mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-24 17:15:07 +03:00
When a new CameraConfiguration is applied to the Camera the IPA is configured as well, using the newly applied sensor configuration and its updated V4L2 controls. Also update the Camera controls at IPA::configure() time by re-computing the controls::ExposureTime and controls::FrameDurationLimits limits and update the controls on the pipeline handler side after having configured the IPA. Signed-off-by: Jacopo Mondi <jacopo@jmondi.org> Reviewed-by: Paul Elder <paul.elder@ideasonboard.com> Reviewed-by: Umang Jain <umang.jain@ideasonboard.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
603 lines
17 KiB
C++
603 lines
17 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
|
/*
|
|
* Copyright (C) 2020, Google Inc.
|
|
*
|
|
* ipu3.cpp - IPU3 Image Processing Algorithms
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <stdint.h>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <linux/intel-ipu3.h>
|
|
#include <linux/v4l2-controls.h>
|
|
|
|
#include <libcamera/base/log.h>
|
|
#include <libcamera/base/utils.h>
|
|
|
|
#include <libcamera/control_ids.h>
|
|
#include <libcamera/framebuffer.h>
|
|
#include <libcamera/ipa/ipa_interface.h>
|
|
#include <libcamera/ipa/ipa_module_info.h>
|
|
#include <libcamera/ipa/ipu3_ipa_interface.h>
|
|
#include <libcamera/request.h>
|
|
|
|
#include "libcamera/internal/mapped_framebuffer.h"
|
|
|
|
#include "algorithms/agc.h"
|
|
#include "algorithms/algorithm.h"
|
|
#include "algorithms/awb.h"
|
|
#include "algorithms/blc.h"
|
|
#include "algorithms/tone_mapping.h"
|
|
#include "libipa/camera_sensor_helper.h"
|
|
|
|
/**
|
|
* \file ipa_context.h
|
|
* \brief Context and state information shared between the algorithms
|
|
*/
|
|
|
|
/**
|
|
* \struct IPASessionConfiguration
|
|
* \brief Session configuration for the IPA module
|
|
*
|
|
* The session configuration contains all IPA configuration parameters that
|
|
* remain constant during the capture session, from IPA module start to stop.
|
|
* It is typically set during the configure() operation of the IPA module, but
|
|
* may also be updated in the start() operation.
|
|
*/
|
|
|
|
/**
|
|
* \struct IPAFrameContext
|
|
* \brief Per-frame context for algorithms
|
|
*
|
|
* The frame context stores data specific to a single frame processed by the
|
|
* IPA. Each frame processed by the IPA has a context associated with it,
|
|
* accessible through the IPAContext structure.
|
|
*
|
|
* \todo Detail how to access contexts for a particular frame
|
|
*
|
|
* Each of the fields in the frame context belongs to either a specific
|
|
* algorithm, or to the top-level IPA module. A field may be read by any
|
|
* algorithm, but should only be written by its owner.
|
|
*/
|
|
|
|
/**
|
|
* \struct IPAContext
|
|
* \brief Global IPA context data shared between all algorithms
|
|
*
|
|
* \var IPAContext::configuration
|
|
* \brief The IPA session configuration, immutable during the session
|
|
*
|
|
* \var IPAContext::frameContext
|
|
* \brief The frame context for the frame being processed
|
|
*
|
|
* \todo While the frame context is supposed to be per-frame, this
|
|
* single frame context stores data related to both the current frame
|
|
* and the previous frames, with fields being updated as the algorithms
|
|
* are run. This needs to be turned into real per-frame data storage.
|
|
*/
|
|
|
|
/**
|
|
* \struct IPASessionConfiguration::grid
|
|
* \brief Grid configuration of the IPA
|
|
*
|
|
* \var IPASessionConfiguration::grid::bdsGrid
|
|
* \brief Bayer Down Scaler grid plane config used by the kernel
|
|
*
|
|
* \var IPASessionConfiguration::grid::bdsOutputSize
|
|
* \brief BDS output size configured by the pipeline handler
|
|
*
|
|
* \var IPASessionConfiguration::grid::stride
|
|
* \brief Number of cells on one line including the ImgU padding
|
|
*/
|
|
|
|
/**
|
|
* \struct IPAFrameContext::agc
|
|
* \brief Context for the Automatic Gain Control algorithm
|
|
*
|
|
* The exposure and gain determined are expected to be applied to the sensor
|
|
* at the earliest opportunity.
