pipeline: ipa: raspberrypi: Pass exposure/gain values to IPA though controls

When running with sensors that had no embedded data, the pipeline handler
would fill a dummy embedded data buffer with gain/exposure values, and
pass this buffer to the IPA together with the bayer buffer. The IPA would
extract these values for use in the controller algorithms.

Rework this logic entirely by having a new RPiCameraData::BayerFrame
queue to replace the existing bayer queue. In addition to storing the
FrameBuffer pointer, this also stores all the controls tracked by
DelayedControls for that frame in a ControlList. This includes include
exposure and gain values. On signalling RPi::IPA_EVENT_SIGNAL_ISP_PREPARE
IPA event, the pipeline handler now passes this ControlList from the
RPiCameraData::BayerFrame queue.

The IPA now extracts the gain and exposure values from the ControlList
instead of using RPiController::MdParserRPi to parse the embedded data
buffer.

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Tested-by: David Plowman <david.plowman@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Naushir Patuck 2021-03-02 15:11:08 +00:00 committed by Laurent Pinchart
parent f490a87fd3
commit cd07b604ba
3 changed files with 123 additions and 97 deletions

View file

@ -29,6 +29,8 @@ struct SensorConfig {
struct ISPConfig { struct ISPConfig {
uint32 embeddedBufferId; uint32 embeddedBufferId;
uint32 bayerBufferId; uint32 bayerBufferId;
bool embeddedBufferPresent;
ControlList controls;
}; };
struct ConfigInput { struct ConfigInput {

