android: Update Android headers

Import the latest version of the Android headers from Chrome OS (commit
a30340e77ec8 ("camera: Uprev Android camera headers")). This brings in
the Camera HAL v3.5 support.

The headers are imported verbatim, except for the addition of the SPDX
headers.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Hirokazu Honda <hiroh@chromium.org>
Tested-by: Paul Elder <paul.elder@ideasonboard.com>
This commit is contained in:
Laurent Pinchart 2021-05-27 03:46:34 +03:00
parent b602bbe811
commit 1ac84feab8
13 changed files with 680 additions and 1660 deletions

View file

@ -18,18 +18,37 @@
#ifndef NATIVE_HANDLE_H_
#define NATIVE_HANDLE_H_
#include <stdalign.h>
#ifdef __cplusplus
extern "C" {
#endif
#define NATIVE_HANDLE_MAX_FDS 1024
#define NATIVE_HANDLE_MAX_INTS 1024
/* Declare a char array for use with native_handle_init */
#define NATIVE_HANDLE_DECLARE_STORAGE(name, maxFds, maxInts) \
alignas(native_handle_t) char (name)[ \
sizeof(native_handle_t) + sizeof(int) * ((maxFds) + (maxInts))]
typedef struct native_handle
{
int version; /* sizeof(native_handle_t) */
int numFds; /* number of file-descriptors at &data[0] */
int numInts; /* number of ints at &data[numFds] */
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wzero-length-array"
#endif
int data[0]; /* numFds + numInts ints */
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
} native_handle_t;
typedef const native_handle_t* buffer_handle_t;
/*
* native_handle_close
*
@ -40,6 +59,14 @@ typedef struct native_handle
*/
int native_handle_close(const native_handle_t* h);
/*
* native_handle_init
*
* Initializes a native_handle_t from storage. storage must be declared with
* NATIVE_HANDLE_DECLARE_STORAGE. numFds and numInts must not respectively
* exceed maxFds and maxInts used to declare the storage.
*/
native_handle_t* native_handle_init(char* storage, int numFds, int numInts);
/*
* native_handle_create
@ -50,6 +77,15 @@ int native_handle_close(const native_handle_t* h);
*/
native_handle_t* native_handle_create(int numFds, int numInts);
/*
* native_handle_clone
*
* creates a native_handle_t and initializes it from another native_handle_t.
* Must be destroyed with native_handle_delete().
*
*/
native_handle_t* native_handle_clone(const native_handle_t* handle);
/*
* native_handle_delete
*

View file

@ -204,6 +204,15 @@ enum {
* (except disconnect and sending CAMERA_CMD_PING) after getting this.
*/
CAMERA_ERROR_RELEASED = 2,
/**
* Camera was released because device policy change or the client application
* is going to background. The client should call Camera::disconnect
* immediately after getting this notification. Otherwise, the camera will be
* released by camera service in a short time. The client should not call any
* method (except disconnect and sending CAMERA_CMD_PING) after getting this.
*/
CAMERA_ERROR_DISABLED = 3,
CAMERA_ERROR_SERVER_DIED = 100
};

View file

@ -0,0 +1,140 @@
// This file is autogenerated by hidl-gen. Do not edit manually.
// Source: android.hardware.graphics.common@1.0
// Location: hardware/interfaces/graphics/common/1.0/
#ifndef HIDL_GENERATED_ANDROID_HARDWARE_GRAPHICS_COMMON_V1_0_EXPORTED_CONSTANTS_H_
#define HIDL_GENERATED_ANDROID_HARDWARE_GRAPHICS_COMMON_V1_0_EXPORTED_CONSTANTS_H_
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
HAL_PIXEL_FORMAT_RGBA_8888 = 1,
HAL_PIXEL_FORMAT_RGBX_8888 = 2,
HAL_PIXEL_FORMAT_RGB_888 = 3,
HAL_PIXEL_FORMAT_RGB_565 = 4,
HAL_PIXEL_FORMAT_BGRA_8888 = 5,
HAL_PIXEL_FORMAT_YCBCR_422_SP = 16,
HAL_PIXEL_FORMAT_YCRCB_420_SP = 17,
HAL_PIXEL_FORMAT_YCBCR_422_I = 20,
HAL_PIXEL_FORMAT_RGBA_FP16 = 22,
HAL_PIXEL_FORMAT_RAW16 = 32,
HAL_PIXEL_FORMAT_BLOB = 33,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED = 34,
HAL_PIXEL_FORMAT_YCBCR_420_888 = 35,
HAL_PIXEL_FORMAT_RAW_OPAQUE = 36,
HAL_PIXEL_FORMAT_RAW10 = 37,
HAL_PIXEL_FORMAT_RAW12 = 38,
HAL_PIXEL_FORMAT_RGBA_1010102 = 43,
HAL_PIXEL_FORMAT_Y8 = 538982489,
HAL_PIXEL_FORMAT_Y16 = 540422489,
HAL_PIXEL_FORMAT_YV12 = 842094169,
} android_pixel_format_t;
typedef enum {
HAL_TRANSFORM_FLIP_H = 1, // (1 << 0)
HAL_TRANSFORM_FLIP_V = 2, // (1 << 1)
HAL_TRANSFORM_ROT_90 = 4, // (1 << 2)
HAL_TRANSFORM_ROT_180 = 3, // (FLIP_H | FLIP_V)
HAL_TRANSFORM_ROT_270 = 7, // ((FLIP_H | FLIP_V) | ROT_90)
} android_transform_t;
typedef enum {
HAL_DATASPACE_UNKNOWN = 0,
HAL_DATASPACE_ARBITRARY = 1,
HAL_DATASPACE_STANDARD_SHIFT = 16,
HAL_DATASPACE_STANDARD_MASK = 4128768, // (63 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_UNSPECIFIED = 0, // (0 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT709 = 65536, // (1 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT601_625 = 131072, // (2 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT601_625_UNADJUSTED = 196608, // (3 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT601_525 = 262144, // (4 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT601_525_UNADJUSTED = 327680, // (5 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT2020 = 393216, // (6 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT2020_CONSTANT_LUMINANCE = 458752, // (7 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_BT470M = 524288, // (8 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_FILM = 589824, // (9 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_DCI_P3 = 655360, // (10 << STANDARD_SHIFT)
HAL_DATASPACE_STANDARD_ADOBE_RGB = 720896, // (11 << STANDARD_SHIFT)
HAL_DATASPACE_TRANSFER_SHIFT = 22,
HAL_DATASPACE_TRANSFER_MASK = 130023424, // (31 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_UNSPECIFIED = 0, // (0 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_LINEAR = 4194304, // (1 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_SRGB = 8388608, // (2 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_SMPTE_170M = 12582912, // (3 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_GAMMA2_2 = 16777216, // (4 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_GAMMA2_6 = 20971520, // (5 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_GAMMA2_8 = 25165824, // (6 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_ST2084 = 29360128, // (7 << TRANSFER_SHIFT)
HAL_DATASPACE_TRANSFER_HLG = 33554432, // (8 << TRANSFER_SHIFT)
HAL_DATASPACE_RANGE_SHIFT = 27,
HAL_DATASPACE_RANGE_MASK = 939524096, // (7 << RANGE_SHIFT)
HAL_DATASPACE_RANGE_UNSPECIFIED = 0, // (0 << RANGE_SHIFT)
HAL_DATASPACE_RANGE_FULL = 134217728, // (1 << RANGE_SHIFT)
HAL_DATASPACE_RANGE_LIMITED = 268435456, // (2 << RANGE_SHIFT)
HAL_DATASPACE_RANGE_EXTENDED = 402653184, // (3 << RANGE_SHIFT)
HAL_DATASPACE_SRGB_LINEAR = 512,
HAL_DATASPACE_V0_SRGB_LINEAR = 138477568, // ((STANDARD_BT709 | TRANSFER_LINEAR) | RANGE_FULL)
HAL_DATASPACE_V0_SCRGB_LINEAR =
406913024, // ((STANDARD_BT709 | TRANSFER_LINEAR) | RANGE_EXTENDED)
HAL_DATASPACE_SRGB = 513,
HAL_DATASPACE_V0_SRGB = 142671872, // ((STANDARD_BT709 | TRANSFER_SRGB) | RANGE_FULL)
HAL_DATASPACE_V0_SCRGB = 411107328, // ((STANDARD_BT709 | TRANSFER_SRGB) | RANGE_EXTENDED)
HAL_DATASPACE_JFIF = 257,
HAL_DATASPACE_V0_JFIF = 146931712, // ((STANDARD_BT601_625 | TRANSFER_SMPTE_170M) | RANGE_FULL)
HAL_DATASPACE_BT601_625 = 258,
HAL_DATASPACE_V0_BT601_625 =
281149440, // ((STANDARD_BT601_625 | TRANSFER_SMPTE_170M) | RANGE_LIMITED)
HAL_DATASPACE_BT601_525 = 259,
HAL_DATASPACE_V0_BT601_525 =
281280512, // ((STANDARD_BT601_525 | TRANSFER_SMPTE_170M) | RANGE_LIMITED)
HAL_DATASPACE_BT709 = 260,
HAL_DATASPACE_V0_BT709 = 281083904, // ((STANDARD_BT709 | TRANSFER_SMPTE_170M) | RANGE_LIMITED)
HAL_DATASPACE_DCI_P3_LINEAR = 139067392, // ((STANDARD_DCI_P3 | TRANSFER_LINEAR) | RANGE_FULL)
HAL_DATASPACE_DCI_P3 = 155844608, // ((STANDARD_DCI_P3 | TRANSFER_GAMMA2_6) | RANGE_FULL)
HAL_DATASPACE_DISPLAY_P3_LINEAR =
139067392, // ((STANDARD_DCI_P3 | TRANSFER_LINEAR) | RANGE_FULL)
HAL_DATASPACE_DISPLAY_P3 = 143261696, // ((STANDARD_DCI_P3 | TRANSFER_SRGB) | RANGE_FULL)
HAL_DATASPACE_ADOBE_RGB = 151715840, // ((STANDARD_ADOBE_RGB | TRANSFER_GAMMA2_2) | RANGE_FULL)
HAL_DATASPACE_BT2020_LINEAR = 138805248, // ((STANDARD_BT2020 | TRANSFER_LINEAR) | RANGE_FULL)
HAL_DATASPACE_BT2020 = 147193856, // ((STANDARD_BT2020 | TRANSFER_SMPTE_170M) | RANGE_FULL)
HAL_DATASPACE_BT2020_PQ = 163971072, // ((STANDARD_BT2020 | TRANSFER_ST2084) | RANGE_FULL)
HAL_DATASPACE_DEPTH = 4096,
HAL_DATASPACE_SENSOR = 4097,
} android_dataspace_t;
typedef enum {
HAL_COLOR_MODE_NATIVE = 0,
HAL_COLOR_MODE_STANDARD_BT601_625 = 1,
HAL_COLOR_MODE_STANDARD_BT601_625_UNADJUSTED = 2,
HAL_COLOR_MODE_STANDARD_BT601_525 = 3,
HAL_COLOR_MODE_STANDARD_BT601_525_UNADJUSTED = 4,
HAL_COLOR_MODE_STANDARD_BT709 = 5,
HAL_COLOR_MODE_DCI_P3 = 6,
HAL_COLOR_MODE_SRGB = 7,
HAL_COLOR_MODE_ADOBE_RGB = 8,
HAL_COLOR_MODE_DISPLAY_P3 = 9,
} android_color_mode_t;
typedef enum {
HAL_COLOR_TRANSFORM_IDENTITY = 0,
HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX = 1,
HAL_COLOR_TRANSFORM_VALUE_INVERSE = 2,
HAL_COLOR_TRANSFORM_GRAYSCALE = 3,
HAL_COLOR_TRANSFORM_CORRECT_PROTANOPIA = 4,
HAL_COLOR_TRANSFORM_CORRECT_DEUTERANOPIA = 5,
HAL_COLOR_TRANSFORM_CORRECT_TRITANOPIA = 6,
} android_color_transform_t;
typedef enum {
HAL_HDR_DOLBY_VISION = 1,
HAL_HDR_HDR10 = 2,
HAL_HDR_HLG = 3,
} android_hdr_t;
#ifdef __cplusplus
}
#endif
#endif // HIDL_GENERATED_ANDROID_HARDWARE_GRAPHICS_COMMON_V1_0_EXPORTED_CONSTANTS_H_