|
|
*
|
|
* \var IPAFrameContext::agc::exposure
|
|
* \brief Exposure time expressed as a number of lines
|
|
*
|
|
* \var IPAFrameContext::agc::gain
|
|
* \brief Analogue gain multiplier
|
|
*
|
|
* The gain should be adapted to the sensor specific gain code before applying.
|
|
*/
|
|
|
|
/**
|
|
* \struct IPAFrameContext::awb
|
|
* \brief Context for the Automatic White Balance algorithm
|
|
*
|
|
* \struct IPAFrameContext::awb::gains
|
|
* \brief White balance gains
|
|
*
|
|
* \var IPAFrameContext::awb::gains::red
|
|
* \brief White balance gain for R channel
|
|
*
|
|
* \var IPAFrameContext::awb::gains::green
|
|
* \brief White balance gain for G channel
|
|
*
|
|
* \var IPAFrameContext::awb::gains::blue
|
|
* \brief White balance gain for B channel
|
|
*/
|
|
|
|
/**
|
|
* \struct IPAFrameContext::toneMapping
|
|
* \brief Context for ToneMapping and Gamma control
|
|
*
|
|
* \var IPAFrameContext::toneMapping::gammaCorrection
|
|
* \brief Per-pixel tone mapping implemented as a LUT
|
|
*
|
|
* The LUT structure is defined by the IPU3 kernel interface. See
|
|
* <linux/intel-ipu3.h> struct ipu3_uapi_gamma_corr_lut for further details.
|
|
*/
|
|
|
|
/* Minimum grid width, expressed as a number of cells */
|
|
static constexpr uint32_t kMinGridWidth = 16;
|
|
/* Maximum grid width, expressed as a number of cells */
|
|
static constexpr uint32_t kMaxGridWidth = 80;
|
|
/* Minimum grid height, expressed as a number of cells */
|
|
static constexpr uint32_t kMinGridHeight = 16;
|
|
/* Maximum grid height, expressed as a number of cells */
|
|
static constexpr uint32_t kMaxGridHeight = 60;
|
|
/* log2 of the minimum grid cell width and height, in pixels */
|
|
static constexpr uint32_t kMinCellSizeLog2 = 3;
|
|
/* log2 of the maximum grid cell width and height, in pixels */
|
|
static constexpr uint32_t kMaxCellSizeLog2 = 6;
|
|
|
|
namespace libcamera {
|
|
|
|
LOG_DEFINE_CATEGORY(IPAIPU3)
|
|
|
|
namespace ipa::ipu3 {
|
|
|
|
class IPAIPU3 : public IPAIPU3Interface
|
|
{
|
|
public:
|
|
int init(const IPASettings &settings,
|
|
const IPACameraSensorInfo &sensorInfo,
|
|
const ControlInfoMap &sensorControls,
|
|
ControlInfoMap *ipaControls) override;
|
|
|
|
int start() override;
|
|
void stop() override {}
|
|
|
|
int configure(const IPAConfigInfo &configInfo,
|
|
ControlInfoMap *ipaControls) override;
|
|
|
|
void mapBuffers(const std::vector<IPABuffer> &buffers) override;
|
|
void unmapBuffers(const std::vector<unsigned int> &ids) override;
|
|
void processEvent(const IPU3Event &event) override;
|
|
|
|
private:
|
|
void updateControls(const IPACameraSensorInfo &sensorInfo,
|
|
const ControlInfoMap &sensorControls,
|
|
ControlInfoMap *ipaControls);
|
|
void processControls(unsigned int frame, const ControlList &controls);
|
|
void fillParams(unsigned int frame, ipu3_uapi_params *params);
|
|
void parseStatistics(unsigned int frame,
|
|
int64_t frameTimestamp,
|
|
const ipu3_uapi_stats_3a *stats);
|
|
|
|
void setControls(unsigned int frame);
|
|
void calculateBdsGrid(const Size &bdsOutputSize);
|
|
|
|
std::map<unsigned int, MappedFrameBuffer> buffers_;
|
|
|
|
ControlInfoMap ctrls_;
|
|
|
|
IPACameraSensorInfo sensorInfo_;
|
|
|
|
/* Camera sensor controls. */
|
|
uint32_t defVBlank_;
|
|
uint32_t exposure_;
|
|
uint32_t minExposure_;
|
|
uint32_t maxExposure_;
|
|
uint32_t gain_;
|
|
uint32_t minGain_;
|
|
uint32_t maxGain_;
|
|
|
|
/* Interface to the Camera Helper */
|
|
std::unique_ptr<CameraSensorHelper> camHelper_;
|
|
|
|
/* Maintain the algorithms used by the IPA */
|
|
std::list<std::unique_ptr<ipa::ipu3::Algorithm>> algorithms_;
|
|
|
|
/* Local parameter storage */
|
|
struct IPAContext context_;
|
|
};
|
|
|
|
|
|
/*
|
|
* Compute camera controls using the sensor information and the sensor
|
|
* v4l2 controls.
