libcamera: geometry: Add Rectangle::transformedBetween()

Handling cropping and scaling within a complicated pipeline involves
transformations of rectangles between different coordinate systems. For
example the full input of the dewarper (0,0)/1920x1080 might correspond
to the rectangle (0, 243)/2592x1458 in sensor coordinates (of a
2592x1944 sensor). Add a function that allows the transformation of a
rectangle defined in one reference frame (dewarper) into the coordinates
of a second reference frame (sensor).

Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com>
Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
Reviewed-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com>
This commit is contained in:
Stefan Klug 2024-12-16 16:40:43 +01:00
parent db9b6f8e23
commit ec097d63ef
3 changed files with 63 additions and 0 deletions

View file

@ -299,6 +299,9 @@ public:
__nodiscard Rectangle scaledBy(const Size &numerator,
const Size &denominator) const;
__nodiscard Rectangle translatedBy(const Point &point) const;
Rectangle transformedBetween(const Rectangle &source,
const Rectangle &target) const;
};
bool operator==(const Rectangle &lhs, const Rectangle &rhs);

View file

@ -837,6 +837,55 @@ Rectangle Rectangle::translatedBy(const Point &point) const
return { x + point.x, y + point.y, width, height };
}
/**
* \brief Transform a Rectangle from one reference rectangle to another
* \param[in] source The \a source reference rectangle
* \param[in] destination The \a destination reference rectangle
*
* The \a source and \a destination parameters describe two rectangles defined
* in different reference systems. The Rectangle is translated from the source
* reference system into the destination reference system.
*
* The typical use case for this function is to translate a selection rectangle
* specified in a reference system, in example the sensor's pixel array, into
* the same rectangle re-scaled and translated into a different reference
* system, in example the output frame on which the selection rectangle is
* applied to.
*
* For example, consider a sensor with a resolution of 4040x2360 pixels and a
* assume a rectangle of (100, 100)/3840x2160 (sensorFrame) in sensor
* coordinates is mapped to a rectangle (0,0)/(1920,1080) (displayFrame) in
* display coordinates. This function can be used to transform an arbitrary
* rectangle from display coordinates to sensor coordinates or vice versa:
*
* \code{.cpp}
* Rectangle sensorReference(100, 100, 3840, 2160);
* Rectangle displayReference(0, 0, 1920, 1080);
*
* // Bottom right quarter in sensor coordinates
* Rectangle sensorRect(2020, 100, 1920, 1080);
* displayRect = sensorRect.transformedBetween(sensorReference, displayReference);
* // displayRect is now (960, 540)/960x540
*
* // Transformation back to sensor coordinates
* sensorRect = displayRect.transformedBetween(displayReference, sensorReference);
* \endcode
*/
Rectangle Rectangle::transformedBetween(const Rectangle &source,
const Rectangle &destination) const
{
Rectangle r;
double sx = static_cast<double>(destination.width) / source.width;
double sy = static_cast<double>(destination.height) / source.height;
r.x = static_cast<int>((x - source.x) * sx) + destination.x;
r.y = static_cast<int>((y - source.y) * sy) + destination.y;
r.width = static_cast<int>(width * sx);
r.height = static_cast<int>(height * sy);
return r;
}
/**
* \brief Compare rectangles for equality
* \return True if the two rectangles are equal, false otherwise

View file

@ -495,6 +495,17 @@ protected:
return TestFail;
}
Rectangle f1 = Rectangle(100, 200, 3000, 2000);
Rectangle f2 = Rectangle(200, 300, 1500, 1000);
/* Bottom right quarter of the corresponding frames. */
Rectangle r1 = Rectangle(100 + 1500, 200 + 1000, 1500, 1000);
Rectangle r2 = Rectangle(200 + 750, 300 + 500, 750, 500);
if (r1.transformedBetween(f1, f2) != r2 ||
r2.transformedBetween(f2, f1) != r1) {
cout << "Rectangle::transformedBetween() test failed" << endl;
return TestFail;
}
return TestPass;
}
};