mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-12 14:59:44 +03:00
ipa: rkisp1: Remove bespoke Agc functions
Now that the rkisp1 Agc algorithm is a derivation of MeanLuminanceAgc we can remove the bespoke functions from the IPA's class. Reviewed-by: Stefan Klug <stefan.klug@ideasonboard.com> Reviewed-by: Paul Elder <paul.elder@ideasonboard.com> Reviewed-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com> Signed-off-by: Daniel Scally <dan.scally@ideasonboard.com> Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
This commit is contained in:
parent
4c5152843a
commit
fdcd5d04ec
2 changed files with 25 additions and 237 deletions
|
@ -36,30 +36,7 @@ namespace ipa::rkisp1::algorithms {
|
|||
|
||||
LOG_DEFINE_CATEGORY(RkISP1Agc)
|
||||
|
||||
/* Minimum limit for analogue gain value */
|
||||
static constexpr double kMinAnalogueGain = 1.0;
|
||||
|
||||
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
|
||||
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
|
||||
|
||||
/* Number of frames to wait before calculating stats on minimum exposure */
|
||||
static constexpr uint32_t kNumStartupFrames = 10;
|
||||
|
||||
/* Target value to reach for the top 2% of the histogram */
|
||||
static constexpr double kEvGainTarget = 0.5;
|
||||
|
||||
/*
|
||||
* Relative luminance target.
|
||||
*
|
||||
* It's a number that's chosen so that, when the camera points at a grey
|
||||
* target, the resulting image brightness is considered right.
|
||||
*
|
||||
* \todo Why is the value different between IPU3 and RkISP1 ?
|
||||
*/
|
||||
static constexpr double kRelativeLuminanceTarget = 0.4;
|
||||
|
||||
Agc::Agc()
|
||||
: frameCount_(0), filteredExposure_(0s)
|
||||
{
|
||||
supportsRaw_ = true;
|
||||
}
|
||||
|
@ -116,12 +93,6 @@ int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
|
|||
context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
|
||||
context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;
|
||||
|
||||
/*
|
||||
* \todo Use the upcoming per-frame context API that will provide a
|
||||
* frame index
|
||||
*/
|
||||
frameCount_ = 0;
|
||||
|
||||
/* \todo Run this again when FrameDurationLimits is passed in */
|
||||
setLimits(context.configuration.sensor.minShutterSpeed,
|
||||
context.configuration.sensor.maxShutterSpeed,
|
||||
|
@ -223,170 +194,6 @@ void Agc::prepare(IPAContext &context, const uint32_t frame,
|
|||
params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Apply a filter on the exposure value to limit the speed of changes
|
||||
* \param[in] exposureValue The target exposure from the AGC algorithm
|
||||
*
|
||||
* The speed of the filter is adaptive, and will produce the target quicker
|
||||
* during startup, or when the target exposure is within 20% of the most recent
|
||||
* filter output.
|
||||
*
|
||||
* \return The filtered exposure
|
||||
*/
|
||||
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
|
||||
{
|
||||
double speed = 0.2;
|
||||
|
||||
/* Adapt instantly if we are in startup phase. */
|
||||
if (frameCount_ < kNumStartupFrames)
|
||||
speed = 1.0;
|
||||
|
||||
/*
|
||||
* If we are close to the desired result, go faster to avoid making
|
||||
* multiple micro-adjustments.
|
||||
* \todo Make this customisable?
|
||||
*/
|
||||
if (filteredExposure_ < 1.2 * exposureValue &&
|
||||
filteredExposure_ > 0.8 * exposureValue)
|
||||
speed = sqrt(speed);
|
||||
|
||||
filteredExposure_ = speed * exposureValue +
|
||||
filteredExposure_ * (1.0 - speed);
|
||||
|
||||
LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;
|
||||
|
||||
return filteredExposure_;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Estimate the new exposure and gain values
|
||||
* \param[inout] context The shared IPA Context
|
||||
* \param[in] frameContext The FrameContext for this frame
|
||||
* \param[in] yGain The gain calculated on the current brightness level
|
||||
* \param[in] iqMeanGain The gain calculated based on the relative luminance target
|
||||
*/
|
||||
void Agc::computeExposure(IPAContext &context, IPAFrameContext &frameContext,
|
||||
double yGain, double iqMeanGain)
|
||||
{
|
||||
IPASessionConfiguration &configuration = context.configuration;
|
||||
|
||||
/* Get the effective exposure and gain applied on the sensor. */
|
||||
uint32_t exposure = frameContext.sensor.exposure;
|
||||
double analogueGain = frameContext.sensor.gain;
|
||||
|
||||
/* Use the highest of the two gain estimates. */
|
||||
double evGain = std::max(yGain, iqMeanGain);
|
||||
|
||||
utils::Duration minShutterSpeed = configuration.sensor.minShutterSpeed;
|
||||
utils::Duration maxShutterSpeed = std::min(configuration.sensor.maxShutterSpeed,
|
||||
kMaxShutterSpeed);
|
||||
|
||||
double minAnalogueGain = std::max(configuration.sensor.minAnalogueGain,
|
||||
kMinAnalogueGain);
|
||||
double maxAnalogueGain = configuration.sensor.maxAnalogueGain;
|
||||
|
||||
/* Consider within 1% of the target as correctly exposed. */
|
||||
if (utils::abs_diff(evGain, 1.0) < 0.01)
|
||||
return;
|
||||
|
||||
/* extracted from Rpi::Agc::computeTargetExposure. */
|
||||
|
||||
/* Calculate the shutter time in seconds. */
|
||||
utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
|
||||
|
||||
/*
|
||||
* Update the exposure value for the next computation using the values
|
||||
* of exposure and gain really used by the sensor.