|
|
*
|
|
* Some of the camera controls are computed by the pipeline handler, some others
|
|
* by the IPA module which is in charge of handling, for example, the exposure
|
|
* time and the frame duration.
|
|
*
|
|
* This function computes:
|
|
* - controls::ExposureTime
|
|
* - controls::FrameDurationLimits
|
|
*/
|
|
void IPAIPU3::updateControls(const IPACameraSensorInfo &sensorInfo,
|
|
const ControlInfoMap &sensorControls,
|
|
ControlInfoMap *ipaControls)
|
|
{
|
|
ControlInfoMap::Map controls{};
|
|
|
|
/*
|
|
* Compute exposure time limits by using line length and pixel rate
|
|
* converted to microseconds. Use the V4L2_CID_EXPOSURE control to get
|
|
* exposure min, max and default and convert it from lines to
|
|
* microseconds.
|
|
*/
|
|
double lineDuration = sensorInfo.lineLength / (sensorInfo.pixelRate / 1e6);
|
|
const ControlInfo &v4l2Exposure = sensorControls.find(V4L2_CID_EXPOSURE)->second;
|
|
int32_t minExposure = v4l2Exposure.min().get<int32_t>() * lineDuration;
|
|
int32_t maxExposure = v4l2Exposure.max().get<int32_t>() * lineDuration;
|
|
int32_t defExposure = v4l2Exposure.def().get<int32_t>() * lineDuration;
|
|
controls[&controls::ExposureTime] = ControlInfo(minExposure, maxExposure,
|
|
defExposure);
|
|
|
|
/*
|
|
* Compute the frame duration limits.
|
|
*
|
|
* The frame length is computed assuming a fixed line length combined
|
|
* with the vertical frame sizes.
|
|
*/
|
|
const ControlInfo &v4l2HBlank = sensorControls.find(V4L2_CID_HBLANK)->second;
|
|
uint32_t hblank = v4l2HBlank.def().get<int32_t>();
|
|
uint32_t lineLength = sensorInfo.outputSize.width + hblank;
|
|
|
|
const ControlInfo &v4l2VBlank = sensorControls.find(V4L2_CID_VBLANK)->second;
|
|
std::array<uint32_t, 3> frameHeights{
|
|
v4l2VBlank.min().get<int32_t>() + sensorInfo.outputSize.height,
|
|
v4l2VBlank.max().get<int32_t>() + sensorInfo.outputSize.height,
|
|
v4l2VBlank.def().get<int32_t>() + sensorInfo.outputSize.height,
|
|
};
|
|
|
|
std::array<int64_t, 3> frameDurations;
|
|
for (unsigned int i = 0; i < frameHeights.size(); ++i) {
|
|
uint64_t frameSize = lineLength * frameHeights[i];
|
|
frameDurations[i] = frameSize / (sensorInfo.pixelRate / 1000000U);
|
|
}
|
|
|
|
controls[&controls::FrameDurationLimits] = ControlInfo(frameDurations[0],
|
|
frameDurations[1],
|
|
frameDurations[2]);
|
|
|
|
*ipaControls = ControlInfoMap(std::move(controls), controls::controls);
|
|
}
|
|
|
|
/**
|
|
* Initialize the IPA module and its controls.