View file

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: BSD-2-Clause */ /* SPDX-License-Identifier: BSD-2-Clause */
/* /*
* Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd. * Copyright (C) 2019-2021, Raspberry Pi (Trading) Ltd.
* *
* rpi.cpp - Raspberry Pi Image Processing Algorithms * rpi.cpp - Raspberry Pi Image Processing Algorithms
*/ */
@ -101,9 +101,11 @@ private:
bool validateIspControls(); bool validateIspControls();
void queueRequest(const ControlList &controls); void queueRequest(const ControlList &controls);
void returnEmbeddedBuffer(unsigned int bufferId); void returnEmbeddedBuffer(unsigned int bufferId);
void prepareISP(unsigned int bufferId); void prepareISP(const ipa::RPi::ISPConfig &data);
void reportMetadata(); void reportMetadata();
bool parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus); bool parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus);
void fillDeviceStatus(uint32_t exposureLines, uint32_t gainCode,
struct DeviceStatus &deviceStatus);
void processStats(unsigned int bufferId); void processStats(unsigned int bufferId);
void applyFrameDurations(double minFrameDuration, double maxFrameDuration); void applyFrameDurations(double minFrameDuration, double maxFrameDuration);
void applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls); void applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls);
@ -447,7 +449,7 @@ void IPARPi::signalIspPrepare(const ipa::RPi::ISPConfig &data)
* avoid running the control algos for a few frames in case * avoid running the control algos for a few frames in case
* they are "unreliable". * they are "unreliable".
*/ */
prepareISP(data.embeddedBufferId); prepareISP(data);
frameCount_++; frameCount_++;
/* Ready to push the input buffer into the ISP. */ /* Ready to push the input buffer into the ISP. */
@ -913,67 +915,84 @@ void IPARPi::returnEmbeddedBuffer(unsigned int bufferId)
embeddedComplete.emit(bufferId & ipa::RPi::MaskID); embeddedComplete.emit(bufferId & ipa::RPi::MaskID);
} }
void IPARPi::prepareISP(unsigned int bufferId) void IPARPi::prepareISP(const ipa::RPi::ISPConfig &data)
{ {
struct DeviceStatus deviceStatus = {}; struct DeviceStatus deviceStatus = {};
bool success = parseEmbeddedData(bufferId, deviceStatus); bool success = false;
/* Done with embedded data now, return to pipeline handler asap. */ if (data.embeddedBufferPresent) {
returnEmbeddedBuffer(bufferId); /*
* Pipeline handler has supplied us with an embedded data buffer,
* so parse it and extract the exposure and gain.
*/
success = parseEmbeddedData(data.embeddedBufferId, deviceStatus);
if (success) { /* Done with embedded data now, return to pipeline handler asap. */
ControlList ctrls(ispCtrls_); returnEmbeddedBuffer(data.embeddedBufferId);
rpiMetadata_.Clear();
rpiMetadata_.Set("device.status", deviceStatus);
controller_.Prepare(&rpiMetadata_);
/* Lock the metadata buffer to avoid constant locks/unlocks. */
std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);
AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
if (awbStatus)
applyAWB(awbStatus, ctrls);
CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
if (ccmStatus)
applyCCM(ccmStatus, ctrls);
AgcStatus *dgStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
if (dgStatus)
applyDG(dgStatus, ctrls);
AlscStatus *lsStatus = rpiMetadata_.GetLocked<AlscStatus>("alsc.status");
if (lsStatus)
applyLS(lsStatus, ctrls);
ContrastStatus *contrastStatus = rpiMetadata_.GetLocked<ContrastStatus>("contrast.status");
if (contrastStatus)
applyGamma(contrastStatus, ctrls);
BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
applyBlackLevel(blackLevelStatus, ctrls);
GeqStatus *geqStatus = rpiMetadata_.GetLocked<GeqStatus>("geq.status");
if (geqStatus)
applyGEQ(geqStatus, ctrls);
DenoiseStatus *denoiseStatus = rpiMetadata_.GetLocked<DenoiseStatus>("denoise.status");
if (denoiseStatus)
applyDenoise(denoiseStatus, ctrls);
SharpenStatus *sharpenStatus = rpiMetadata_.GetLocked<SharpenStatus>("sharpen.status");
if (sharpenStatus)
applySharpen(sharpenStatus, ctrls);
DpcStatus *dpcStatus = rpiMetadata_.GetLocked<DpcStatus>("dpc.status");
if (dpcStatus)
applyDPC(dpcStatus, ctrls);
if (!ctrls.empty())
