libcamera/src/ipa/rkisp1/algorithms/agc.cpp
Laurent Pinchart 2101af47e4 ipa: libipa: Pass a reference instead of pointer to Algorithm::process()
Frame contexts will become the core component of IPA modules, always
available to functions of the algorithms. To indicate and prepare for
this, turn the frame context pointer passed to Algorithm::process() into
a reference.

The RkISP1 IPA module doesn't use frame contexts yet, so pass a dummy
context for now.

While at it, drop an unneeded [[maybe_unused]] from Agc::process() and
add a missing parameter documentation for the frameContext argument to
Awb::process().

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Reviewed-by: Jacopo Mondi <jacopo@jmondi.org>
2022-09-27 14:39:47 +03:00

363 lines
12 KiB
C++

/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021-2022, Ideas On Board
*
* agc.cpp - AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>
#include <libcamera/ipa/core_ipa_interface.h>
#include "libipa/histogram.h"
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::rkisp1::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*/
LOG_DEFINE_CATEGORY(RkISP1Agc)
/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kNumStartupFrames = 10;
/* Target value to reach for the top 2% of the histogram */
static constexpr double kEvGainTarget = 0.5;
/*
* Relative luminance target.
*
* It's a number that's chosen so that, when the camera points at a grey
* target, the resulting image brightness is considered right.
*
* \todo Why is the value different between IPU3 and RkISP1 ?
*/
static constexpr double kRelativeLuminanceTarget = 0.4;
Agc::Agc()
: frameCount_(0), numCells_(0), numHistBins_(0), filteredExposure_(0s)
{
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
{
/* Configure the default exposure and gain. */
context.frameContext.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
context.frameContext.agc.exposure = 10ms / context.configuration.sensor.lineDuration;
/*
* According to the RkISP1 documentation:
* - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries,
* - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries.
*/
if (context.configuration.hw.revision < RKISP1_V12) {
numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10;
} else {
numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12;
}
/*
* Define the measurement window for AGC as a centered rectangle
* covering 3/4 of the image width and height.
*/
context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8;
context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8;
context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;
/* \todo Use actual frame index by populating it in the frameContext. */
frameCount_ = 0;
return 0;
}
/**
* \brief Apply a filter on the exposure value to limit the speed of changes
* \param[in] exposureValue The target exposure from the AGC algorithm
*
* The speed of the filter is adaptive, and will produce the target quicker
* during startup, or when the target exposure is within 20% of the most recent
* filter output.
*
* \return The filtered exposure
*/
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
{
double speed = 0.2;
/* Adapt instantly if we are in startup phase. */
if (frameCount_ < kNumStartupFrames)
speed = 1.0;
/*
* If we are close to the desired result, go faster to avoid making
* multiple micro-adjustments.
* \todo Make this customisable?
*/
if (filteredExposure_ < 1.2 * exposureValue &&
filteredExposure_ > 0.8 * exposureValue)
speed = sqrt(speed);
filteredExposure_ = speed * exposureValue +
filteredExposure_ * (1.0 - speed);
LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;
return filteredExposure_;
}
/**
* \brief Estimate the new exposure and gain values
* \param[inout] frameContext The shared IPA frame Context
* \param[in] yGain The gain calculated on the current brightness level
* \param[in] iqMeanGain The gain calculated based on the relative luminance target
*/
void Agc::computeExposure(IPAContext &context, double yGain, double iqMeanGain)
{
IPASessionConfiguration &configuration = context.configuration;
IPAFrameContext &frameContext = context.frameContext;
/* Get the effective exposure and gain applied on the sensor. */
uint32_t exposure = frameContext.sensor.exposure;
double analogueGain = frameContext.sensor.gain;
/* Use the highest of the two gain estimates. */
double evGain = std::max(yGain, iqMeanGain);
utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed;
utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed,
kMaxShutterSpeed);
double minAnalogueGain = std::max(configuration.agc.minAnalogueGain,
kMinAnalogueGain);
double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain,
kMaxAnalogueGain);
/* Consider within 1% of the target as correctly exposed. */
if (utils::abs_diff(evGain, 1.0) < 0.01)
return;
/* extracted from Rpi::Agc::computeTargetExposure. */
/* Calculate the shutter time in seconds. */
utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
/*
* Update the exposure value for the next computation using the values
* of exposure and gain really used by the sensor.
*/
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
<< " Shutter speed " << currentShutter
<< " Gain " << analogueGain
<< " Needed ev gain " << evGain;
/*
* Calculate the current exposure value for the scene as the latest
* exposure value applied multiplied by the new estimated gain.
*/
utils::Duration exposureValue = effectiveExposureValue * evGain;
/* Clamp the exposure value to the min and max authorized. */
utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