|
|
*
|
|
* This function receives the camera sensor information from the pipeline
|
|
* handler, computes the limits of the controls it handles and returns
|
|
* them in the \a ipaControls output parameter.
|
|
*/
|
|
int IPAIPU3::init(const IPASettings &settings,
|
|
const IPACameraSensorInfo &sensorInfo,
|
|
const ControlInfoMap &sensorControls,
|
|
ControlInfoMap *ipaControls)
|
|
{
|
|
camHelper_ = CameraSensorHelperFactory::create(settings.sensorModel);
|
|
if (camHelper_ == nullptr) {
|
|
LOG(IPAIPU3, Error)
|
|
<< "Failed to create camera sensor helper for "
|
|
<< settings.sensorModel;
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Construct our Algorithms */
|
|
algorithms_.push_back(std::make_unique<algorithms::Agc>());
|
|
algorithms_.push_back(std::make_unique<algorithms::Awb>());
|
|
algorithms_.push_back(std::make_unique<algorithms::BlackLevelCorrection>());
|
|
algorithms_.push_back(std::make_unique<algorithms::ToneMapping>());
|
|
|
|
/* Initialize controls. */
|
|
updateControls(sensorInfo, sensorControls, ipaControls);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int IPAIPU3::start()
|
|
{
|
|
setControls(0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* \brief Calculate a grid for the AWB statistics
|
|
*
|
|
* This function calculates a grid for the AWB algorithm in the IPU3 firmware.
|
|
* Its input is the BDS output size calculated in the ImgU.
|
|
* It is limited for now to the simplest method: find the lesser error
|
|
* with the width/height and respective log2 width/height of the cells.
|
|
*
|
|
* \todo The frame is divided into cells which can be 8x8 => 64x64.
|
|
* As a smaller cell improves the algorithm precision, adapting the
|
|
* x_start and y_start parameters of the grid would provoke a loss of
|
|
* some pixels but would also result in more accurate algorithms.
|
|
*/
|
|
void IPAIPU3::calculateBdsGrid(const Size &bdsOutputSize)
|
|
{
|
|
Size best;
|
|
Size bestLog2;
|
|
|
|
/* Set the BDS output size in the IPAConfiguration structure */
|
|
context_.configuration.grid.bdsOutputSize = bdsOutputSize;
|
|
|
|
uint32_t minError = std::numeric_limits<uint32_t>::max();
|
|
for (uint32_t shift = kMinCellSizeLog2; shift <= kMaxCellSizeLog2; ++shift) {
|
|
uint32_t width = std::clamp(bdsOutputSize.width >> shift,
|
|
kMinGridWidth,
|
|
kMaxGridWidth);
|
|
|
|
width = width << shift;
|
|
uint32_t error = std::abs(static_cast<int>(width - bdsOutputSize.width));
|
|
if (error >= minError)
|
|
continue;
|
|
|
|
minError = error;
|
|
best.width = width;
|
|
bestLog2.width = shift;
|
|
}
|
|
|
|
minError = std::numeric_limits<uint32_t>::max();
|
|
for (uint32_t shift = kMinCellSizeLog2; shift <= kMaxCellSizeLog2; ++shift) {
|
|
uint32_t height = std::clamp(bdsOutputSize.height >> shift,
|
|
kMinGridHeight,
|
|
kMaxGridHeight);
|
|
|
|
height = height << shift;
|
|
uint32_t error = std::abs(static_cast<int>(height - bdsOutputSize.height));
|
|
if (error >= minError)
|
|
continue;
|
|
|
|
minError = error;
|
|
best.height = height;
|
|
bestLog2.height = shift;
|
|
}
|
|
|
|
struct ipu3_uapi_grid_config &bdsGrid = context_.configuration.grid.bdsGrid;