setIspControls.emit(ctrls);
} }
if (!success) {
/*
* Pipeline handler has not supplied an embedded data buffer,
* or embedded data buffer parsing has failed for some reason,
* so pull the exposure and gain values from the control list.
*/
int32_t exposureLines = data.controls.get(V4L2_CID_EXPOSURE).get<int32_t>();
int32_t gainCode = data.controls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
fillDeviceStatus(exposureLines, gainCode, deviceStatus);
}
ControlList ctrls(ispCtrls_);
rpiMetadata_.Clear();
rpiMetadata_.Set("device.status", deviceStatus);
controller_.Prepare(&rpiMetadata_);
/* Lock the metadata buffer to avoid constant locks/unlocks. */
std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);
AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
if (awbStatus)
applyAWB(awbStatus, ctrls);
CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
if (ccmStatus)
applyCCM(ccmStatus, ctrls);
AgcStatus *dgStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
if (dgStatus)
applyDG(dgStatus, ctrls);
AlscStatus *lsStatus = rpiMetadata_.GetLocked<AlscStatus>("alsc.status");
if (lsStatus)
applyLS(lsStatus, ctrls);
ContrastStatus *contrastStatus = rpiMetadata_.GetLocked<ContrastStatus>("contrast.status");
if (contrastStatus)
applyGamma(contrastStatus, ctrls);
BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
if (blackLevelStatus)
applyBlackLevel(blackLevelStatus, ctrls);
GeqStatus *geqStatus = rpiMetadata_.GetLocked<GeqStatus>("geq.status");
if (geqStatus)
applyGEQ(geqStatus, ctrls);
DenoiseStatus *denoiseStatus = rpiMetadata_.GetLocked<DenoiseStatus>("denoise.status");
if (denoiseStatus)
applyDenoise(denoiseStatus, ctrls);
SharpenStatus *sharpenStatus = rpiMetadata_.GetLocked<SharpenStatus>("sharpen.status");
if (sharpenStatus)
applySharpen(sharpenStatus, ctrls);
DpcStatus *dpcStatus = rpiMetadata_.GetLocked<DpcStatus>("dpc.status");
if (dpcStatus)
applyDPC(dpcStatus, ctrls);
if (!ctrls.empty())
setIspControls.emit(ctrls);
} }
bool IPARPi::parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus) bool IPARPi::parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus)
@ -989,6 +1008,7 @@ bool IPARPi::parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &devic
RPiController::MdParser::Status status = helper_->Parser().Parse(mem.data()); RPiController::MdParser::Status status = helper_->Parser().Parse(mem.data());
if (status != RPiController::MdParser::Status::OK) { if (status != RPiController::MdParser::Status::OK) {
LOG(IPARPI, Error) << "Embedded Buffer parsing failed, error " << status; LOG(IPARPI, Error) << "Embedded Buffer parsing failed, error " << status;
return false;
} else { } else {
uint32_t exposureLines, gainCode; uint32_t exposureLines, gainCode;
if (helper_->Parser().GetExposureLines(exposureLines) != RPiController::MdParser::Status::OK) { if (helper_->Parser().GetExposureLines(exposureLines) != RPiController::MdParser::Status::OK) {
@ -996,21 +1016,29 @@ bool IPARPi::parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &devic
return false; return false;
} }
deviceStatus.shutter_speed = helper_->Exposure(exposureLines);
if (helper_->Parser().GetGainCode(gainCode) != RPiController::MdParser::Status::OK) { if (helper_->Parser().GetGainCode(gainCode) != RPiController::MdParser::Status::OK) {
LOG(IPARPI, Error) << "Gain failed"; LOG(IPARPI, Error) << "Gain failed";
return false; return false;
} }
deviceStatus.analogue_gain = helper_->Gain(gainCode); fillDeviceStatus(exposureLines, gainCode, deviceStatus);
LOG(IPARPI, Debug) << "Metadata - Exposure : "
<< deviceStatus.shutter_speed << " Gain : "
<< deviceStatus.analogue_gain;
} }
return true; return true;
} }
void IPARPi::fillDeviceStatus(uint32_t exposureLines, uint32_t gainCode,
struct DeviceStatus &deviceStatus)
{
deviceStatus.shutter_speed = helper_->Exposure(exposureLines);
deviceStatus.analogue_gain = helper_->Gain(gainCode);
LOG(IPARPI, Debug) << "Metadata - Exposure : "
<< deviceStatus.shutter_speed
<< " Gain : "
<< deviceStatus.analogue_gain;
}
void IPARPi::processStats(unsigned int bufferId) void IPARPi::processStats(unsigned int bufferId)
{ {
auto it = buffers_.find(bufferId); auto it = buffers_.find(bufferId);

View file

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* SPDX-License-Identifier: LGPL-2.1-or-later */
/* /*
* Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd. * Copyright (C) 2019-2021, Raspberry Pi (Trading) Ltd.
* *
* raspberrypi.cpp - Pipeline handler for Raspberry Pi devices * raspberrypi.cpp - Pipeline handler for Raspberry Pi devices
*/ */
@ -197,7 +197,13 @@ public:
*/ */
enum class State { Stopped, Idle, Busy, IpaComplete }; enum class State { Stopped, Idle, Busy, IpaComplete };
State state_; State state_;
std::queue<FrameBuffer *> bayerQueue_;
struct BayerFrame {
FrameBuffer *buffer;
ControlList controls;
};
std::queue<BayerFrame> bayerQueue_;
std::queue<FrameBuffer *> embeddedQueue_; std::queue<FrameBuffer *> embeddedQueue_;
std::deque<Request *> requestQueue_; std::deque<Request *> requestQueue_;
@ -222,7 +228,7 @@ public:
private: private:
void checkRequestCompleted(); void checkRequestCompleted();
void tryRunPipeline(); void tryRunPipeline();
bool findMatchingBuffers(FrameBuffer *&bayerBuffer, FrameBuffer *&embeddedBuffer); bool findMatchingBuffers(BayerFrame &bayerFrame, FrameBuffer *&embeddedBuffer);
unsigned int ispOutputCount_; unsigned int ispOutputCount_;
}; };
@ -1356,7 +1362,7 @@ void RPiCameraData::setIspControls(const ControlList &controls)
void RPiCameraData::setDelayedControls(const ControlList &controls) void RPiCameraData::setDelayedControls(const ControlList &controls)
{ {
if (!delayedCtrls_->push(controls)) if (!delayedCtrls_->push(controls))
LOG(RPI, Error) << "V4L2 staggered set failed"; LOG(RPI, Error) << "V4L2 DelayedControl set failed";
handleState(); handleState();
} }
@ -1384,29 +1390,14 @@ void RPiCameraData::unicamBufferDequeue(FrameBuffer *buffer)
<< ", timestamp: " << buffer->metadata().timestamp; << ", timestamp: " << buffer->metadata().timestamp;
if (stream == &unicam_[Unicam::Image]) { if (stream == &unicam_[Unicam::Image]) {
bayerQueue_.push(buffer); /*
* Lookup the sensor controls used for this frame sequence from
* DelayedControl and queue them along with the frame buffer.
*/
ControlList ctrl = delayedCtrls_->get(buffer->metadata().sequence);
bayerQueue_.push({ buffer, std::move(ctrl) });
} else { } else {
embeddedQueue_.push(buffer); embeddedQueue_.push(buffer);
ControlList ctrl = delayedCtrls_->get(buffer->metadata().sequence);
/*
* Sensor metadata is unavailable, so put the expected ctrl
* values (accounting for the staggered delays) into the empty
* metadata buffer.
*/
if (!sensorMetadata_) {
unsigned int bufferId = unicam_[Unicam::Embedded].getBufferId(buffer);
auto it = mappedEmbeddedBuffers_.find(bufferId);
if (it != mappedEmbeddedBuffers_.end()) {
uint32_t *mem = reinterpret_cast<uint32_t *>(it->second.maps()[0].data());
mem[0] = ctrl.get(V4L2_CID_EXPOSURE).get<int32_t>();
mem[1] = ctrl.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>();
} else {
LOG(RPI, Warning) << "Failed to find embedded buffer "
<< bufferId;
}
}
} }
handleState(); handleState();
@ -1657,14 +1648,15 @@ void RPiCameraData::applyScalerCrop(const ControlList &controls)
void RPiCameraData::tryRunPipeline() void RPiCameraData::tryRunPipeline()
{ {
FrameBuffer *bayerBuffer, *embeddedBuffer; FrameBuffer *embeddedBuffer;
BayerFrame bayerFrame;
/* If any of our request or buffer queues are empty, we cannot proceed. */ /* If any of our request or buffer queues are empty, we cannot proceed. */
if (state_ != State::Idle || requestQueue_.empty() || if (state_ != State::Idle || requestQueue_.empty() ||
bayerQueue_.empty() || embeddedQueue_.empty()) bayerQueue_.empty() || embeddedQueue_.empty())
return; return;
if (!findMatchingBuffers(bayerBuffer, embeddedBuffer)) if (!findMatchingBuffers(bayerFrame, embeddedBuffer))
return; return;