|
||||
*/
|
||||
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
|
||||
|
||||
LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
|
||||
<< " Shutter speed " << currentShutter
|
||||
<< " Gain " << analogueGain
|
||||
<< " Needed ev gain " << evGain;
|
||||
|
||||
/*
|
||||
* Calculate the current exposure value for the scene as the latest
|
||||
* exposure value applied multiplied by the new estimated gain.
|
||||
*/
|
||||
utils::Duration exposureValue = effectiveExposureValue * evGain;
|
||||
|
||||
/* Clamp the exposure value to the min and max authorized. */
|
||||
utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
|
||||
exposureValue = std::min(exposureValue, maxTotalExposure);
|
||||
LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
|
||||
<< ", maximum is " << maxTotalExposure;
|
||||
|
||||
/*
|
||||
* Divide the exposure value as new exposure and gain values.
|
||||
* \todo estimate if we need to desaturate
|
||||
*/
|
||||
exposureValue = filterExposure(exposureValue);
|
||||
|
||||
/*
|
||||
* Push the shutter time up to the maximum first, and only then
|
||||
* increase the gain.
|
||||
*/
|
||||
utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
|
||||
minShutterSpeed, maxShutterSpeed);
|
||||
double stepGain = std::clamp(exposureValue / shutterTime,
|
||||
minAnalogueGain, maxAnalogueGain);
|
||||
LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
|
||||
<< shutterTime << " and "
|
||||
<< stepGain;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Estimate the relative luminance of the frame with a given gain
|
||||
* \param[in] expMeans The mean luminance values, from the RkISP1 statistics
|
||||
* \param[in] gain The gain to apply to the frame
|
||||
*
|
||||
* This function estimates the average relative luminance of the frame that
|
||||
* would be output by the sensor if an additional \a gain was applied.
|
||||
*
|
||||
* The estimation is based on the AE statistics for the current frame. Y
|
||||
* averages for all cells are first multiplied by the gain, and then saturated
|
||||
* to approximate the sensor behaviour at high brightness values. The
|
||||
* approximation is quite rough, as it doesn't take into account non-linearities
|
||||
* when approaching saturation. In this case, saturating after the conversion to
|
||||
* YUV doesn't take into account the fact that the R, G and B components
|
||||
* contribute differently to the relative luminance.
|
||||
*
|
||||
* \todo Have a dedicated YUV algorithm ?
|
||||
*
|
||||
* The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
|
||||
* theoretical perfect reflector of 100% reference white.
|
||||
*
|
||||
* More detailed information can be found in:
|
||||
* https://en.wikipedia.org/wiki/Relative_luminance
|
||||
*
|
||||
* \return The relative luminance
|
||||
*/
|
||||
double Agc::estimateLuminance(Span<const uint8_t> expMeans, double gain)
|
||||
{
|
||||
double ySum = 0.0;
|
||||
|
||||
/* Sum the averages, saturated to 255. */
|
||||
for (uint8_t expMean : expMeans)
|
||||
ySum += std::min(expMean * gain, 255.0);
|
||||
|
||||
/* \todo Weight with the AWB gains */
|
||||
|
||||
return ySum / expMeans.size() / 255;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Estimate the mean value of the top 2% of the histogram
|
||||
* \param[in] hist The histogram statistics computed by the RkISP1
|
||||
* \return The mean value of the top 2% of the histogram
|
||||
*/
|
||||
double Agc::measureBrightness(Span<const uint32_t> hist) const
|
||||
{
|
||||
Histogram histogram{ hist };
|
||||
/* Estimate the quantile mean of the top 2% of the histogram. */
|
||||
return histogram.interQuantileMean(0.98, 1.0);
|
||||
}
|
||||
|
||||
void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
|
||||
ControlList &metadata)
|
||||
{
|
||||
|
@ -403,6 +210,29 @@ void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
|
|||
metadata.set(controls::FrameDuration, frameDuration.get<std::micro>());
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Estimate the relative luminance of the frame with a given gain
|
||||
* \param[in] gain The gain to apply to the frame
|
||||
*
|
||||
* This function estimates the average relative luminance of the frame that
|
||||
* would be output by the sensor if an additional \a gain was applied.