|
|
bdsGrid.x_start = 0;
|
|
bdsGrid.y_start = 0;
|
|
bdsGrid.width = best.width >> bestLog2.width;
|
|
bdsGrid.block_width_log2 = bestLog2.width;
|
|
bdsGrid.height = best.height >> bestLog2.height;
|
|
bdsGrid.block_height_log2 = bestLog2.height;
|
|
|
|
/* The ImgU pads the lines to a multiple of 4 cells. */
|
|
context_.configuration.grid.stride = utils::alignUp(bdsGrid.width, 4);
|
|
|
|
LOG(IPAIPU3, Debug) << "Best grid found is: ("
|
|
<< (int)bdsGrid.width << " << " << (int)bdsGrid.block_width_log2 << ") x ("
|
|
<< (int)bdsGrid.height << " << " << (int)bdsGrid.block_height_log2 << ")";
|
|
}
|
|
|
|
int IPAIPU3::configure(const IPAConfigInfo &configInfo,
|
|
ControlInfoMap *ipaControls)
|
|
{
|
|
if (configInfo.sensorControls.empty()) {
|
|
LOG(IPAIPU3, Error) << "No sensor controls provided";
|
|
return -ENODATA;
|
|
}
|
|
|
|
sensorInfo_ = configInfo.sensorInfo;
|
|
|
|
/*
|
|
* Compute the sensor V4L2 controls to be used by the algorithms and
|
|
* to be set on the sensor.
|
|
*/
|
|
ctrls_ = configInfo.sensorControls;
|
|
|
|
const auto itExp = ctrls_.find(V4L2_CID_EXPOSURE);
|
|
if (itExp == ctrls_.end()) {
|
|
LOG(IPAIPU3, Error) << "Can't find exposure control";
|
|
return -EINVAL;
|
|
}
|
|
|
|
const auto itGain = ctrls_.find(V4L2_CID_ANALOGUE_GAIN);
|
|
if (itGain == ctrls_.end()) {
|
|
LOG(IPAIPU3, Error) << "Can't find gain control";
|
|
return -EINVAL;
|
|
}
|
|
|
|
const auto itVBlank = ctrls_.find(V4L2_CID_VBLANK);
|
|
if (itVBlank == ctrls_.end()) {
|
|
LOG(IPAIPU3, Error) << "Can't find VBLANK control";
|
|
return -EINVAL;
|
|
}
|
|
|
|
minExposure_ = std::max(itExp->second.min().get<int32_t>(), 1);
|
|
maxExposure_ = itExp->second.max().get<int32_t>();
|
|
exposure_ = minExposure_;
|
|
|
|
minGain_ = std::max(itGain->second.min().get<int32_t>(), 1);
|
|
maxGain_ = itGain->second.max().get<int32_t>();
|
|
gain_ = minGain_;
|
|
|
|
defVBlank_ = itVBlank->second.def().get<int32_t>();
|
|
|
|
/* Clean context at configuration */
|
|
context_ = {};
|
|
|
|
calculateBdsGrid(configInfo.bdsOutputSize);
|
|
|
|
for (auto const &algo : algorithms_) {
|
|
int ret = algo->configure(context_, configInfo);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Update the camera controls using the new sensor settings. */
|
|
updateControls(sensorInfo_, ctrls_, ipaControls);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void IPAIPU3::mapBuffers(const std::vector<IPABuffer> &buffers)
|
|
{
|
|
for (const IPABuffer &buffer : buffers) {
|
|
const FrameBuffer fb(buffer.planes);
|
|
buffers_.emplace(buffer.id,
|
|
MappedFrameBuffer(&fb, MappedFrameBuffer::MapFlag::ReadWrite));
|
|
}
|
|
}
|
|
|
|
void IPAIPU3::unmapBuffers(const std::vector<unsigned int> &ids)
|
|
{
|
|
for (unsigned int id : ids) {
|
|
auto it = buffers_.find(id);
|
|
if (it == buffers_.end())
|
|
continue;
|
|
|
|
buffers_.erase(it);
|
|
}
|
|
}
|
|
|
|
void IPAIPU3::processEvent(const IPU3Event &event)
|
|
{
|
|
switch (event.op) {
|
|
case EventProcessControls: {
|
|
processControls(event.frame, event.controls);
|
|
break;
|
|
}
|
|
case EventStatReady: {