View file

@ -0,0 +1,48 @@
// This file is autogenerated by hidl-gen. Do not edit manually.
// Source: android.hardware.graphics.common@1.1
// Location: hardware/interfaces/graphics/common/1.1/
#ifndef HIDL_GENERATED_ANDROID_HARDWARE_GRAPHICS_COMMON_V1_1_EXPORTED_CONSTANTS_H_
#define HIDL_GENERATED_ANDROID_HARDWARE_GRAPHICS_COMMON_V1_1_EXPORTED_CONSTANTS_H_
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
HAL_PIXEL_FORMAT_DEPTH_16 = 48,
HAL_PIXEL_FORMAT_DEPTH_24 = 49,
HAL_PIXEL_FORMAT_DEPTH_24_STENCIL_8 = 50,
HAL_PIXEL_FORMAT_DEPTH_32F = 51,
HAL_PIXEL_FORMAT_DEPTH_32F_STENCIL_8 = 52,
HAL_PIXEL_FORMAT_STENCIL_8 = 53,
HAL_PIXEL_FORMAT_YCBCR_P010 = 54,
} android_pixel_format_v1_1_t;
typedef enum {
HAL_DATASPACE_BT2020_ITU =
281411584, // ((STANDARD_BT2020 | TRANSFER_SMPTE_170M) | RANGE_LIMITED)
HAL_DATASPACE_BT2020_ITU_PQ =
298188800, // ((STANDARD_BT2020 | TRANSFER_ST2084) | RANGE_LIMITED)
HAL_DATASPACE_BT2020_ITU_HLG = 302383104, // ((STANDARD_BT2020 | TRANSFER_HLG) | RANGE_LIMITED)
HAL_DATASPACE_BT2020_HLG = 168165376, // ((STANDARD_BT2020 | TRANSFER_HLG) | RANGE_FULL)
} android_dataspace_v1_1_t;
typedef enum {
HAL_COLOR_MODE_BT2020 = 10,
HAL_COLOR_MODE_BT2100_PQ = 11,
HAL_COLOR_MODE_BT2100_HLG = 12,
} android_color_mode_v1_1_t;
typedef enum {
HAL_RENDER_INTENT_COLORIMETRIC = 0,
HAL_RENDER_INTENT_ENHANCE = 1,
HAL_RENDER_INTENT_TONE_MAP_COLORIMETRIC = 2,
HAL_RENDER_INTENT_TONE_MAP_ENHANCE = 3,
} android_render_intent_v1_1_t;
#ifdef __cplusplus
}
#endif
#endif // HIDL_GENERATED_ANDROID_HARDWARE_GRAPHICS_COMMON_V1_1_EXPORTED_CONSTANTS_H_

View file

@ -0,0 +1,7 @@
#ifndef SYSTEM_CORE_GRAPHICS_BASE_H_
#define SYSTEM_CORE_GRAPHICS_BASE_H_
#include "graphics-base-v1.0.h"
#include "graphics-base-v1.1.h"
#endif // SYSTEM_CORE_GRAPHICS_BASE_H_

View file

@ -0,0 +1,16 @@
#ifndef SYSTEM_CORE_GRAPHICS_SW_H_
#define SYSTEM_CORE_GRAPHICS_SW_H_
/* Software formats not in the HAL definitions. */
typedef enum {
HAL_PIXEL_FORMAT_YCBCR_422_888 = 39, // 0x27
HAL_PIXEL_FORMAT_YCBCR_444_888 = 40, // 0x28
HAL_PIXEL_FORMAT_FLEX_RGB_888 = 41, // 0x29
HAL_PIXEL_FORMAT_FLEX_RGBA_8888 = 42, // 0x2A
} android_pixel_format_sw_t;
/* for compatibility */
#define HAL_PIXEL_FORMAT_YCbCr_422_888 HAL_PIXEL_FORMAT_YCBCR_422_888
#define HAL_PIXEL_FORMAT_YCbCr_444_888 HAL_PIXEL_FORMAT_YCBCR_444_888
#endif // SYSTEM_CORE_GRAPHICS_SW_H_

View file

@ -18,12 +18,32 @@
#ifndef SYSTEM_CORE_INCLUDE_ANDROID_GRAPHICS_H
#define SYSTEM_CORE_INCLUDE_ANDROID_GRAPHICS_H
#include <stddef.h>
#include <stdint.h>
/*
* Some of the enums are now defined in HIDL in hardware/interfaces and are
* generated.
*/
#include "graphics-base.h"
#include "graphics-sw.h"
#ifdef __cplusplus
extern "C" {
#endif
/* for compatibility */
#define HAL_PIXEL_FORMAT_YCbCr_420_888 HAL_PIXEL_FORMAT_YCBCR_420_888
#define HAL_PIXEL_FORMAT_YCbCr_422_SP HAL_PIXEL_FORMAT_YCBCR_422_SP
#define HAL_PIXEL_FORMAT_YCrCb_420_SP HAL_PIXEL_FORMAT_YCRCB_420_SP
#define HAL_PIXEL_FORMAT_YCbCr_422_I HAL_PIXEL_FORMAT_YCBCR_422_I
typedef android_pixel_format_t android_pixel_format;
typedef android_transform_t android_transform;
typedef android_dataspace_t android_dataspace;
typedef android_color_mode_t android_color_mode;
typedef android_color_transform_t android_color_transform;
typedef android_hdr_t android_hdr;
/*
* If the HAL needs to create service threads to handle graphics related
* tasks, these threads need to run at HAL_PRIORITY_URGENT_DISPLAY priority
@ -38,411 +58,6 @@ extern "C" {
#define HAL_PRIORITY_URGENT_DISPLAY (-8)
/**
* pixel format definitions
*/
enum {
/*
* "linear" color pixel formats:
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*
* The color space determines, for example, if the formats are linear or
* gamma-corrected; or whether any special operations are performed when
* reading or writing into a buffer in one of these formats.
*/
HAL_PIXEL_FORMAT_RGBA_8888 = 1,
HAL_PIXEL_FORMAT_RGBX_8888 = 2,
HAL_PIXEL_FORMAT_RGB_888 = 3,
HAL_PIXEL_FORMAT_RGB_565 = 4,
HAL_PIXEL_FORMAT_BGRA_8888 = 5,
/*
* 0x100 - 0x1FF
*
* This range is reserved for pixel formats that are specific to the HAL
* implementation. Implementations can use any value in this range to
* communicate video pixel formats between their HAL modules. These formats
* must not have an alpha channel. Additionally, an EGLimage created from a
* gralloc buffer of one of these formats must be supported for use with the
* GL_OES_EGL_image_external OpenGL ES extension.
*/
/*
* Android YUV format:
*
* This format is exposed outside of the HAL to software decoders and
* applications. EGLImageKHR must support it in conjunction with the
* OES_EGL_image_external extension.
*
* YV12 is a 4:2:0 YCrCb planar format comprised of a WxH Y plane followed
* by (W/2) x (H/2) Cr and Cb planes.
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
*
* y_size = stride * height
* c_stride = ALIGN(stride/2, 16)
* c_size = c_stride * height/2
* size = y_size + c_size * 2
* cr_offset = y_size
* cb_offset = y_size + c_size
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_YV12 = 0x32315659, // YCrCb 4:2:0 Planar
/*
* Android Y8 format:
*
* This format is exposed outside of the HAL to the framework.
* The expected gralloc usage flags are SW_* and HW_CAMERA_*,
* and no other HW_ flags will be used.
*
* Y8 is a YUV planar format comprised of a WxH Y plane,
* with each pixel being represented by 8 bits.
*
* It is equivalent to just the Y plane from YV12.
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
*
* size = stride * height
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_Y8 = 0x20203859,
/*
* Android Y16 format:
*
* This format is exposed outside of the HAL to the framework.
* The expected gralloc usage flags are SW_* and HW_CAMERA_*,
* and no other HW_ flags will be used.
*
* Y16 is a YUV planar format comprised of a WxH Y plane,
* with each pixel being represented by 16 bits.
*
* It is just like Y8, but has double the bits per pixel (little endian).
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
* - strides are specified in pixels, not in bytes
*
* size = stride * height * 2
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer, except that dataSpace field
* HAL_DATASPACE_DEPTH indicates that this buffer contains a depth
* image where each sample is a distance value measured by a depth camera,
* plus an associated confidence value.
*/
HAL_PIXEL_FORMAT_Y16 = 0x20363159,
/*
* Android RAW sensor format:
*
* This format is exposed outside of the camera HAL to applications.
*
* RAW16 is a single-channel, 16-bit, little endian format, typically
* representing raw Bayer-pattern images from an image sensor, with minimal
* processing.
*
* The exact pixel layout of the data in the buffer is sensor-dependent, and
* needs to be queried from the camera device.
*
* Generally, not all 16 bits are used; more common values are 10 or 12
* bits. If not all bits are used, the lower-order bits are filled first.
* All parameters to interpret the raw data (black and white points,
* color space, etc) must be queried from the camera device.
*
* This format assumes
* - an even width
* - an even height
* - a horizontal stride multiple of 16 pixels
* - a vertical stride equal to the height
* - strides are specified in pixels, not in bytes
*
* size = stride * height * 2
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW16 = 0x20,
/*
* Android RAW10 format:
*
* This format is exposed outside of the camera HAL to applications.
*
* RAW10 is a single-channel, 10-bit per pixel, densely packed in each row,
* unprocessed format, usually representing raw Bayer-pattern images coming from
* an image sensor.
*
* In an image buffer with this format, starting from the first pixel of each
* row, each 4 consecutive pixels are packed into 5 bytes (40 bits). Each one
* of the first 4 bytes contains the top 8 bits of each pixel, The fifth byte
* contains the 2 least significant bits of the 4 pixels, the exact layout data
* for each 4 consecutive pixels is illustrated below (Pi[j] stands for the jth
* bit of the ith pixel):
*
* bit 7 bit 0
* =====|=====|=====|=====|=====|=====|=====|=====|
* Byte 0: |P0[9]|P0[8]|P0[7]|P0[6]|P0[5]|P0[4]|P0[3]|P0[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 1: |P1[9]|P1[8]|P1[7]|P1[6]|P1[5]|P1[4]|P1[3]|P1[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 2: |P2[9]|P2[8]|P2[7]|P2[6]|P2[5]|P2[4]|P2[3]|P2[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 3: |P3[9]|P3[8]|P3[7]|P3[6]|P3[5]|P3[4]|P3[3]|P3[2]|
* |-----|-----|-----|-----|-----|-----|-----|-----|
* Byte 4: |P3[1]|P3[0]|P2[1]|P2[0]|P1[1]|P1[0]|P0[1]|P0[0]|
* ===============================================
*
* This format assumes
* - a width multiple of 4 pixels
* - an even height
* - a vertical stride equal to the height
* - strides are specified in bytes, not in pixels
*
* size = stride * height
*
* When stride is equal to width * (10 / 8), there will be no padding bytes at
* the end of each row, the entire image data is densely packed. When stride is
* larger than width * (10 / 8), padding bytes will be present at the end of each
* row (including the last row).
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace field should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW10 = 0x25,
/*
* Android RAW12 format:
*
* This format is exposed outside of camera HAL to applications.
*
* RAW12 is a single-channel, 12-bit per pixel, densely packed in each row,
* unprocessed format, usually representing raw Bayer-pattern images coming from
* an image sensor.
*
* In an image buffer with this format, starting from the first pixel of each
* row, each two consecutive pixels are packed into 3 bytes (24 bits). The first
* and second byte contains the top 8 bits of first and second pixel. The third
* byte contains the 4 least significant bits of the two pixels, the exact layout
* data for each two consecutive pixels is illustrated below (Pi[j] stands for
* the jth bit of the ith pixel):
*
* bit 7 bit 0
* ======|======|======|======|======|======|======|======|
* Byte 0: |P0[11]|P0[10]|P0[ 9]|P0[ 8]|P0[ 7]|P0[ 6]|P0[ 5]|P0[ 4]|
* |------|------|------|------|------|------|------|------|
* Byte 1: |P1[11]|P1[10]|P1[ 9]|P1[ 8]|P1[ 7]|P1[ 6]|P1[ 5]|P1[ 4]|
* |------|------|------|------|------|------|------|------|
* Byte 2: |P1[ 3]|P1[ 2]|P1[ 1]|P1[ 0]|P0[ 3]|P0[ 2]|P0[ 1]|P0[ 0]|
* =======================================================
*
* This format assumes:
* - a width multiple of 4 pixels
* - an even height
* - a vertical stride equal to the height
* - strides are specified in bytes, not in pixels
*
* size = stride * height
*
* When stride is equal to width * (12 / 8), there will be no padding bytes at
* the end of each row, the entire image data is densely packed. When stride is
* larger than width * (12 / 8), padding bytes will be present at the end of
* each row (including the last row).
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace field should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW12 = 0x26,
/*
* Android opaque RAW format:
*
* This format is exposed outside of the camera HAL to applications.
*
* RAW_OPAQUE is a format for unprocessed raw image buffers coming from an
* image sensor. The actual structure of buffers of this format is
* implementation-dependent.
*
* This format must be accepted by the gralloc module when used with the
* following usage flags:
* - GRALLOC_USAGE_HW_CAMERA_*
* - GRALLOC_USAGE_SW_*
* - GRALLOC_USAGE_RENDERSCRIPT
*
* When used with ANativeWindow, the dataSpace field should be
* HAL_DATASPACE_ARBITRARY, as raw image sensor buffers require substantial
* extra metadata to define.
*/
HAL_PIXEL_FORMAT_RAW_OPAQUE = 0x24,
/*
* Android binary blob graphics buffer format:
*
* This format is used to carry task-specific data which does not have a
* standard image structure. The details of the format are left to the two
* endpoints.
*
* A typical use case is for transporting JPEG-compressed images from the
* Camera HAL to the framework or to applications.
*
* Buffers of this format must have a height of 1, and width equal to their
* size in bytes.
*
* When used with ANativeWindow, the mapping of the dataSpace field to
* buffer contents for BLOB is as follows:
*
* dataSpace value | Buffer contents
* -------------------------------+-----------------------------------------
* HAL_DATASPACE_JFIF | An encoded JPEG image
* HAL_DATASPACE_DEPTH | An android_depth_points buffer
* Other | Unsupported
*
*/
HAL_PIXEL_FORMAT_BLOB = 0x21,
/*
* Android format indicating that the choice of format is entirely up to the
* device-specific Gralloc implementation.
*
* The Gralloc implementation should examine the usage bits passed in when
* allocating a buffer with this format, and it should derive the pixel
* format from those usage flags. This format will never be used with any
* of the GRALLOC_USAGE_SW_* usage flags.
*
* If a buffer of this format is to be used as an OpenGL ES texture, the
* framework will assume that sampling the texture will always return an
* alpha value of 1.0 (i.e. the buffer contains only opaque pixel values).
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED = 0x22,
/*
* Android flexible YCbCr 4:2:0 formats
*
* This format allows platforms to use an efficient YCbCr/YCrCb 4:2:0
* buffer layout, while still describing the general format in a
* layout-independent manner. While called YCbCr, it can be
* used to describe formats with either chromatic ordering, as well as
* whole planar or semiplanar layouts.
*
* struct android_ycbcr (below) is the the struct used to describe it.
*
* This format must be accepted by the gralloc module when
* USAGE_SW_WRITE_* or USAGE_SW_READ_* are set.
*
* This format is locked for use by gralloc's (*lock_ycbcr) method, and
* locking with the (*lock) method will return an error.
*
* When used with ANativeWindow, the dataSpace field describes the color
* space of the buffer.
*/
HAL_PIXEL_FORMAT_YCbCr_420_888 = 0x23,
/*
* Android flexible YCbCr 4:2:2 formats
*
* This format allows platforms to use an efficient YCbCr/YCrCb 4:2:2
* buffer layout, while still describing the general format in a
* layout-independent manner. While called YCbCr, it can be
* used to describe formats with either chromatic ordering, as well as
* whole planar or semiplanar layouts.
*
* This format is currently only used by SW readable buffers
* produced by MediaCodecs, so the gralloc module can ignore this format.
*/
HAL_PIXEL_FORMAT_YCbCr_422_888 = 0x27,
/*
* Android flexible YCbCr 4:4:4 formats
*
* This format allows platforms to use an efficient YCbCr/YCrCb 4:4:4
* buffer layout, while still describing the general format in a
* layout-independent manner. While called YCbCr, it can be
* used to describe formats with either chromatic ordering, as well as
* whole planar or semiplanar layouts.
*
* This format is currently only used by SW readable buffers
* produced by MediaCodecs, so the gralloc module can ignore this format.
*/
HAL_PIXEL_FORMAT_YCbCr_444_888 = 0x28,
/*
* Android flexible RGB 888 formats
*
* This format allows platforms to use an efficient RGB/BGR/RGBX/BGRX
* buffer layout, while still describing the general format in a
* layout-independent manner. While called RGB, it can be
* used to describe formats with either color ordering and optional
* padding, as well as whole planar layout.
*
* This format is currently only used by SW readable buffers
* produced by MediaCodecs, so the gralloc module can ignore this format.
*/
HAL_PIXEL_FORMAT_FLEX_RGB_888 = 0x29,
/*
* Android flexible RGBA 8888 formats
*
* This format allows platforms to use an efficient RGBA/BGRA/ARGB/ABGR
* buffer layout, while still describing the general format in a
* layout-independent manner. While called RGBA, it can be
* used to describe formats with any of the component orderings, as
* well as whole planar layout.
*
* This format is currently only used by SW readable buffers
* produced by MediaCodecs, so the gralloc module can ignore this format.
*/
HAL_PIXEL_FORMAT_FLEX_RGBA_8888 = 0x2A,
/* Legacy formats (deprecated), used by ImageFormat.java */
HAL_PIXEL_FORMAT_YCbCr_422_SP = 0x10, // NV16
HAL_PIXEL_FORMAT_YCrCb_420_SP = 0x11, // NV21
HAL_PIXEL_FORMAT_YCbCr_422_I = 0x14, // YUY2
};
/*
* Structure for describing YCbCr formats for consumption by applications.
* This is used with HAL_PIXEL_FORMAT_YCbCr_*_888.
@ -452,15 +67,15 @@ enum {
*
* Buffers must have a 8 bit depth.
*
* @y, @cb, and @cr point to the first byte of their respective planes.
* y, cb, and cr point to the first byte of their respective planes.
*
* Stride describes the distance in bytes from the first value of one row of
* the image to the first value of the next row. It includes the width of the
* image plus padding.
* @ystride is the stride of the luma plane.
* @cstride is the stride of the chroma planes.
* ystride is the stride of the luma plane.
* cstride is the stride of the chroma planes.
*
* @chroma_step is the distance in bytes from one chroma pixel value to the
* chroma_step is the distance in bytes from one chroma pixel value to the
* next. This is 2 bytes for semiplanar (because chroma values are interleaved
* and each chroma value is one byte) and 1 for planar.
*/
@ -477,6 +92,102 @@ struct android_ycbcr {
uint32_t reserved[8];
};
/*
* Structures for describing flexible YUVA/RGBA formats for consumption by
* applications. Such flexible formats contain a plane for each component (e.g.
* red, green, blue), where each plane is laid out in a grid-like pattern
* occupying unique byte addresses and with consistent byte offsets between
* neighboring pixels.
*
* The android_flex_layout structure is used with any pixel format that can be
* represented by it, such as:
* - HAL_PIXEL_FORMAT_YCbCr_*_888
* - HAL_PIXEL_FORMAT_FLEX_RGB*_888
* - HAL_PIXEL_FORMAT_RGB[AX]_888[8],BGRA_8888,RGB_888
* - HAL_PIXEL_FORMAT_YV12,Y8,Y16,YCbCr_422_SP/I,YCrCb_420_SP
* - even implementation defined formats that can be represented by
* the structures
*
* Vertical increment (aka. row increment or stride) describes the distance in
* bytes from the first pixel of one row to the first pixel of the next row
* (below) for the component plane. This can be negative.
*
* Horizontal increment (aka. column or pixel increment) describes the distance
* in bytes from one pixel to the next pixel (to the right) on the same row for
* the component plane. This can be negative.
*
* Each plane can be subsampled either vertically or horizontally by
* a power-of-two factor.
*
* The bit-depth of each component can be arbitrary, as long as the pixels are
* laid out on whole bytes, in native byte-order, using the most significant
* bits of each unit.
*/
typedef enum android_flex_component {
/* luma */
FLEX_COMPONENT_Y = 1 << 0,
/* chroma blue */
FLEX_COMPONENT_Cb = 1 << 1,
/* chroma red */
FLEX_COMPONENT_Cr = 1 << 2,
/* red */
FLEX_COMPONENT_R = 1 << 10,
/* green */
FLEX_COMPONENT_G = 1 << 11,
/* blue */
FLEX_COMPONENT_B = 1 << 12,
/* alpha */
FLEX_COMPONENT_A = 1 << 30,
} android_flex_component_t;
typedef struct android_flex_plane {
/* pointer to the first byte of the top-left pixel of the plane. */
uint8_t *top_left;
android_flex_component_t component;
/* bits allocated for the component in each pixel. Must be a positive
multiple of 8. */
int32_t bits_per_component;
/* number of the most significant bits used in the format for this
component. Must be between 1 and bits_per_component, inclusive. */
int32_t bits_used;
/* horizontal increment */
int32_t h_increment;
/* vertical increment */
int32_t v_increment;
/* horizontal subsampling. Must be a positive power of 2. */
int32_t h_subsampling;
/* vertical subsampling. Must be a positive power of 2. */
int32_t v_subsampling;
} android_flex_plane_t;
typedef enum android_flex_format {
/* not a flexible format */
FLEX_FORMAT_INVALID = 0x0,
FLEX_FORMAT_Y = FLEX_COMPONENT_Y,
FLEX_FORMAT_YCbCr = FLEX_COMPONENT_Y | FLEX_COMPONENT_Cb | FLEX_COMPONENT_Cr,
FLEX_FORMAT_YCbCrA = FLEX_FORMAT_YCbCr | FLEX_COMPONENT_A,
FLEX_FORMAT_RGB = FLEX_COMPONENT_R | FLEX_COMPONENT_G | FLEX_COMPONENT_B,
FLEX_FORMAT_RGBA = FLEX_FORMAT_RGB | FLEX_COMPONENT_A,
} android_flex_format_t;
typedef struct android_flex_layout {
/* the kind of flexible format */
android_flex_format_t format;
/* number of planes; 0 for FLEX_FORMAT_INVALID */
uint32_t num_planes;
/* a plane for each component; ordered in increasing component value order.
E.g. FLEX_FORMAT_RGBA maps 0 -> R, 1 -> G, etc.
Can be NULL for FLEX_FORMAT_INVALID */
android_flex_plane_t *planes;
} android_flex_layout_t;
/**
* Structure used to define depth point clouds for format HAL_PIXEL_FORMAT_BLOB
* with dataSpace value of HAL_DATASPACE_DEPTH.
@ -489,9 +200,9 @@ struct android_ycbcr {
* measurement is correct. It is between 0.f and 1.f, inclusive, with 1.f ==
* 100% confidence.
*
* @num_points is the number of points in the list
* num_points is the number of points in the list
*
* @xyz_points is the flexible array of floating-point values.
* xyz_points is the flexible array of floating-point values.
* It contains (num_points) * 4 floats.
*
* For example:
@ -516,246 +227,40 @@ struct android_depth_points {
/** reserved for future use, set to 0 by gralloc's (*lock)() */
uint32_t reserved[8];
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc99-extensions"
#endif
float xyzc_points[];
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
};
/**
* Transformation definitions
*
* IMPORTANT NOTE:
* HAL_TRANSFORM_ROT_90 is applied CLOCKWISE and AFTER HAL_TRANSFORM_FLIP_{H|V}.
*
*/
enum {
/* flip source image horizontally (around the vertical axis) */
HAL_TRANSFORM_FLIP_H = 0x01,
/* flip source image vertically (around the horizontal axis)*/
HAL_TRANSFORM_FLIP_V = 0x02,
/* rotate source image 90 degrees clockwise */
HAL_TRANSFORM_ROT_90 = 0x04,
/* rotate source image 180 degrees */
HAL_TRANSFORM_ROT_180 = 0x03,
/* rotate source image 270 degrees clockwise */
HAL_TRANSFORM_ROT_270 = 0x07,
/* don't use. see system/window.h */
HAL_TRANSFORM_RESERVED = 0x08,
* These structures are used to define the reference display's
* capabilities for HDR content. Display engine can use this
* to better tone map content to user's display.
* Color is defined in CIE XYZ coordinates
*/
struct android_xy_color {
float x;
float y;
};
/**
* Dataspace Definitions
* ======================
*
* Dataspace is the definition of how pixel values should be interpreted.
*
* For many formats, this is the colorspace of the image data, which includes
* primaries (including white point) and the transfer characteristic function,
* which describes both gamma curve and numeric range (within the bit depth).
*
* Other dataspaces include depth measurement data from a depth camera.
*/
struct android_smpte2086_metadata {
struct android_xy_color displayPrimaryRed;
struct android_xy_color displayPrimaryGreen;
struct android_xy_color displayPrimaryBlue;
struct android_xy_color whitePoint;
float maxLuminance;
float minLuminance;
};
typedef enum android_dataspace {
/*
* Default-assumption data space, when not explicitly specified.
*
* It is safest to assume the buffer is an image with sRGB primaries and
* encoding ranges, but the consumer and/or the producer of the data may
* simply be using defaults. No automatic gamma transform should be
* expected, except for a possible display gamma transform when drawn to a
* screen.
*/
HAL_DATASPACE_UNKNOWN = 0x0,
/*
* Arbitrary dataspace with manually defined characteristics. Definition
* for colorspaces or other meaning must be communicated separately.
*
* This is used when specifying primaries, transfer characteristics,
* etc. separately.
*
* A typical use case is in video encoding parameters (e.g. for H.264),
* where a colorspace can have separately defined primaries, transfer
* characteristics, etc.
*/
HAL_DATASPACE_ARBITRARY = 0x1,
/*
* RGB Colorspaces
* -----------------
*
* Primaries are given using (x,y) coordinates in the CIE 1931 definition
* of x and y specified by ISO 11664-1.
*
* Transfer characteristics are the opto-electronic transfer characteristic
* at the source as a function of linear optical intensity (luminance).
*/
/*
* sRGB linear encoding:
*
* The red, green, and blue components are stored in sRGB space, but
* are linear, not gamma-encoded.
* The RGB primaries and the white point are the same as BT.709.
*
* The values are encoded using the full range ([0,255] for 8-bit) for all
* components.
*/
HAL_DATASPACE_SRGB_LINEAR = 0x200,
/*
* sRGB gamma encoding:
*
* The red, green and blue components are stored in sRGB space, and
* converted to linear space when read, using the standard sRGB to linear
* equation:
*
* Clinear = Csrgb / 12.92 for Csrgb <= 0.04045
* = (Csrgb + 0.055 / 1.055)^2.4 for Csrgb > 0.04045
*
* When written the inverse transformation is performed:
*
* Csrgb = 12.92 * Clinear for Clinear <= 0.0031308
* = 1.055 * Clinear^(1/2.4) - 0.055 for Clinear > 0.0031308
*
*
* The alpha component, if present, is always stored in linear space and
* is left unmodified when read or written.
*
* The RGB primaries and the white point are the same as BT.709.
*
* The values are encoded using the full range ([0,255] for 8-bit) for all
* components.
*
*/
HAL_DATASPACE_SRGB = 0x201,
/*
* YCbCr Colorspaces
* -----------------
*
* Primaries are given using (x,y) coordinates in the CIE 1931 definition
* of x and y specified by ISO 11664-1.
*
* Transfer characteristics are the opto-electronic transfer characteristic
* at the source as a function of linear optical intensity (luminance).
*/
/*
* JPEG File Interchange Format (JFIF)
*
* Same model as BT.601-625, but all values (Y, Cb, Cr) range from 0 to 255
*
* Transfer characteristic curve:
* E = 1.099 * L ^ 0.45 - 0.099, 1.00 >= L >= 0.018
* E = 4.500 L, 0.018 > L >= 0
* L - luminance of image 0 <= L <= 1 for conventional colorimetry
* E - corresponding electrical signal
*
* Primaries: x y
* green 0.290 0.600
* blue 0.150 0.060
* red 0.640 0.330
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_JFIF = 0x101,
/*
* ITU-R Recommendation 601 (BT.601) - 625-line
*
* Standard-definition television, 625 Lines (PAL)
*
* For 8-bit-depth formats:
* Luma (Y) samples should range from 16 to 235, inclusive
* Chroma (Cb, Cr) samples should range from 16 to 240, inclusive
*
* For 10-bit-depth formats:
* Luma (Y) samples should range from 64 to 940, inclusive
* Chroma (Cb, Cr) samples should range from 64 to 960, inclusive
*
* Transfer characteristic curve:
* E = 1.099 * L ^ 0.45 - 0.099, 1.00 >= L >= 0.018
* E = 4.500 L, 0.018 > L >= 0
* L - luminance of image 0 <= L <= 1 for conventional colorimetry
* E - corresponding electrical signal
*
* Primaries: x y
* green 0.290 0.600
* blue 0.150 0.060
* red 0.640 0.330
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_BT601_625 = 0x102,
/*
* ITU-R Recommendation 601 (BT.601) - 525-line
*
* Standard-definition television, 525 Lines (NTSC)
*
* For 8-bit-depth formats:
* Luma (Y) samples should range from 16 to 235, inclusive
* Chroma (Cb, Cr) samples should range from 16 to 240, inclusive
*
* For 10-bit-depth formats:
* Luma (Y) samples should range from 64 to 940, inclusive
* Chroma (Cb, Cr) samples should range from 64 to 960, inclusive
*
* Transfer characteristic curve:
* E = 1.099 * L ^ 0.45 - 0.099, 1.00 >= L >= 0.018
* E = 4.500 L, 0.018 > L >= 0
* L - luminance of image 0 <= L <= 1 for conventional colorimetry
* E - corresponding electrical signal
*
* Primaries: x y
* green 0.310 0.595
* blue 0.155 0.070
* red 0.630 0.340
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_BT601_525 = 0x103,
/*
* ITU-R Recommendation 709 (BT.709)
*
* High-definition television
*
* For 8-bit-depth formats:
* Luma (Y) samples should range from 16 to 235, inclusive
* Chroma (Cb, Cr) samples should range from 16 to 240, inclusive
*
* For 10-bit-depth formats:
* Luma (Y) samples should range from 64 to 940, inclusive
* Chroma (Cb, Cr) samples should range from 64 to 960, inclusive
*
* Primaries: x y
* green 0.300 0.600
* blue 0.150 0.060
* red 0.640 0.330
* white (D65) 0.3127 0.3290
*/
HAL_DATASPACE_BT709 = 0x104,
/*
* The buffer contains depth ranging measurements from a depth camera.
* This value is valid with formats:
* HAL_PIXEL_FORMAT_Y16: 16-bit samples, consisting of a depth measurement
* and an associated confidence value. The 3 MSBs of the sample make
* up the confidence value, and the low 13 LSBs of the sample make up
* the depth measurement.
* For the confidence section, 0 means 100% confidence, 1 means 0%
* confidence. The mapping to a linear float confidence value between
* 0.f and 1.f can be obtained with
* float confidence = (((depthSample >> 13) - 1) & 0x7) / 7.0f;
* The depth measurement can be extracted simply with
* uint16_t range = (depthSample & 0x1FFF);
* HAL_PIXEL_FORMAT_BLOB: A depth point cloud, as
* a variable-length float (x,y,z, confidence) coordinate point list.
* The point cloud will be represented with the android_depth_points
* structure.
*/
HAL_DATASPACE_DEPTH = 0x1000
} android_dataspace_t;
struct android_cta861_3_metadata {
float maxContentLightLevel;
float maxFrameAverageLightLevel;
};
#ifdef __cplusplus
}