|
||||
*
|
||||
* The estimation is based on the AE statistics for the current frame. Y
|
||||
* averages for all cells are first multiplied by the gain, and then saturated
|
||||
* to approximate the sensor behaviour at high brightness values. The
|
||||
* approximation is quite rough, as it doesn't take into account non-linearities
|
||||
* when approaching saturation. In this case, saturating after the conversion to
|
||||
* YUV doesn't take into account the fact that the R, G and B components
|
||||
* contribute differently to the relative luminance.
|
||||
*
|
||||
* The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
|
||||
* theoretical perfect reflector of 100% reference white.
|
||||
*
|
||||
* More detailed information can be found in:
|
||||
* https://en.wikipedia.org/wiki/Relative_luminance
|
||||
*
|
||||
* \return The relative luminance
|
||||
*/
|
||||
double Agc::estimateLuminance(double gain) const
|
||||
{
|
||||
double ySum = 0.0;
|
||||
|
@ -447,40 +277,7 @@ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
|
|||
const rkisp1_cif_isp_stat *params = &stats->params;
|
||||
ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
|
||||
|
||||
Span<const uint8_t> ae{ params->ae.exp_mean, context.hw->numAeCells };
|
||||
Span<const uint32_t> hist{
|
||||
params->hist.hist_bins,
|
||||
context.hw->numHistogramBins
|
||||
};
|
||||
|
||||
double iqMean = measureBrightness(hist);
|
||||
double iqMeanGain = kEvGainTarget * hist.size() / iqMean;
|
||||
|
||||
/*
|
||||
* Estimate the gain needed to achieve a relative luminance target. To
|
||||
* account for non-linearity caused by saturation, the value needs to be
|
||||
* estimated in an iterative process, as multiplying by a gain will not
|
||||
* increase the relative luminance by the same factor if some image
|
||||
* regions are saturated.
|
||||
*/
|
||||
double yGain = 1.0;
|
||||
double yTarget = kRelativeLuminanceTarget;
|
||||
|
||||
for (unsigned int i = 0; i < 8; i++) {
|
||||
double yValue = estimateLuminance(ae, yGain);
|
||||
double extra_gain = std::min(10.0, yTarget / (yValue + .001));
|
||||
|
||||
yGain *= extra_gain;
|
||||
LOG(RkISP1Agc, Debug) << "Y value: " << yValue
|
||||
<< ", Y target: " << yTarget
|
||||
<< ", gives gain " << yGain;
|
||||
if (extra_gain < 1.01)
|
||||
break;
|
||||
}
|
||||
|
||||
computeExposure(context, frameContext, yGain, iqMeanGain);
|
||||
frameCount_++;
|
||||
|
||||
Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins });
|
||||
expMeans_ = { params->ae.exp_mean, context.hw->numAeCells };
|
||||
|
||||
/*
|
||||
|
@ -497,7 +294,7 @@ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame,
|
|||
std::tie(shutterTime, aGain, dGain) =
|
||||
calculateNewEv(context.activeState.agc.constraintMode,
|
||||
context.activeState.agc.exposureMode,
|
||||
Histogram(hist), effectiveExposureValue);
|
||||
hist, effectiveExposureValue);
|
||||
|
||||
LOG(RkISP1Agc, Debug)
|
||||
<< "Divided up shutter, analogue gain and digital gain are "
|
||||
|
|
|
@ -44,19 +44,10 @@ public:
|
|||
ControlList &metadata) override;
|
||||
|
||||
private:
|
||||
void computeExposure(IPAContext &Context, IPAFrameContext &frameContext,
|
||||
double yGain, double iqMeanGain);
|
||||
utils::Duration filterExposure(utils::Duration exposureValue);
|
||||
double estimateLuminance(Span<const uint8_t> expMeans, double gain);
|
||||
double measureBrightness(Span<const uint32_t> hist) const;
|
||||
void fillMetadata(IPAContext &context, IPAFrameContext &frameContext,
|
||||
ControlList &metadata);
|
||||
double estimateLuminance(double gain) const override;
|
||||
|
||||
uint64_t frameCount_;
|
||||
|
||||
utils::Duration filteredExposure_;
|
||||
|
||||
Span<const uint8_t> expMeans_;
|
||||
};
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue