mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-13 15:29:45 +03:00
libcamera: utils: Raspberry Pi Camera Tuning Tool
Initial implementation of the Raspberry Pi (BCM2835) Camera Tuning Tool. All code is licensed under the BSD-2-Clause terms. Copyright (c) 2019-2020 Raspberry Pi Trading Ltd. Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
parent
0db2c8dc75
commit
c01cfe14f5
14 changed files with 3552 additions and 0 deletions
58
utils/raspberrypi/ctt/ctt_lux.py
Normal file
58
utils/raspberrypi/ctt/ctt_lux.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
# SPDX-License-Identifier: BSD-2-Clause
|
||||
#
|
||||
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
||||
#
|
||||
# ctt_lux.py - camera tuning tool for lux level
|
||||
|
||||
from ctt_tools import *
|
||||
"""
|
||||
Find lux values from metadata and calculate Y
|
||||
"""
|
||||
def lux(Cam,Img):
|
||||
shutter_speed = Img.exposure
|
||||
gain = Img.againQ8_norm
|
||||
aperture = 1
|
||||
Cam.log += '\nShutter speed = {}'.format(shutter_speed)
|
||||
Cam.log += '\nGain = {}'.format(gain)
|
||||
Cam.log += '\nAperture = {}'.format(aperture)
|
||||
patches = [Img.patches[i] for i in Img.order]
|
||||
channels = [Img.channels[i] for i in Img.order]
|
||||
return lux_calc(Cam,Img,patches,channels),shutter_speed,gain
|
||||
|
||||
"""
|
||||
perform lux calibration on bayer channels
|
||||
"""
|
||||
def lux_calc(Cam,Img,patches,channels):
|
||||
"""
|
||||
find means color channels on grey patches
|
||||
"""
|
||||
ap_r = np.mean(patches[0][3::4])
|
||||
ap_g = (np.mean(patches[1][3::4])+np.mean(patches[2][3::4]))/2
|
||||
ap_b = np.mean(patches[3][3::4])
|
||||
Cam.log += '\nAverage channel values on grey patches:'
|
||||
Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(ap_r,ap_b,ap_g)
|
||||
# print(ap_r,ap_g,ap_b)
|
||||
"""
|
||||
calculate channel gains
|
||||
"""
|
||||
gr = ap_g/ap_r
|
||||
gb = ap_g/ap_b
|
||||
Cam.log += '\nChannel gains: Red = {:.3f} Blue = {:.3f}'.format(gr,gb)
|
||||
|
||||
"""
|
||||
find means color channels on image and scale by gain
|
||||
note greens are averaged together (treated as one channel)
|
||||
"""
|
||||
a_r = np.mean(channels[0])*gr
|
||||
a_g = (np.mean(channels[1])+np.mean(channels[2]))/2
|
||||
a_b = np.mean(channels[3])*gb
|
||||
Cam.log += '\nAverage channel values over entire image scaled by channel gains:'
|
||||
Cam.log += '\nRed = {:.0f} Green = {:.0f} Blue = {:.0f}'.format(a_r,a_b,a_g)
|
||||
# print(a_r,a_g,a_b)
|
||||
"""
|
||||
Calculate y with top row of yuv matrix
|
||||
"""
|
||||
y = 0.299*a_r + 0.587*a_g + 0.114*a_b
|
||||
Cam.log += '\nY value calculated: {}'.format(int(y))
|
||||
# print(y)
|
||||
return int(y)
|
Loading…
Add table
Add a link
Reference in a new issue