View file

@ -1,955 +0,0 @@
/* SPDX-License-Identifier: Apache-2.0 */
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SYSTEM_CORE_INCLUDE_ANDROID_WINDOW_H
#define SYSTEM_CORE_INCLUDE_ANDROID_WINDOW_H
#include <cutils/native_handle.h>
#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <string.h>
#include <sys/cdefs.h>
#include <system/graphics.h>
#include <unistd.h>
#ifndef __UNUSED
#define __UNUSED __attribute__((__unused__))
#endif
#ifndef __deprecated
#define __deprecated __attribute__((__deprecated__))
#endif
__BEGIN_DECLS
/*****************************************************************************/
#define ANDROID_NATIVE_MAKE_CONSTANT(a,b,c,d) \
(((unsigned)(a)<<24)|((unsigned)(b)<<16)|((unsigned)(c)<<8)|(unsigned)(d))
#define ANDROID_NATIVE_WINDOW_MAGIC \
ANDROID_NATIVE_MAKE_CONSTANT('_','w','n','d')
#define ANDROID_NATIVE_BUFFER_MAGIC \
ANDROID_NATIVE_MAKE_CONSTANT('_','b','f','r')
// ---------------------------------------------------------------------------
// This #define may be used to conditionally compile device-specific code to
// support either the prior ANativeWindow interface, which did not pass libsync
// fences around, or the new interface that does. This #define is only present
// when the ANativeWindow interface does include libsync support.
#define ANDROID_NATIVE_WINDOW_HAS_SYNC 1
// ---------------------------------------------------------------------------
typedef const native_handle_t* buffer_handle_t;
// ---------------------------------------------------------------------------
typedef struct android_native_rect_t
{
int32_t left;
int32_t top;
int32_t right;
int32_t bottom;
} android_native_rect_t;
// ---------------------------------------------------------------------------
typedef struct android_native_base_t
{
/* a magic value defined by the actual EGL native type */
int magic;
/* the sizeof() of the actual EGL native type */
int version;
void* reserved[4];
/* reference-counting interface */
void (*incRef)(struct android_native_base_t* base);
void (*decRef)(struct android_native_base_t* base);
} android_native_base_t;
typedef struct ANativeWindowBuffer
{
#ifdef __cplusplus
ANativeWindowBuffer() {
common.magic = ANDROID_NATIVE_BUFFER_MAGIC;
common.version = sizeof(ANativeWindowBuffer);
memset(common.reserved, 0, sizeof(common.reserved));
}
// Implement the methods that sp<ANativeWindowBuffer> expects so that it
// can be used to automatically refcount ANativeWindowBuffer's.
void incStrong(const void* /*id*/) const {
common.incRef(const_cast<android_native_base_t*>(&common));
}
void decStrong(const void* /*id*/) const {
common.decRef(const_cast<android_native_base_t*>(&common));
}
#endif
struct android_native_base_t common;
int width;
int height;
int stride;
int format;
int usage;
void* reserved[2];
buffer_handle_t handle;
void* reserved_proc[8];
} ANativeWindowBuffer_t;
// Old typedef for backwards compatibility.
typedef ANativeWindowBuffer_t android_native_buffer_t;
// ---------------------------------------------------------------------------
/* attributes queriable with query() */
enum {
NATIVE_WINDOW_WIDTH = 0,
NATIVE_WINDOW_HEIGHT = 1,
NATIVE_WINDOW_FORMAT = 2,
/* The minimum number of buffers that must remain un-dequeued after a buffer
* has been queued. This value applies only if set_buffer_count was used to
* override the number of buffers and if a buffer has since been queued.
* Users of the set_buffer_count ANativeWindow method should query this
* value before calling set_buffer_count. If it is necessary to have N
* buffers simultaneously dequeued as part of the steady-state operation,
* and this query returns M then N+M buffers should be requested via
* native_window_set_buffer_count.
*
* Note that this value does NOT apply until a single buffer has been
* queued. In particular this means that it is possible to:
*
* 1. Query M = min undequeued buffers
* 2. Set the buffer count to N + M
* 3. Dequeue all N + M buffers
* 4. Cancel M buffers
* 5. Queue, dequeue, queue, dequeue, ad infinitum
*/
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS = 3,
/* Check whether queueBuffer operations on the ANativeWindow send the buffer
* to the window compositor. The query sets the returned 'value' argument
* to 1 if the ANativeWindow DOES send queued buffers directly to the window
* compositor and 0 if the buffers do not go directly to the window
* compositor.
*
* This can be used to determine whether protected buffer content should be
* sent to the ANativeWindow. Note, however, that a result of 1 does NOT
* indicate that queued buffers will be protected from applications or users
* capturing their contents. If that behavior is desired then some other
* mechanism (e.g. the GRALLOC_USAGE_PROTECTED flag) should be used in
* conjunction with this query.
*/
NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER = 4,
/* Get the concrete type of a ANativeWindow. See below for the list of
* possible return values.
*
* This query should not be used outside the Android framework and will
* likely be removed in the near future.
*/
NATIVE_WINDOW_CONCRETE_TYPE = 5,
/*
* Default width and height of ANativeWindow buffers, these are the
* dimensions of the window buffers irrespective of the
* NATIVE_WINDOW_SET_BUFFERS_DIMENSIONS call and match the native window
* size unless overridden by NATIVE_WINDOW_SET_BUFFERS_USER_DIMENSIONS.
*/
NATIVE_WINDOW_DEFAULT_WIDTH = 6,
NATIVE_WINDOW_DEFAULT_HEIGHT = 7,
/*
* transformation that will most-likely be applied to buffers. This is only
* a hint, the actual transformation applied might be different.
*
* INTENDED USE:
*
* The transform hint can be used by a producer, for instance the GLES
* driver, to pre-rotate the rendering such that the final transformation
* in the composer is identity. This can be very useful when used in
* conjunction with the h/w composer HAL, in situations where it
* cannot handle arbitrary rotations.
*
* 1. Before dequeuing a buffer, the GL driver (or any other ANW client)
* queries the ANW for NATIVE_WINDOW_TRANSFORM_HINT.
*
* 2. The GL driver overrides the width and height of the ANW to
* account for NATIVE_WINDOW_TRANSFORM_HINT. This is done by querying
* NATIVE_WINDOW_DEFAULT_{WIDTH | HEIGHT}, swapping the dimensions
* according to NATIVE_WINDOW_TRANSFORM_HINT and calling
* native_window_set_buffers_dimensions().
*
* 3. The GL driver dequeues a buffer of the new pre-rotated size.
*
* 4. The GL driver renders to the buffer such that the image is
* already transformed, that is applying NATIVE_WINDOW_TRANSFORM_HINT
* to the rendering.
*
* 5. The GL driver calls native_window_set_transform to apply
* inverse transformation to the buffer it just rendered.
* In order to do this, the GL driver needs
* to calculate the inverse of NATIVE_WINDOW_TRANSFORM_HINT, this is
* done easily:
*
* int hintTransform, inverseTransform;
* query(..., NATIVE_WINDOW_TRANSFORM_HINT, &hintTransform);
* inverseTransform = hintTransform;
* if (hintTransform & HAL_TRANSFORM_ROT_90)
* inverseTransform ^= HAL_TRANSFORM_ROT_180;
*
*
* 6. The GL driver queues the pre-transformed buffer.
*
* 7. The composer combines the buffer transform with the display
* transform. If the buffer transform happens to cancel out the
* display transform then no rotation is needed.
*
*/
NATIVE_WINDOW_TRANSFORM_HINT = 8,
/*
* Boolean that indicates whether the consumer is running more than
* one buffer behind the producer.
*/
NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND = 9,
/*
* The consumer gralloc usage bits currently set by the consumer.
* The values are defined in hardware/libhardware/include/gralloc.h.
*/
NATIVE_WINDOW_CONSUMER_USAGE_BITS = 10,
/**
* Transformation that will by applied to buffers by the hwcomposer.
* This must not be set or checked by producer endpoints, and will
* disable the transform hint set in SurfaceFlinger (see
* NATIVE_WINDOW_TRANSFORM_HINT).
*
* INTENDED USE:
* Temporary - Please do not use this. This is intended only to be used
* by the camera's LEGACY mode.
*
* In situations where a SurfaceFlinger client wishes to set a transform
* that is not visible to the producer, and will always be applied in the
* hardware composer, the client can set this flag with
* native_window_set_buffers_sticky_transform. This can be used to rotate
* and flip buffers consumed by hardware composer without actually changing
* the aspect ratio of the buffers produced.
*/
NATIVE_WINDOW_STICKY_TRANSFORM = 11,
/**
* The default data space for the buffers as set by the consumer.
* The values are defined in graphics.h.
*/
NATIVE_WINDOW_DEFAULT_DATASPACE = 12,
/*
* Returns the age of the contents of the most recently dequeued buffer as
* the number of frames that have elapsed since it was last queued. For
* example, if the window is double-buffered, the age of any given buffer in
* steady state will be 2. If the dequeued buffer has never been queued, its
* age will be 0.
*/
NATIVE_WINDOW_BUFFER_AGE = 13,
};
/* Valid operations for the (*perform)() hook.
*
* Values marked as 'deprecated' are supported, but have been superceded by
* other functionality.
*
* Values marked as 'private' should be considered private to the framework.
* HAL implementation code with access to an ANativeWindow should not use these,
* as it may not interact properly with the framework's use of the
* ANativeWindow.
*/
enum {
NATIVE_WINDOW_SET_USAGE = 0,
NATIVE_WINDOW_CONNECT = 1, /* deprecated */
NATIVE_WINDOW_DISCONNECT = 2, /* deprecated */
NATIVE_WINDOW_SET_CROP = 3, /* private */
NATIVE_WINDOW_SET_BUFFER_COUNT = 4,
NATIVE_WINDOW_SET_BUFFERS_GEOMETRY = 5, /* deprecated */
NATIVE_WINDOW_SET_BUFFERS_TRANSFORM = 6,
NATIVE_WINDOW_SET_BUFFERS_TIMESTAMP = 7,
NATIVE_WINDOW_SET_BUFFERS_DIMENSIONS = 8,
NATIVE_WINDOW_SET_BUFFERS_FORMAT = 9,
NATIVE_WINDOW_SET_SCALING_MODE = 10, /* private */
NATIVE_WINDOW_LOCK = 11, /* private */
NATIVE_WINDOW_UNLOCK_AND_POST = 12, /* private */
NATIVE_WINDOW_API_CONNECT = 13, /* private */
NATIVE_WINDOW_API_DISCONNECT = 14, /* private */
NATIVE_WINDOW_SET_BUFFERS_USER_DIMENSIONS = 15, /* private */
NATIVE_WINDOW_SET_POST_TRANSFORM_CROP = 16, /* private */
NATIVE_WINDOW_SET_BUFFERS_STICKY_TRANSFORM = 17,/* private */
NATIVE_WINDOW_SET_SIDEBAND_STREAM = 18,
NATIVE_WINDOW_SET_BUFFERS_DATASPACE = 19,
NATIVE_WINDOW_SET_SURFACE_DAMAGE = 20, /* private */
};
/* parameter for NATIVE_WINDOW_[API_][DIS]CONNECT */
enum {
/* Buffers will be queued by EGL via eglSwapBuffers after being filled using
* OpenGL ES.
*/
NATIVE_WINDOW_API_EGL = 1,
/* Buffers will be queued after being filled using the CPU
*/
NATIVE_WINDOW_API_CPU = 2,
/* Buffers will be queued by Stagefright after being filled by a video
* decoder. The video decoder can either be a software or hardware decoder.
*/
NATIVE_WINDOW_API_MEDIA = 3,
/* Buffers will be queued by the the camera HAL.
*/
NATIVE_WINDOW_API_CAMERA = 4,
};
/* parameter for NATIVE_WINDOW_SET_BUFFERS_TRANSFORM */
enum {
/* flip source image horizontally */
NATIVE_WINDOW_TRANSFORM_FLIP_H = HAL_TRANSFORM_FLIP_H ,
/* flip source image vertically */
NATIVE_WINDOW_TRANSFORM_FLIP_V = HAL_TRANSFORM_FLIP_V,
/* rotate source image 90 degrees clock-wise, and is applied after TRANSFORM_FLIP_{H|V} */
NATIVE_WINDOW_TRANSFORM_ROT_90 = HAL_TRANSFORM_ROT_90,
/* rotate source image 180 degrees */
NATIVE_WINDOW_TRANSFORM_ROT_180 = HAL_TRANSFORM_ROT_180,
/* rotate source image 270 degrees clock-wise */
NATIVE_WINDOW_TRANSFORM_ROT_270 = HAL_TRANSFORM_ROT_270,
/* transforms source by the inverse transform of the screen it is displayed onto. This
* transform is applied last */
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY = 0x08
};
/* parameter for NATIVE_WINDOW_SET_SCALING_MODE */
enum {
/* the window content is not updated (frozen) until a buffer of
* the window size is received (enqueued)
*/
NATIVE_WINDOW_SCALING_MODE_FREEZE = 0,
/* the buffer is scaled in both dimensions to match the window size */
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW = 1,
/* the buffer is scaled uniformly such that the smaller dimension
* of the buffer matches the window size (cropping in the process)
*/
NATIVE_WINDOW_SCALING_MODE_SCALE_CROP = 2,
/* the window is clipped to the size of the buffer's crop rectangle; pixels
* outside the crop rectangle are treated as if they are completely
* transparent.
*/
NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP = 3,
};
/* values returned by the NATIVE_WINDOW_CONCRETE_TYPE query */
enum {
NATIVE_WINDOW_FRAMEBUFFER = 0, /* FramebufferNativeWindow */
NATIVE_WINDOW_SURFACE = 1, /* Surface */
};
/* parameter for NATIVE_WINDOW_SET_BUFFERS_TIMESTAMP
*
* Special timestamp value to indicate that timestamps should be auto-generated
* by the native window when queueBuffer is called. This is equal to INT64_MIN,
* defined directly to avoid problems with C99/C++ inclusion of stdint.h.
*/
static const int64_t NATIVE_WINDOW_TIMESTAMP_AUTO = (-9223372036854775807LL-1);
struct ANativeWindow
{
#ifdef __cplusplus
ANativeWindow()
: flags(0), minSwapInterval(0), maxSwapInterval(0), xdpi(0), ydpi(0)
{
common.magic = ANDROID_NATIVE_WINDOW_MAGIC;
common.version = sizeof(ANativeWindow);
memset(common.reserved, 0, sizeof(common.reserved));
}
/* Implement the methods that sp<ANativeWindow> expects so that it
can be used to automatically refcount ANativeWindow's. */
void incStrong(const void* /*id*/) const {
common.incRef(const_cast<android_native_base_t*>(&common));
}
void decStrong(const void* /*id*/) const {
common.decRef(const_cast<android_native_base_t*>(&common));
}
#endif
struct android_native_base_t common;
/* flags describing some attributes of this surface or its updater */
const uint32_t flags;
/* min swap interval supported by this updated */
const int minSwapInterval;
/* max swap interval supported by this updated */
const int maxSwapInterval;
/* horizontal and vertical resolution in DPI */
const float xdpi;
const float ydpi;
/* Some storage reserved for the OEM's driver. */
intptr_t oem[4];
/*
* Set the swap interval for this surface.
*
* Returns 0 on success or -errno on error.
*/
int (*setSwapInterval)(struct ANativeWindow* window,
int interval);
/*
* Hook called by EGL to acquire a buffer. After this call, the buffer
* is not locked, so its content cannot be modified. This call may block if
* no buffers are available.
*
* The window holds a reference to the buffer between dequeueBuffer and
* either queueBuffer or cancelBuffer, so clients only need their own
* reference if they might use the buffer after queueing or canceling it.
* Holding a reference to a buffer after queueing or canceling it is only
* allowed if a specific buffer count has been set.
*
* Returns 0 on success or -errno on error.
*
* XXX: This function is deprecated. It will continue to work for some
* time for binary compatibility, but the new dequeueBuffer function that
* outputs a fence file descriptor should be used in its place.
*/
int (*dequeueBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer** buffer);
/*
* hook called by EGL to lock a buffer. This MUST be called before modifying
* the content of a buffer. The buffer must have been acquired with
* dequeueBuffer first.
*
* Returns 0 on success or -errno on error.
*
* XXX: This function is deprecated. It will continue to work for some
* time for binary compatibility, but it is essentially a no-op, and calls
* to it should be removed.
*/
int (*lockBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer);
/*
* Hook called by EGL when modifications to the render buffer are done.
* This unlocks and post the buffer.
*
* The window holds a reference to the buffer between dequeueBuffer and
* either queueBuffer or cancelBuffer, so clients only need their own
* reference if they might use the buffer after queueing or canceling it.
* Holding a reference to a buffer after queueing or canceling it is only
* allowed if a specific buffer count has been set.
*
* Buffers MUST be queued in the same order than they were dequeued.
*
* Returns 0 on success or -errno on error.
*
* XXX: This function is deprecated. It will continue to work for some
* time for binary compatibility, but the new queueBuffer function that
* takes a fence file descriptor should be used in its place (pass a value
* of -1 for the fence file descriptor if there is no valid one to pass).
*/
int (*queueBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer);
/*
* hook used to retrieve information about the native window.
*
* Returns 0 on success or -errno on error.
*/
int (*query)(const struct ANativeWindow* window,
int what, int* value);
/*
* hook used to perform various operations on the surface.
* (*perform)() is a generic mechanism to add functionality to
* ANativeWindow while keeping backward binary compatibility.
*
* DO NOT CALL THIS HOOK DIRECTLY. Instead, use the helper functions
* defined below.
*
* (*perform)() returns -ENOENT if the 'what' parameter is not supported
* by the surface's implementation.
*
* See above for a list of valid operations, such as
* NATIVE_WINDOW_SET_USAGE or NATIVE_WINDOW_CONNECT
*/
int (*perform)(struct ANativeWindow* window,
int operation, ... );
/*
* Hook used to cancel a buffer that has been dequeued.
* No synchronization is performed between dequeue() and cancel(), so
* either external synchronization is needed, or these functions must be
* called from the same thread.
*
* The window holds a reference to the buffer between dequeueBuffer and
* either queueBuffer or cancelBuffer, so clients only need their own
* reference if they might use the buffer after queueing or canceling it.
* Holding a reference to a buffer after queueing or canceling it is only
* allowed if a specific buffer count has been set.
*
* XXX: This function is deprecated. It will continue to work for some
* time for binary compatibility, but the new cancelBuffer function that
* takes a fence file descriptor should be used in its place (pass a value
* of -1 for the fence file descriptor if there is no valid one to pass).
*/
int (*cancelBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer);
/*
* Hook called by EGL to acquire a buffer. This call may block if no
* buffers are available.
*
* The window holds a reference to the buffer between dequeueBuffer and
* either queueBuffer or cancelBuffer, so clients only need their own
* reference if they might use the buffer after queueing or canceling it.
* Holding a reference to a buffer after queueing or canceling it is only
* allowed if a specific buffer count has been set.
*
* The libsync fence file descriptor returned in the int pointed to by the
* fenceFd argument will refer to the fence that must signal before the
* dequeued buffer may be written to. A value of -1 indicates that the
* caller may access the buffer immediately without waiting on a fence. If
* a valid file descriptor is returned (i.e. any value except -1) then the
* caller is responsible for closing the file descriptor.
*
* Returns 0 on success or -errno on error.
*/
int (*dequeueBuffer)(struct ANativeWindow* window,
struct ANativeWindowBuffer** buffer, int* fenceFd);
/*
* Hook called by EGL when modifications to the render buffer are done.
* This unlocks and post the buffer.
*
* The window holds a reference to the buffer between dequeueBuffer and
* either queueBuffer or cancelBuffer, so clients only need their own
* reference if they might use the buffer after queueing or canceling it.
* Holding a reference to a buffer after queueing or canceling it is only
* allowed if a specific buffer count has been set.
*
* The fenceFd argument specifies a libsync fence file descriptor for a
* fence that must signal before the buffer can be accessed. If the buffer
* can be accessed immediately then a value of -1 should be used. The
* caller must not use the file descriptor after it is passed to
* queueBuffer, and the ANativeWindow implementation is responsible for
* closing it.
*
* Returns 0 on success or -errno on error.
*/
int (*queueBuffer)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer, int fenceFd);
/*
* Hook used to cancel a buffer that has been dequeued.
* No synchronization is performed between dequeue() and cancel(), so
* either external synchronization is needed, or these functions must be
* called from the same thread.
*
* The window holds a reference to the buffer between dequeueBuffer and
* either queueBuffer or cancelBuffer, so clients only need their own
* reference if they might use the buffer after queueing or canceling it.
* Holding a reference to a buffer after queueing or canceling it is only
* allowed if a specific buffer count has been set.
*
* The fenceFd argument specifies a libsync fence file decsriptor for a
* fence that must signal before the buffer can be accessed. If the buffer
* can be accessed immediately then a value of -1 should be used.
*
* Note that if the client has not waited on the fence that was returned
* from dequeueBuffer, that same fence should be passed to cancelBuffer to
* ensure that future uses of the buffer are preceded by a wait on that
* fence. The caller must not use the file descriptor after it is passed
* to cancelBuffer, and the ANativeWindow implementation is responsible for
* closing it.
*
* Returns 0 on success or -errno on error.
*/
int (*cancelBuffer)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer, int fenceFd);
};
/* Backwards compatibility: use ANativeWindow (struct ANativeWindow in C).
* android_native_window_t is deprecated.
*/
typedef struct ANativeWindow ANativeWindow;
typedef struct ANativeWindow android_native_window_t __deprecated;
/*
* native_window_set_usage(..., usage)
* Sets the intended usage flags for the next buffers
* acquired with (*lockBuffer)() and on.
* By default (if this function is never called), a usage of
* GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE
* is assumed.
* Calling this function will usually cause following buffers to be
* reallocated.
*/
static inline int native_window_set_usage(
struct ANativeWindow* window, int usage)
{
return window->perform(window, NATIVE_WINDOW_SET_USAGE, usage);
}
/* deprecated. Always returns 0. Don't call. */
static inline int native_window_connect(
struct ANativeWindow* window __UNUSED, int api __UNUSED) __deprecated;
static inline int native_window_connect(
struct ANativeWindow* window __UNUSED, int api __UNUSED) {
return 0;
}
/* deprecated. Always returns 0. Don't call. */
static inline int native_window_disconnect(
struct ANativeWindow* window __UNUSED, int api __UNUSED) __deprecated;
static inline int native_window_disconnect(
struct ANativeWindow* window __UNUSED, int api __UNUSED) {
return 0;
}
/*
* native_window_set_crop(..., crop)
* Sets which region of the next queued buffers needs to be considered.
* Depending on the scaling mode, a buffer's crop region is scaled and/or
* cropped to match the surface's size. This function sets the crop in
* pre-transformed buffer pixel coordinates.
*
* The specified crop region applies to all buffers queued after it is called.
*
* If 'crop' is NULL, subsequently queued buffers won't be cropped.
*
* An error is returned if for instance the crop region is invalid, out of the
* buffer's bound or if the window is invalid.
*/
static inline int native_window_set_crop(
struct ANativeWindow* window,
android_native_rect_t const * crop)
{
return window->perform(window, NATIVE_WINDOW_SET_CROP, crop);
}
/*
* native_window_set_post_transform_crop(..., crop)
* Sets which region of the next queued buffers needs to be considered.
* Depending on the scaling mode, a buffer's crop region is scaled and/or
* cropped to match the surface's size. This function sets the crop in
* post-transformed pixel coordinates.
*
* The specified crop region applies to all buffers queued after it is called.
*
* If 'crop' is NULL, subsequently queued buffers won't be cropped.
*
* An error is returned if for instance the crop region is invalid, out of the
* buffer's bound or if the window is invalid.
*/
static inline int native_window_set_post_transform_crop(
struct ANativeWindow* window,
android_native_rect_t const * crop)
{
return window->perform(window, NATIVE_WINDOW_SET_POST_TRANSFORM_CROP, crop);
}
/*
* native_window_set_active_rect(..., active_rect)
*
* This function is deprecated and will be removed soon. For now it simply
* sets the post-transform crop for compatibility while multi-project commits
* get checked.
*/
static inline int native_window_set_active_rect(
struct ANativeWindow* window,
android_native_rect_t const * active_rect) __deprecated;
static inline int native_window_set_active_rect(
struct ANativeWindow* window,
android_native_rect_t const * active_rect)
{
return native_window_set_post_transform_crop(window, active_rect);
}
/*
* native_window_set_buffer_count(..., count)
* Sets the number of buffers associated with this native window.
*/
static inline int native_window_set_buffer_count(
struct ANativeWindow* window,
size_t bufferCount)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFER_COUNT, bufferCount);
}
/*
* native_window_set_buffers_geometry(..., int w, int h, int format)
* All buffers dequeued after this call will have the dimensions and format
* specified. A successful call to this function has the same effect as calling
* native_window_set_buffers_size and native_window_set_buffers_format.
*
* XXX: This function is deprecated. The native_window_set_buffers_dimensions
* and native_window_set_buffers_format functions should be used instead.
*/
static inline int native_window_set_buffers_geometry(
struct ANativeWindow* window,
int w, int h, int format) __deprecated;
static inline int native_window_set_buffers_geometry(
struct ANativeWindow* window,
int w, int h, int format)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_GEOMETRY,
w, h, format);
}
/*
* native_window_set_buffers_dimensions(..., int w, int h)
* All buffers dequeued after this call will have the dimensions specified.
* In particular, all buffers will have a fixed-size, independent from the
* native-window size. They will be scaled according to the scaling mode
* (see native_window_set_scaling_mode) upon window composition.
*
* If w and h are 0, the normal behavior is restored. That is, dequeued buffers
* following this call will be sized to match the window's size.
*
* Calling this function will reset the window crop to a NULL value, which
* disables cropping of the buffers.
*/
static inline int native_window_set_buffers_dimensions(
struct ANativeWindow* window,
int w, int h)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_DIMENSIONS,
w, h);
}
/*
* native_window_set_buffers_user_dimensions(..., int w, int h)
*
* Sets the user buffer size for the window, which overrides the
* window's size. All buffers dequeued after this call will have the
* dimensions specified unless overridden by
* native_window_set_buffers_dimensions. All buffers will have a
* fixed-size, independent from the native-window size. They will be
* scaled according to the scaling mode (see
* native_window_set_scaling_mode) upon window composition.
*
* If w and h are 0, the normal behavior is restored. That is, the
* default buffer size will match the windows's size.
*
* Calling this function will reset the window crop to a NULL value, which
* disables cropping of the buffers.
*/
static inline int native_window_set_buffers_user_dimensions(
struct ANativeWindow* window,
int w, int h)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_USER_DIMENSIONS,
w, h);
}
/*
* native_window_set_buffers_format(..., int format)
* All buffers dequeued after this call will have the format specified.
*
* If the specified format is 0, the default buffer format will be used.
*/
static inline int native_window_set_buffers_format(
struct ANativeWindow* window,
int format)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_FORMAT, format);
}
/*
* native_window_set_buffers_data_space(..., int dataSpace)
* All buffers queued after this call will be associated with the dataSpace
* parameter specified.
*
* dataSpace specifies additional information about the buffer that's dependent
* on the buffer format and the endpoints. For example, it can be used to convey
* the color space of the image data in the buffer, or it can be used to
* indicate that the buffers contain depth measurement data instead of color
* images. The default dataSpace is 0, HAL_DATASPACE_UNKNOWN, unless it has been
* overridden by the consumer.
*/
static inline int native_window_set_buffers_data_space(
struct ANativeWindow* window,
android_dataspace_t dataSpace)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_DATASPACE,
dataSpace);
}
/*
* native_window_set_buffers_transform(..., int transform)
* All buffers queued after this call will be displayed transformed according
* to the transform parameter specified.
*/
static inline int native_window_set_buffers_transform(
struct ANativeWindow* window,
int transform)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_TRANSFORM,
transform);
}
/*
* native_window_set_buffers_sticky_transform(..., int transform)
* All buffers queued after this call will be displayed transformed according
* to the transform parameter specified applied on top of the regular buffer
* transform. Setting this transform will disable the transform hint.
*
* Temporary - This is only intended to be used by the LEGACY camera mode, do
* not use this for anything else.
*/
static inline int native_window_set_buffers_sticky_transform(
struct ANativeWindow* window,
int transform)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_STICKY_TRANSFORM,
transform);
}
/*
* native_window_set_buffers_timestamp(..., int64_t timestamp)
* All buffers queued after this call will be associated with the timestamp
* parameter specified. If the timestamp is set to NATIVE_WINDOW_TIMESTAMP_AUTO
* (the default), timestamps will be generated automatically when queueBuffer is
* called. The timestamp is measured in nanoseconds, and is normally monotonically
* increasing. The timestamp should be unaffected by time-of-day adjustments,
* and for a camera should be strictly monotonic but for a media player may be
* reset when the position is set.
*/
static inline int native_window_set_buffers_timestamp(
struct ANativeWindow* window,
int64_t timestamp)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_TIMESTAMP,
timestamp);
}
/*
* native_window_set_scaling_mode(..., int mode)
* All buffers queued after this call will be associated with the scaling mode
* specified.
*/
static inline int native_window_set_scaling_mode(
struct ANativeWindow* window,
int mode)
{
return window->perform(window, NATIVE_WINDOW_SET_SCALING_MODE,
mode);
}
/*
* native_window_api_connect(..., int api)
* connects an API to this window. only one API can be connected at a time.
* Returns -EINVAL if for some reason the window cannot be connected, which
* can happen if it's connected to some other API.
*/
static inline int native_window_api_connect(
struct ANativeWindow* window, int api)
{
return window->perform(window, NATIVE_WINDOW_API_CONNECT, api);
}
/*
* native_window_api_disconnect(..., int api)
* disconnect the API from this window.
* An error is returned if for instance the window wasn't connected in the
* first place.
*/
static inline int native_window_api_disconnect(
struct ANativeWindow* window, int api)
{
return window->perform(window, NATIVE_WINDOW_API_DISCONNECT, api);
}
/*
* native_window_dequeue_buffer_and_wait(...)
* Dequeue a buffer and wait on the fence associated with that buffer. The
* buffer may safely be accessed immediately upon this function returning. An
* error is returned if either of the dequeue or the wait operations fail.
*/
static inline int native_window_dequeue_buffer_and_wait(ANativeWindow *anw,
struct ANativeWindowBuffer** anb) {
return anw->dequeueBuffer_DEPRECATED(anw, anb);
}
/*
* native_window_set_sideband_stream(..., native_handle_t*)
* Attach a sideband buffer stream to a native window.
*/
static inline int native_window_set_sideband_stream(
struct ANativeWindow* window,
native_handle_t* sidebandHandle)
{
return window->perform(window, NATIVE_WINDOW_SET_SIDEBAND_STREAM,
sidebandHandle);
}
/*
* native_window_set_surface_damage(..., android_native_rect_t* rects, int numRects)
* Set the surface damage (i.e., the region of the surface that has changed
* since the previous frame). The damage set by this call will be reset (to the
* default of full-surface damage) after calling queue, so this must be called
* prior to every frame with damage that does not cover the whole surface if the
* caller desires downstream consumers to use this optimization.
*
* The damage region is specified as an array of rectangles, with the important
* caveat that the origin of the surface is considered to be the bottom-left
* corner, as in OpenGL ES.
*
* If numRects is set to 0, rects may be NULL, and the surface damage will be
* set to the full surface (the same as if this function had not been called for
* this frame).
*/
static inline int native_window_set_surface_damage(
struct ANativeWindow* window,
const android_native_rect_t* rects, size_t numRects)
{
return window->perform(window, NATIVE_WINDOW_SET_SURFACE_DAMAGE,
rects, numRects);
}
__END_DECLS
#endif /* SYSTEM_CORE_INCLUDE_ANDROID_WINDOW_H */