("black_level_r", black_level);
black_level_g_ = params.get<uint16_t>("black_level_g", black_level);
black_level_b_ = params.get<uint16_t>("black_level_b", black_level);
}
void BlackLevel::Prepare(Metadata *image_metadata)
{
// Possibly we should think about doing this in a switch_mode or
// something?
struct BlackLevelStatus status;
status.black_level_r = black_level_r_;
status.black_level_g = black_level_g_;
status.black_level_b = black_level_b_;
image_metadata->Set("black_level.status", status);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return new BlackLevel(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,30 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* black_level.hpp - black level control algorithm
*/
#pragma once
#include "../algorithm.hpp"
#include "../black_level_status.h"
// This is our implementation of the "black level algorithm".
namespace RPi {
class BlackLevel : public Algorithm
{
public:
BlackLevel(Controller *controller);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
private:
double black_level_r_;
double black_level_g_;
double black_level_b_;
};
} // namespace RPi

View file

@ -0,0 +1,163 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* ccm.cpp - CCM (colour correction matrix) control algorithm
*/
#include "../awb_status.h"
#include "../ccm_status.h"
#include "../logging.hpp"
#include "../lux_status.h"
#include "../metadata.hpp"
#include "ccm.hpp"
using namespace RPi;
// This algorithm selects a CCM (Colour Correction Matrix) according to the
// colour temperature estimated by AWB (interpolating between known matricies as
// necessary). Additionally the amount of colour saturation can be controlled
// both according to the current estimated lux level and according to a
// saturation setting that is exposed to applications.
#define NAME "rpi.ccm"
Matrix::Matrix()
{
memset(m, 0, sizeof(m));
}
Matrix::Matrix(double m0, double m1, double m2, double m3, double m4, double m5,
double m6, double m7, double m8)
{
m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4,
m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8;
}
void Matrix::Read(boost::property_tree::ptree const &params)
{
double *ptr = (double *)m;
int n = 0;
for (auto it = params.begin(); it != params.end(); it++) {
if (n++ == 9)
throw std::runtime_error("Ccm: too many values in CCM");
*ptr++ = it->second.get_value<double>();
}
if (n < 9)
throw std::runtime_error("Ccm: too few values in CCM");
}
Ccm::Ccm(Controller *controller)
: CcmAlgorithm(controller), saturation_(1.0) {}
char const *Ccm::Name() const
{
return NAME;
}
void Ccm::Read(boost::property_tree::ptree const &params)
{
if (params.get_child_optional("saturation"))
config_.saturation.Read(params.get_child("saturation"));
for (auto &p : params.get_child("ccms")) {
CtCcm ct_ccm;
ct_ccm.ct = p.second.get<double>("ct");
ct_ccm.ccm.Read(p.second.get_child("ccm"));
if (!config_.ccms.empty() &&
ct_ccm.ct <= config_.ccms.back().ct)
throw std::runtime_error(
"Ccm: CCM not in increasing colour temperature order");
config_.ccms.push_back(std::move(ct_ccm));
}
if (config_.ccms.empty())
throw std::runtime_error("Ccm: no CCMs specified");
}
void Ccm::SetSaturation(double saturation)
{
saturation_ = saturation;
}
void Ccm::Initialise() {}
template<typename T>
static bool get_locked(Metadata *metadata, std::string const &tag, T &value)
{
T *ptr = metadata->GetLocked<T>(tag);
if (ptr == nullptr)
return false;
value = *ptr;
return true;
}
Matrix calculate_ccm(std::vector<CtCcm> const &ccms, double ct)
{
if (ct <= ccms.front().ct)
return ccms.front().ccm;
else if (ct >= ccms.back().ct)
return ccms.back().ccm;
else {
int i = 0;
for (; ct > ccms[i].ct; i++)
;
double lambda =
(ct - ccms[i - 1].ct) / (ccms[i].ct - ccms[i - 1].ct);
return lambda * ccms[i].ccm + (1.0 - lambda) * ccms[i - 1].ccm;
}
}
Matrix apply_saturation(Matrix const &ccm, double saturation)
{
Matrix RGB2Y(0.299, 0.587, 0.114, -0.169, -0.331, 0.500, 0.500, -0.419,
-0.081);
Matrix Y2RGB(1.000, 0.000, 1.402, 1.000, -0.345, -0.714, 1.000, 1.771,
0.000);
Matrix S(1, 0, 0, 0, saturation, 0, 0, 0, saturation);
return Y2RGB * S * RGB2Y * ccm;
}
void Ccm::Prepare(Metadata *image_metadata)
{
bool awb_ok = false, lux_ok = false;
struct AwbStatus awb = {};
awb.temperature_K = 4000; // in case no metadata
struct LuxStatus lux = {};
lux.lux = 400; // in case no metadata
{
// grab mutex just once to get everything
std::lock_guard<Metadata> lock(*image_metadata);
awb_ok = get_locked(image_metadata, "awb.status", awb);
lux_ok = get_locked(image_metadata, "lux.status", lux);
}
if (!awb_ok)
RPI_WARN("Ccm: no colour temperature found");
if (!lux_ok)
RPI_WARN("Ccm: no lux value found");
Matrix ccm = calculate_ccm(config_.ccms, awb.temperature_K);
double saturation = saturation_;
struct CcmStatus ccm_status;
ccm_status.saturation = saturation;
if (!config_.saturation.Empty())
saturation *= config_.saturation.Eval(
config_.saturation.Domain().Clip(lux.lux));
ccm = apply_saturation(ccm, saturation);
for (int j = 0; j < 3; j++)
for (int i = 0; i < 3; i++)
ccm_status.matrix[j * 3 + i] =
std::max(-8.0, std::min(7.9999, ccm.m[j][i]));
RPI_LOG("CCM: colour temperature " << awb.temperature_K << "K");
RPI_LOG("CCM: " << ccm_status.matrix[0] << " " << ccm_status.matrix[1]
<< " " << ccm_status.matrix[2] << " "
<< ccm_status.matrix[3] << " " << ccm_status.matrix[4]
<< " " << ccm_status.matrix[5] << " "
<< ccm_status.matrix[6] << " " << ccm_status.matrix[7]
<< " " << ccm_status.matrix[8]);
image_metadata->Set("ccm.status", ccm_status);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Ccm(controller);
;
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,76 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* ccm.hpp - CCM (colour correction matrix) control algorithm
*/
#pragma once
#include <vector>
#include <atomic>
#include "../ccm_algorithm.hpp"
#include "../pwl.hpp"
namespace RPi {
// Algorithm to calculate colour matrix. Should be placed after AWB.
struct Matrix {
Matrix(double m0, double m1, double m2, double m3, double m4, double m5,
double m6, double m7, double m8);
Matrix();
double m[3][3];
void Read(boost::property_tree::ptree const &params);
};
static inline Matrix operator*(double d, Matrix const &m)
{
return Matrix(m.m[0][0] * d, m.m[0][1] * d, m.m[0][2] * d,
m.m[1][0] * d, m.m[1][1] * d, m.m[1][2] * d,
m.m[2][0] * d, m.m[2][1] * d, m.m[2][2] * d);
}
static inline Matrix operator*(Matrix const &m1, Matrix const &m2)
{
Matrix m;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
m.m[i][j] = m1.m[i][0] * m2.m[0][j] +
m1.m[i][1] * m2.m[1][j] +
m1.m[i][2] * m2.m[2][j];
return m;
}
static inline Matrix operator+(Matrix const &m1, Matrix const &m2)
{
Matrix m;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
m.m[i][j] = m1.m[i][j] + m2.m[i][j];
return m;
}
struct CtCcm {
double ct;
Matrix ccm;
};
struct CcmConfig {
std::vector<CtCcm> ccms;
Pwl saturation;
};
class Ccm : public CcmAlgorithm
{
public:
Ccm(Controller *controller = NULL);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void SetSaturation(double saturation) override;
void Initialise() override;
void Prepare(Metadata *image_metadata) override;
private:
CcmConfig config_;
std::atomic<double> saturation_;
};
} // namespace RPi