exposureValue = std::min(exposureValue, maxTotalExposure);
LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
<< ", maximum is " << maxTotalExposure;
/*
* Divide the exposure value as new exposure and gain values.
* \todo estimate if we need to desaturate
*/
exposureValue = filterExposure(exposureValue);
/*
* Push the shutter time up to the maximum first, and only then
* increase the gain.
*/
utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
minShutterSpeed, maxShutterSpeed);
double stepGain = std::clamp(exposureValue / shutterTime,
minAnalogueGain, maxAnalogueGain);
LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
<< shutterTime << " and "
<< stepGain;
/* Update the estimated exposure and gain. */
frameContext.agc.exposure = shutterTime / configuration.sensor.lineDuration;
frameContext.agc.gain = stepGain;
}
/**
* \brief Estimate the relative luminance of the frame with a given gain
* \param[in] ae The RkISP1 statistics and ISP results
* \param[in] gain The gain to apply to the frame
*
* This function estimates the average relative luminance of the frame that
* would be output by the sensor if an additional \a gain was applied.
*
* The estimation is based on the AE statistics for the current frame. Y
* averages for all cells are first multiplied by the gain, and then saturated
* to approximate the sensor behaviour at high brightness values. The
* approximation is quite rough, as it doesn't take into account non-linearities
* when approaching saturation. In this case, saturating after the conversion to
* YUV doesn't take into account the fact that the R, G and B components
* contribute differently to the relative luminance.
*
* \todo Have a dedicated YUV algorithm ?
*
* The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
* theoretical perfect reflector of 100% reference white.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Relative_luminance
*
* \return The relative luminance
*/
double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae,
double gain)
{
double ySum = 0.0;
/* Sum the averages, saturated to 255. */
for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++)
ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0);
/* \todo Weight with the AWB gains */
return ySum / numCells_ / 255;
}
/**
* \brief Estimate the mean value of the top 2% of the histogram
* \param[in] hist The histogram statistics computed by the ImgU
* \return The mean value of the top 2% of the histogram
*/
double Agc::measureBrightness(const rkisp1_cif_isp_hist_stat *hist) const
{
Histogram histogram{ Span<const uint32_t>(hist->hist_bins, numHistBins_) };
/* Estimate the quantile mean of the top 2% of the histogram. */
return histogram.interQuantileMean(0.98, 1.0);
}
/**
* \brief Process RkISP1 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] frameContext The current frame context
* \param[in] stats The RKISP1 statistics and ISP results
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context,
[[maybe_unused]] IPAFrameContext &frameContext,
const rkisp1_stat_buffer *stats)
{
const rkisp1_cif_isp_stat *params = &stats->params;
ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);
const rkisp1_cif_isp_ae_stat *ae = &params->ae;
const rkisp1_cif_isp_hist_stat *hist = &params->hist;
double iqMean = measureBrightness(hist);
double iqMeanGain = kEvGainTarget * numHistBins_ / iqMean;
/*
* Estimate the gain needed to achieve a relative luminance target. To
* account for non-linearity caused by saturation, the value needs to be
* estimated in an iterative process, as multiplying by a gain will not
* increase the relative luminance by the same factor if some image
* regions are saturated.
*/
double yGain = 1.0;
double yTarget = kRelativeLuminanceTarget;
for (unsigned int i = 0; i < 8; i++) {
double yValue = estimateLuminance(ae, yGain);
double extra_gain = std::min(10.0, yTarget / (yValue + .001));
yGain *= extra_gain;
LOG(RkISP1Agc, Debug) << "Y value: " << yValue
<< ", Y target: " << yTarget
<< ", gives gain " << yGain;
if (extra_gain < 1.01)
break;
}
computeExposure(context, yGain, iqMeanGain);
frameCount_++;
}
/**
* \copydoc libcamera::ipa::Algorithm::prepare
*/
void Agc::prepare(IPAContext &context, rkisp1_params_cfg *params)
{
if (context.frameContext.frameCount > 0)
return;
/* Configure the measurement window. */
params->meas.aec_config.meas_window = context.configuration.agc.measureWindow;
/* Use a continuous method for measure. */
params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0;
/* Estimate Y as (R + G + B) x (85/256). */
params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1;
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC;
params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC;
/* Configure histogram. */
params->meas.hst_config.meas_window = context.configuration.agc.measureWindow;
/* Produce the luminance histogram. */
params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM;
/* Set an average weighted histogram. */
for (unsigned int histBin = 0; histBin < numHistBins_; histBin++)
params->meas.hst_config.hist_weight[histBin] = 1;
/* Step size can't be less than 3. */
params->meas.hst_config.histogram_predivider = 4;
/* Update the configuration for histogram. */
params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST;
/* Enable the histogram measure unit. */
params->module_ens |= RKISP1_CIF_ISP_MODULE_HST;
params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
}
REGISTER_IPA_ALGORITHM(Agc, "Agc")
} /* namespace ipa::rkisp1::algorithms */
} /* namespace libcamera */