/* Take the first request from the queue and action the IPA. */ /* Take the first request from the queue and action the IPA. */
@ -1683,7 +1675,7 @@ void RPiCameraData::tryRunPipeline()
/* Set our state to say the pipeline is active. */ /* Set our state to say the pipeline is active. */
state_ = State::Busy; state_ = State::Busy;
unsigned int bayerId = unicam_[Unicam::Image].getBufferId(bayerBuffer); unsigned int bayerId = unicam_[Unicam::Image].getBufferId(bayerFrame.buffer);
unsigned int embeddedId = unicam_[Unicam::Embedded].getBufferId(embeddedBuffer); unsigned int embeddedId = unicam_[Unicam::Embedded].getBufferId(embeddedBuffer);
LOG(RPI, Debug) << "Signalling signalIspPrepare:" LOG(RPI, Debug) << "Signalling signalIspPrepare:"
@ -1693,17 +1685,19 @@ void RPiCameraData::tryRunPipeline()
ipa::RPi::ISPConfig ispPrepare; ipa::RPi::ISPConfig ispPrepare;
ispPrepare.embeddedBufferId = ipa::RPi::MaskEmbeddedData | embeddedId; ispPrepare.embeddedBufferId = ipa::RPi::MaskEmbeddedData | embeddedId;
ispPrepare.bayerBufferId = ipa::RPi::MaskBayerData | bayerId; ispPrepare.bayerBufferId = ipa::RPi::MaskBayerData | bayerId;
ispPrepare.embeddedBufferPresent = sensorMetadata_;
ispPrepare.controls = std::move(bayerFrame.controls);
ipa_->signalIspPrepare(ispPrepare); ipa_->signalIspPrepare(ispPrepare);
} }
bool RPiCameraData::findMatchingBuffers(FrameBuffer *&bayerBuffer, FrameBuffer *&embeddedBuffer) bool RPiCameraData::findMatchingBuffers(BayerFrame &bayerFrame, FrameBuffer *&embeddedBuffer)
{ {
unsigned int embeddedRequeueCount = 0, bayerRequeueCount = 0; unsigned int embeddedRequeueCount = 0, bayerRequeueCount = 0;
/* Loop until we find a matching bayer and embedded data buffer. */ /* Loop until we find a matching bayer and embedded data buffer. */
while (!bayerQueue_.empty()) { while (!bayerQueue_.empty()) {
/* Start with the front of the bayer queue. */ /* Start with the front of the bayer queue. */
bayerBuffer = bayerQueue_.front(); FrameBuffer *bayerBuffer = bayerQueue_.front().buffer;
/* /*
* Find the embedded data buffer with a matching timestamp to pass to * Find the embedded data buffer with a matching timestamp to pass to
@ -1740,7 +1734,7 @@ bool RPiCameraData::findMatchingBuffers(FrameBuffer *&bayerBuffer, FrameBuffer *
* the front of the queue. This buffer is now orphaned, so requeue * the front of the queue. This buffer is now orphaned, so requeue
* it back to the device. * it back to the device.
*/ */
unicam_[Unicam::Image].queueBuffer(bayerQueue_.front()); unicam_[Unicam::Image].queueBuffer(bayerQueue_.front().buffer);
bayerQueue_.pop(); bayerQueue_.pop();
bayerRequeueCount++; bayerRequeueCount++;
LOG(RPI, Warning) << "Dropping unmatched input frame in stream " LOG(RPI, Warning) << "Dropping unmatched input frame in stream "
@ -1758,7 +1752,7 @@ bool RPiCameraData::findMatchingBuffers(FrameBuffer *&bayerBuffer, FrameBuffer *
LOG(RPI, Warning) << "Flushing bayer stream!"; LOG(RPI, Warning) << "Flushing bayer stream!";
while (!bayerQueue_.empty()) { while (!bayerQueue_.empty()) {
unicam_[Unicam::Image].queueBuffer(bayerQueue_.front()); unicam_[Unicam::Image].queueBuffer(bayerQueue_.front().buffer);
bayerQueue_.pop(); bayerQueue_.pop();
} }
flushedBuffers = true; flushedBuffers = true;
@ -1791,8 +1785,10 @@ bool RPiCameraData::findMatchingBuffers(FrameBuffer *&bayerBuffer, FrameBuffer *
} else { } else {
/* /*
* We have found a matching bayer and embedded data buffer, so * We have found a matching bayer and embedded data buffer, so
* nothing more to do apart from popping the buffers from the queue. * nothing more to do apart from assigning the bayer frame and
* popping the buffers from the queue.
*/ */
bayerFrame = std::move(bayerQueue_.front());
bayerQueue_.pop(); bayerQueue_.pop();
embeddedQueue_.pop(); embeddedQueue_.pop();
return true; return true;