View file

@ -0,0 +1,176 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* contrast.cpp - contrast (gamma) control algorithm
*/
#include <stdint.h>
#include "../contrast_status.h"
#include "../histogram.hpp"
#include "contrast.hpp"
using namespace RPi;
// This is a very simple control algorithm which simply retrieves the results of
// AGC and AWB via their "status" metadata, and applies digital gain to the
// colour channels in accordance with those instructions. We take care never to
// apply less than unity gains, as that would cause fully saturated pixels to go
// off-white.
#define NAME "rpi.contrast"
Contrast::Contrast(Controller *controller)
: ContrastAlgorithm(controller), brightness_(0.0), contrast_(1.0)
{
}
char const *Contrast::Name() const
{
return NAME;
}
void Contrast::Read(boost::property_tree::ptree const &params)
{
// enable adaptive enhancement by default
config_.ce_enable = params.get<int>("ce_enable", 1);
// the point near the bottom of the histogram to move
config_.lo_histogram = params.get<double>("lo_histogram", 0.01);
// where in the range to try and move it to
config_.lo_level = params.get<double>("lo_level", 0.015);
// but don't move by more than this
config_.lo_max = params.get<double>("lo_max", 500);
// equivalent values for the top of the histogram...
config_.hi_histogram = params.get<double>("hi_histogram", 0.95);
config_.hi_level = params.get<double>("hi_level", 0.95);
config_.hi_max = params.get<double>("hi_max", 2000);
config_.gamma_curve.Read(params.get_child("gamma_curve"));
}
void Contrast::SetBrightness(double brightness)
{
brightness_ = brightness;
}
void Contrast::SetContrast(double contrast)
{
contrast_ = contrast;
}
static void fill_in_status(ContrastStatus &status, double brightness,
double contrast, Pwl &gamma_curve)
{
status.brightness = brightness;
status.contrast = contrast;
for (int i = 0; i < CONTRAST_NUM_POINTS - 1; i++) {
int x = i < 16 ? i * 1024
: (i < 24 ? (i - 16) * 2048 + 16384
: (i - 24) * 4096 + 32768);
status.points[i].x = x;
status.points[i].y = std::min(65535.0, gamma_curve.Eval(x));
}
status.points[CONTRAST_NUM_POINTS - 1].x = 65535;
status.points[CONTRAST_NUM_POINTS - 1].y = 65535;
}
void Contrast::Initialise()
{
// Fill in some default values as Prepare will run before Process gets
// called.
fill_in_status(status_, brightness_, contrast_, config_.gamma_curve);
}
void Contrast::Prepare(Metadata *image_metadata)
{
std::unique_lock<std::mutex> lock(mutex_);
image_metadata->Set("contrast.status", status_);
}
Pwl compute_stretch_curve(Histogram const &histogram,
ContrastConfig const &config)
{
Pwl enhance;
enhance.Append(0, 0);
// If the start of the histogram is rather empty, try to pull it down a
// bit.
double hist_lo = histogram.Quantile(config.lo_histogram) *
(65536 / NUM_HISTOGRAM_BINS);
double level_lo = config.lo_level * 65536;
RPI_LOG("Move histogram point " << hist_lo << " to " << level_lo);
hist_lo = std::max(
level_lo,
std::min(65535.0, std::min(hist_lo, level_lo + config.lo_max)));
RPI_LOG("Final values " << hist_lo << " -> " << level_lo);
enhance.Append(hist_lo, level_lo);
// Keep the mid-point (median) in the same place, though, to limit the
// apparent amount of global brightness shift.
double mid = histogram.Quantile(0.5) * (65536 / NUM_HISTOGRAM_BINS);
enhance.Append(mid, mid);
// If the top to the histogram is empty, try to pull the pixel values
// there up.
double hist_hi = histogram.Quantile(config.hi_histogram) *
(65536 / NUM_HISTOGRAM_BINS);
double level_hi = config.hi_level * 65536;
RPI_LOG("Move histogram point " << hist_hi << " to " << level_hi);
hist_hi = std::min(
level_hi,
std::max(0.0, std::max(hist_hi, level_hi - config.hi_max)));
RPI_LOG("Final values " << hist_hi << " -> " << level_hi);
enhance.Append(hist_hi, level_hi);
enhance.Append(65535, 65535);
return enhance;
}
Pwl apply_manual_contrast(Pwl const &gamma_curve, double brightness,
double contrast)
{
Pwl new_gamma_curve;
RPI_LOG("Manual brightness " << brightness << " contrast " << contrast);
gamma_curve.Map([&](double x, double y) {
new_gamma_curve.Append(
x, std::max(0.0, std::min(65535.0,
(y - 32768) * contrast +
32768 + brightness)));
});
return new_gamma_curve;
}
void Contrast::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
(void)image_metadata;
double brightness = brightness_, contrast = contrast_;
Histogram histogram(stats->hist[0].g_hist, NUM_HISTOGRAM_BINS);
// We look at the histogram and adjust the gamma curve in the following
// ways: 1. Adjust the gamma curve so as to pull the start of the
// histogram down, and possibly push the end up.
Pwl gamma_curve = config_.gamma_curve;
if (config_.ce_enable) {
if (config_.lo_max != 0 || config_.hi_max != 0)
gamma_curve = compute_stretch_curve(histogram, config_)
.Compose(gamma_curve);
// We could apply other adjustments (e.g. partial equalisation)
// based on the histogram...?
}
// 2. Finally apply any manually selected brightness/contrast
// adjustment.
if (brightness != 0 || contrast != 1.0)
gamma_curve = apply_manual_contrast(gamma_curve, brightness,
contrast);
// And fill in the status for output. Use more points towards the bottom
// of the curve.
ContrastStatus status;
fill_in_status(status, brightness, contrast, gamma_curve);
{
std::unique_lock<std::mutex> lock(mutex_);
status_ = status;
}
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Contrast(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,51 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* contrast.hpp - contrast (gamma) control algorithm
*/
#pragma once
#include <atomic>
#include <mutex>
#include "../contrast_algorithm.hpp"
#include "../pwl.hpp"
namespace RPi {
// Back End algorithm to appaly correct digital gain. Should be placed after
// Back End AWB.
struct ContrastConfig {
bool ce_enable;
double lo_histogram;
double lo_level;
double lo_max;
double hi_histogram;
double hi_level;
double hi_max;
Pwl gamma_curve;
};
class Contrast : public ContrastAlgorithm
{
public:
Contrast(Controller *controller = NULL);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void SetBrightness(double brightness) override;
void SetContrast(double contrast) override;
void Initialise() override;
void Prepare(Metadata *image_metadata) override;
void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
private:
ContrastConfig config_;
std::atomic<double> brightness_;
std::atomic<double> contrast_;
ContrastStatus status_;
std::mutex mutex_;
};
} // namespace RPi

