libcamera: matrix: Add inverse() function

For calculations in upcoming algorithm patches, the inverse of a matrix
is required. Add an implementation of the inverse() function for square
matrices.

Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
This commit is contained in:
Stefan Klug 2025-04-03 17:49:10 +02:00
parent bcba580546
commit 6287ceff5a
2 changed files with 189 additions and 0 deletions

View file

@ -19,6 +19,12 @@ namespace libcamera {
LOG_DECLARE_CATEGORY(Matrix)
#ifndef __DOXYGEN__
template<typename T>
bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim,
Span<T> scratchBuffer, Span<unsigned int> swapBuffer);
#endif /* __DOXYGEN__ */
template<typename T, unsigned int Rows, unsigned int Cols>
class Matrix
{
@ -91,6 +97,23 @@ public:
return *this;
}
Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const
{
static_assert(Rows == Cols, "Matrix must be square");
Matrix<T, Rows, Cols> inverse;
std::array<T, Rows * Cols * 2> scratchBuffer;
std::array<unsigned int, Rows> swapBuffer;
bool res = matrixInvert(Span<const T>(data_),
Span<T>(inverse.data_),
Rows,
Span<T>(scratchBuffer),
Span<unsigned int>(swapBuffer));
if (ok)
*ok = res;
return inverse;
}
private:
/*
* \todo The initializer is only necessary for the constructor to be

View file

@ -7,6 +7,12 @@
#include "libcamera/internal/matrix.h"
#include <algorithm>
#include <assert.h>
#include <cmath>
#include <numeric>
#include <vector>
#include <libcamera/base/log.h>
/**
@ -87,6 +93,20 @@ LOG_DEFINE_CATEGORY(Matrix)
* \return Row \a i from the matrix, as a Span
*/
/**
* \fn Matrix::inverse(bool *ok) const
* \param[out] ok Indicate if the matrix was successfully inverted
* \brief Compute the inverse of the matrix
*
* This function computes the inverse of the matrix. It is only implemented for
* matrices of float and double types. If \a ok is provided it will be set to a
* boolean value to indicate of the inversion was successful. This can be used
* to check if the matrix is singular, in which case the function will return
* an identity matrix.
*
* \return The inverse of the matrix
*/
/**
* \fn Matrix::operator[](size_t i)
* \copydoc Matrix::operator[](size_t i) const
@ -142,6 +162,152 @@ LOG_DEFINE_CATEGORY(Matrix)
*/
#ifndef __DOXYGEN__
template<typename T>
bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim,
Span<T> scratchBuffer, Span<unsigned int> swapBuffer)
{
/*
* Convenience class to access matrix data, providing a row-major (i,j)
* element accessor through the call operator, and the ability to swap
* rows without modifying the backing storage.
*/
class MatrixAccessor
{
public:
MatrixAccessor(Span<T> data, Span<unsigned int> swapBuffer, unsigned int rows, unsigned int cols)
: data_(data), swap_(swapBuffer), rows_(rows), cols_(cols)
{
ASSERT(swap_.size() == rows);
std::iota(swap_.begin(), swap_.end(), T{ 0 });
}
T &operator()(unsigned int row, unsigned int col)
{
assert(row < rows_ && col < cols_);
return data_[index(row, col)];
}
void swap(unsigned int a, unsigned int b)
{
assert(a < rows_ && a < cols_);
std::swap(swap_[a], swap_[b]);
}
private:
unsigned int index(unsigned int row, unsigned int col) const
{
return swap_[row] * cols_ + col;
}
Span<T> data_;
Span<unsigned int> swap_;
unsigned int rows_;
unsigned int cols_;
};
/*
* Matrix inversion using Gaussian elimination.
*
* Start by augmenting the original matrix with an identiy matrix of
* the same size.
*/
ASSERT(scratchBuffer.size() == dim * dim * 2);
MatrixAccessor matrix(scratchBuffer, swapBuffer, dim, dim * 2);
for (unsigned int i = 0; i < dim; ++i) {
for (unsigned int j = 0; j < dim; ++j) {
matrix(i, j) = dataIn[i * dim + j];
matrix(i, j + dim) = T{ 0 };
}
matrix(i, i + dim) = T{ 1 };
}
/* Start by triangularizing the input . */
for (unsigned int pivot = 0; pivot < dim; ++pivot) {
/*
* Locate the next pivot. To improve numerical stability, use
* the row with the largest value in the pivot's column.
*/
unsigned int row;
T maxValue{ 0 };
for (unsigned int i = pivot; i < dim; ++i) {
T value = std::abs(matrix(i, pivot));
if (maxValue < value) {
maxValue = value;
row = i;
}
}
/*
* If no pivot is found in the column, the matrix is not
* invertible. Return an identity matrix.
*/
if (maxValue == 0) {
std::fill(dataOut.begin(), dataOut.end(), T{ 0 });
for (unsigned int i = 0; i < dim; ++i)
dataOut[i * dim + i] = T{ 1 };
return false;
}
/* Swap rows to bring the pivot in the right location. */
matrix.swap(pivot, row);
/* Process all rows below the pivot to zero the pivot column. */
const T pivotValue = matrix(pivot, pivot);
for (unsigned int i = pivot + 1; i < dim; ++i) {
const T factor = matrix(i, pivot) / pivotValue;
/*
* We know the element in the pivot column will be 0,
* hardcode it instead of computing it.
*/
matrix(i, pivot) = T{ 0 };
for (unsigned int j = pivot + 1; j < dim * 2; ++j)
matrix(i, j) -= matrix(pivot, j) * factor;
}
}
/*
* Then diagonalize the input, walking the diagonal backwards. There's
* no need to update the input matrix, as all the values we would write
* in the top-right triangle aren't used in further calculations (and
* would all by definition be zero).
*/
for (unsigned int pivot = dim - 1; pivot > 0; --pivot) {
const T pivotValue = matrix(pivot, pivot);
for (unsigned int i = 0; i < pivot; ++i) {
const T factor = matrix(i, pivot) / pivotValue;
for (unsigned int j = dim; j < dim * 2; ++j)
matrix(i, j) -= matrix(pivot, j) * factor;
}
}
/*
* Finally, normalize the diagonal and store the result in the output
* data.
*/
for (unsigned int i = 0; i < dim; ++i) {
const T factor = matrix(i, i);
for (unsigned int j = 0; j < dim; ++j)
dataOut[i * dim + j] = matrix(i, j + dim) / factor;
}
return true;
}
template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut,
unsigned int dim, Span<float> scratchBuffer,
Span<unsigned int> swapBuffer);
template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut,
unsigned int dim, Span<double> scratchBuffer,
Span<unsigned int> swapBuffer);
/*
* The YAML data shall be a list of numerical values. Its size shall be equal
* to the product of the number of rows and columns of the matrix (Rows x