View file

@ -0,0 +1,49 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* dpc.cpp - DPC (defective pixel correction) control algorithm
*/
#include "../logging.hpp"
#include "dpc.hpp"
using namespace RPi;
// We use the lux status so that we can apply stronger settings in darkness (if
// necessary).
#define NAME "rpi.dpc"
Dpc::Dpc(Controller *controller)
: Algorithm(controller)
{
}
char const *Dpc::Name() const
{
return NAME;
}
void Dpc::Read(boost::property_tree::ptree const &params)
{
config_.strength = params.get<int>("strength", 1);
if (config_.strength < 0 || config_.strength > 2)
throw std::runtime_error("Dpc: bad strength value");
}
void Dpc::Prepare(Metadata *image_metadata)
{
DpcStatus dpc_status = {};
// Should we vary this with lux level or analogue gain? TBD.
dpc_status.strength = config_.strength;
RPI_LOG("Dpc: strength " << dpc_status.strength);
image_metadata->Set("dpc.status", dpc_status);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Dpc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* dpc.hpp - DPC (defective pixel correction) control algorithm
*/
#pragma once
#include "../algorithm.hpp"
#include "../dpc_status.h"
namespace RPi {
// Back End algorithm to apply appropriate GEQ settings.
struct DpcConfig {
int strength;
};
class Dpc : public Algorithm
{
public:
Dpc(Controller *controller);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
private:
DpcConfig config_;
};
} // namespace RPi

View file

@ -0,0 +1,75 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* geq.cpp - GEQ (green equalisation) control algorithm
*/
#include "../device_status.h"
#include "../logging.hpp"
#include "../lux_status.h"
#include "../pwl.hpp"
#include "geq.hpp"
using namespace RPi;
// We use the lux status so that we can apply stronger settings in darkness (if
// necessary).
#define NAME "rpi.geq"
Geq::Geq(Controller *controller)
: Algorithm(controller)
{
}
char const *Geq::Name() const
{
return NAME;
}
void Geq::Read(boost::property_tree::ptree const &params)
{
config_.offset = params.get<uint16_t>("offset", 0);
config_.slope = params.get<double>("slope", 0.0);
if (config_.slope < 0.0 || config_.slope >= 1.0)
throw std::runtime_error("Geq: bad slope value");
if (params.get_child_optional("strength"))
config_.strength.Read(params.get_child("strength"));
}
void Geq::Prepare(Metadata *image_metadata)
{
LuxStatus lux_status = {};
lux_status.lux = 400;
if (image_metadata->Get("lux.status", lux_status))
RPI_WARN("Geq: no lux data found");
DeviceStatus device_status = {};
device_status.analogue_gain = 1.0; // in case not found
if (image_metadata->Get("device.status", device_status))
RPI_WARN("Geq: no device metadata - use analogue gain of 1x");
GeqStatus geq_status = {};
double strength =
config_.strength.Empty()
? 1.0
: config_.strength.Eval(config_.strength.Domain().Clip(
lux_status.lux));
strength *= device_status.analogue_gain;
double offset = config_.offset * strength;
double slope = config_.slope * strength;
geq_status.offset = std::min(65535.0, std::max(0.0, offset));
geq_status.slope = std::min(.99999, std::max(0.0, slope));
RPI_LOG("Geq: offset " << geq_status.offset << " slope "
<< geq_status.slope << " (analogue gain "
<< device_status.analogue_gain << " lux "
<< lux_status.lux << ")");
image_metadata->Set("geq.status", geq_status);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Geq(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,34 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* geq.hpp - GEQ (green equalisation) control algorithm
*/
#pragma once
#include "../algorithm.hpp"
#include "../geq_status.h"
namespace RPi {
// Back End algorithm to apply appropriate GEQ settings.
struct GeqConfig {
uint16_t offset;
double slope;
Pwl strength; // lux to strength factor
};
class Geq : public Algorithm
{
public:
Geq(Controller *controller);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
private:
GeqConfig config_;
};
} // namespace RPi

View file

@ -0,0 +1,104 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* lux.cpp - Lux control algorithm
*/
#include <math.h>
#include "linux/bcm2835-isp.h"
#include "../device_status.h"
#include "../logging.hpp"
#include "lux.hpp"
using namespace RPi;
#define NAME "rpi.lux"
Lux::Lux(Controller *controller)
: Algorithm(controller)
{
// Put in some defaults as there will be no meaningful values until
// Process has run.
status_.aperture = 1.0;
status_.lux = 400;
}
char const *Lux::Name() const
{
return NAME;
}
void Lux::Read(boost::property_tree::ptree const &params)
{
RPI_LOG(Name());
reference_shutter_speed_ =
params.get<double>("reference_shutter_speed");
reference_gain_ = params.get<double>("reference_gain");
reference_aperture_ = params.get<double>("reference_aperture", 1.0);
reference_Y_ = params.get<double>("reference_Y");
reference_lux_ = params.get<double>("reference_lux");
current_aperture_ = reference_aperture_;
}
void Lux::Prepare(Metadata *image_metadata)
{
std::unique_lock<std::mutex> lock(mutex_);
image_metadata->Set("lux.status", status_);
}
void Lux::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
// set some initial values to shut the compiler up
DeviceStatus device_status =
{ .shutter_speed = 1.0,
.analogue_gain = 1.0,
.lens_position = 0.0,
.aperture = 0.0,
.flash_intensity = 0.0 };
if (image_metadata->Get("device.status", device_status) == 0) {
double current_gain = device_status.analogue_gain;
double current_shutter_speed = device_status.shutter_speed;
double current_aperture = device_status.aperture;
if (current_aperture == 0)
current_aperture = current_aperture_;
uint64_t sum = 0;
uint32_t num = 0;
uint32_t *bin = stats->hist[0].g_hist;
const int num_bins = sizeof(stats->hist[0].g_hist) /
sizeof(stats->hist[0].g_hist[0]);
for (int i = 0; i < num_bins; i++)
sum += bin[i] * (uint64_t)i, num += bin[i];
// add .5 to reflect the mid-points of bins
double current_Y = sum / (double)num + .5;
double gain_ratio = reference_gain_ / current_gain;
double shutter_speed_ratio =
reference_shutter_speed_ / current_shutter_speed;
double aperture_ratio = reference_aperture_ / current_aperture;
double Y_ratio = current_Y * (65536 / num_bins) / reference_Y_;
double estimated_lux = shutter_speed_ratio * gain_ratio *
aperture_ratio * aperture_ratio *
Y_ratio * reference_lux_;
LuxStatus status;
status.lux = estimated_lux;
status.aperture = current_aperture;
RPI_LOG(Name() << ": estimated lux " << estimated_lux);
{
std::unique_lock<std::mutex> lock(mutex_);
status_ = status;
}
// Overwrite the metadata here as well, so that downstream
// algorithms get the latest value.
image_metadata->Set("lux.status", status);
} else
RPI_WARN(Name() << ": no device metadata");
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Lux(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,42 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* lux.hpp - Lux control algorithm
*/
#pragma once
#include <atomic>
#include <mutex>
#include "../lux_status.h"
#include "../algorithm.hpp"
// This is our implementation of the "lux control algorithm".
namespace RPi {
class Lux : public Algorithm
{
public:
Lux(Controller *controller);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
void Process(StatisticsPtr &stats, Metadata *image_metadata) override;
void SetCurrentAperture(double aperture);
private:
// These values define the conditions of the reference image, against
// which we compare the new image.
double reference_shutter_speed_; // in micro-seconds
double reference_gain_;
double reference_aperture_; // units of 1/f
double reference_Y_; // out of 65536
double reference_lux_;
std::atomic<double> current_aperture_;
LuxStatus status_;
std::mutex mutex_;
};
} // namespace RPi

View file

@ -0,0 +1,71 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* noise.cpp - Noise control algorithm
*/
#include <math.h>
#include "../device_status.h"
#include "../logging.hpp"
#include "../noise_status.h"
#include "noise.hpp"
using namespace RPi;
#define NAME "rpi.noise"
Noise::Noise(Controller *controller)
: Algorithm(controller), mode_factor_(1.0)
{
}
char const *Noise::Name() const
{
return NAME;
}
void Noise::SwitchMode(CameraMode const &camera_mode)
{
// For example, we would expect a 2x2 binned mode to have a "noise
// factor" of sqrt(2x2) = 2. (can't be less than one, right?)
mode_factor_ = std::max(1.0, camera_mode.noise_factor);
}
void Noise::Read(boost::property_tree::ptree const &params)
{
RPI_LOG(Name());
reference_constant_ = params.get<double>("reference_constant");
reference_slope_ = params.get<double>("reference_slope");
}
void Noise::Prepare(Metadata *image_metadata)
{
struct DeviceStatus device_status;
device_status.analogue_gain = 1.0; // keep compiler calm
if (image_metadata->Get("device.status", device_status) == 0) {
// There is a slight question as to exactly how the noise
// profile, specifically the constant part of it, scales. For
// now we assume it all scales the same, and we'll revisit this
// if it proves substantially wrong. NOTE: we may also want to
// make some adjustments based on the camera mode (such as
// binning), if we knew how to discover it...
double factor = sqrt(device_status.analogue_gain) / mode_factor_;
struct NoiseStatus status;
status.noise_constant = reference_constant_ * factor;
status.noise_slope = reference_slope_ * factor;
image_metadata->Set("noise.status", status);
RPI_LOG(Name() << ": constant " << status.noise_constant
<< " slope " << status.noise_slope);
} else
RPI_WARN(Name() << " no metadata");
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return new Noise(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* noise.hpp - Noise control algorithm
*/
#pragma once
#include "../algorithm.hpp"
#include "../noise_status.h"
// This is our implementation of the "noise algorithm".
namespace RPi {
class Noise : public Algorithm
{
public:
Noise(Controller *controller);
char const *Name() const override;
void SwitchMode(CameraMode const &camera_mode) override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
private:
// the noise profile for analogue gain of 1.0
double reference_constant_;
double reference_slope_;
std::atomic<double> mode_factor_;
};
} // namespace RPi

View file

@ -0,0 +1,63 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* sdn.cpp - SDN (spatial denoise) control algorithm
*/
#include "../noise_status.h"
#include "../sdn_status.h"
#include "sdn.hpp"
using namespace RPi;
// Calculate settings for the spatial denoise block using the noise profile in
// the image metadata.
#define NAME "rpi.sdn"
Sdn::Sdn(Controller *controller)
: Algorithm(controller)
{
}
char const *Sdn::Name() const
{
return NAME;
}
void Sdn::Read(boost::property_tree::ptree const &params)
{
deviation_ = params.get<double>("deviation", 3.2);
strength_ = params.get<double>("strength", 0.75);
}
void Sdn::Initialise() {}
void Sdn::Prepare(Metadata *image_metadata)
{
struct NoiseStatus noise_status = {};
noise_status.noise_slope = 3.0; // in case no metadata
if (image_metadata->Get("noise.status", noise_status) != 0)
RPI_WARN("Sdn: no noise profile found");
RPI_LOG("Noise profile: constant " << noise_status.noise_constant
<< " slope "
<< noise_status.noise_slope);
struct SdnStatus status;
status.noise_constant = noise_status.noise_constant * deviation_;
status.noise_slope = noise_status.noise_slope * deviation_;
status.strength = strength_;
image_metadata->Set("sdn.status", status);
RPI_LOG("Sdn: programmed constant " << status.noise_constant
<< " slope " << status.noise_slope
<< " strength "
<< status.strength);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Sdn(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,29 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* sdn.hpp - SDN (spatial denoise) control algorithm
*/
#pragma once
#include "../algorithm.hpp"
namespace RPi {
// Algorithm to calculate correct spatial denoise (SDN) settings.
class Sdn : public Algorithm
{
public:
Sdn(Controller *controller = NULL);
char const *Name() const override;
void Read(boost::property_tree::ptree const &params) override;
void Initialise() override;
void Prepare(Metadata *image_metadata) override;
private:
double deviation_;
double strength_;
};
} // namespace RPi

View file

@ -0,0 +1,60 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* sharpen.cpp - sharpening control algorithm
*/
#include <math.h>
#include "../logging.hpp"
#include "../sharpen_status.h"
#include "sharpen.hpp"
using namespace RPi;
#define NAME "rpi.sharpen"
Sharpen::Sharpen(Controller *controller)
: Algorithm(controller)
{
}
char const *Sharpen::Name() const
{
return NAME;
}
void Sharpen::SwitchMode(CameraMode const &camera_mode)
{
// can't be less than one, right?
mode_factor_ = std::max(1.0, camera_mode.noise_factor);
}
void Sharpen::Read(boost::property_tree::ptree const &params)
{
RPI_LOG(Name());
threshold_ = params.get<double>("threshold", 1.0);
strength_ = params.get<double>("strength", 1.0);
limit_ = params.get<double>("limit", 1.0);
}
void Sharpen::Prepare(Metadata *image_metadata)
{
double mode_factor = mode_factor_;
struct SharpenStatus status;
// Binned modes seem to need the sharpening toned down with this
// pipeline.
status.threshold = threshold_ * mode_factor;
status.strength = strength_ / mode_factor;
status.limit = limit_ / mode_factor;
image_metadata->Set("sharpen.status", status);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return new Sharpen(controller);
}
static RegisterAlgorithm reg(NAME, &Create);

View file

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* sharpen.hpp - sharpening control algorithm
*/
#pragma once
#include "../algorithm.hpp"
#include "../sharpen_status.h"
// This is our implementation of the "sharpen algorithm".
namespace RPi {
class Sharpen : public Algorithm
{
public:
Sharpen(Controller *controller);
char const *Name() const override;
void SwitchMode(CameraMode const &camera_mode) override;
void Read(boost::property_tree::ptree const &params) override;
void Prepare(Metadata *image_metadata) override;
private:
double threshold_;
double strength_;
double limit_;
std::atomic<double> mode_factor_;
};
} // namespace RPi

View file

@ -0,0 +1,23 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* sdn_status.h - SDN (spatial denoise) control algorithm status
*/
#pragma once
// This stores the parameters required for Spatial Denoise (SDN).
#ifdef __cplusplus
extern "C" {
#endif
struct SdnStatus {
double noise_constant;
double noise_slope;
double strength;
};
#ifdef __cplusplus
}
#endif

View file

@ -0,0 +1,26 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* sharpen_status.h - Sharpen control algorithm status
*/
#pragma once
// The "sharpen" algorithm stores the strength to use.
#ifdef __cplusplus
extern "C" {
#endif
struct SharpenStatus {
// controls the smallest level of detail (or noise!) that sharpening will pick up
double threshold;
// the rate at which the sharpening response ramps once above the threshold
double strength;
// upper limit of the allowed sharpening response
double limit;
};
#ifdef __cplusplus
}
#endif