|
|
auto it = buffers_.find(event.bufferId);
|
|
if (it == buffers_.end()) {
|
|
LOG(IPAIPU3, Error) << "Could not find stats buffer!";
|
|
return;
|
|
}
|
|
|
|
Span<uint8_t> mem = it->second.planes()[0];
|
|
const ipu3_uapi_stats_3a *stats =
|
|
reinterpret_cast<ipu3_uapi_stats_3a *>(mem.data());
|
|
|
|
parseStatistics(event.frame, event.frameTimestamp, stats);
|
|
break;
|
|
}
|
|
case EventFillParams: {
|
|
auto it = buffers_.find(event.bufferId);
|
|
if (it == buffers_.end()) {
|
|
LOG(IPAIPU3, Error) << "Could not find param buffer!";
|
|
return;
|
|
}
|
|
|
|
Span<uint8_t> mem = it->second.planes()[0];
|
|
ipu3_uapi_params *params =
|
|
reinterpret_cast<ipu3_uapi_params *>(mem.data());
|
|
|
|
fillParams(event.frame, params);
|
|
break;
|
|
}
|
|
default:
|
|
LOG(IPAIPU3, Error) << "Unknown event " << event.op;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void IPAIPU3::processControls([[maybe_unused]] unsigned int frame,
|
|
[[maybe_unused]] const ControlList &controls)
|
|
{
|
|
/* \todo Start processing for 'frame' based on 'controls'. */
|
|
}
|
|
|
|
void IPAIPU3::fillParams(unsigned int frame, ipu3_uapi_params *params)
|
|
{
|
|
/*
|
|
* The incoming params buffer may contain uninitialised data, or the
|
|
* parameters of previously queued frames. Clearing the entire buffer
|
|
* may be an expensive operation, and the kernel will only read from
|
|
* structures which have their associated use-flag set.
|
|
*
|
|
* It is the responsibility of the algorithms to set the use flags
|
|
* accordingly for any data structure they update during prepare().
|
|
*/
|
|
params->use = {};
|
|
|
|
for (auto const &algo : algorithms_)
|
|
algo->prepare(context_, params);
|
|
|
|
IPU3Action op;
|
|
op.op = ActionParamFilled;
|
|
|
|
queueFrameAction.emit(frame, op);
|
|
}
|
|
|
|
void IPAIPU3::parseStatistics(unsigned int frame,
|
|
[[maybe_unused]] int64_t frameTimestamp,
|
|
[[maybe_unused]] const ipu3_uapi_stats_3a *stats)
|
|
{
|
|
ControlList ctrls(controls::controls);
|
|
|
|
/* \todo These fields should not be written by the IPAIPU3 layer */
|
|
context_.frameContext.agc.gain = camHelper_->gain(gain_);
|
|
context_.frameContext.agc.exposure = exposure_;
|
|
|
|
for (auto const &algo : algorithms_)
|
|
algo->process(context_, stats);
|
|
|
|
setControls(frame);
|
|
|
|
/* \todo Use VBlank value calculated from each frame exposure. */
|
|
int64_t frameDuration = sensorInfo_.lineLength * (defVBlank_ + sensorInfo_.outputSize.height) /
|
|
(sensorInfo_.pixelRate / 1e6);
|
|
ctrls.set(controls::FrameDuration, frameDuration);
|
|
|
|
IPU3Action op;
|
|
op.op = ActionMetadataReady;
|
|
op.controls = ctrls;
|
|
|
|
queueFrameAction.emit(frame, op);
|
|
}
|
|
|
|
void IPAIPU3::setControls(unsigned int frame)
|
|
{
|
|
IPU3Action op;
|
|
op.op = ActionSetSensorControls;
|
|
|
|
exposure_ = context_.frameContext.agc.exposure;
|
|
gain_ = camHelper_->gainCode(context_.frameContext.agc.gain);
|
|
|
|
ControlList ctrls(ctrls_);
|
|
ctrls.set(V4L2_CID_EXPOSURE, static_cast<int32_t>(exposure_));
|
|
ctrls.set(V4L2_CID_ANALOGUE_GAIN, static_cast<int32_t>(gain_));
|
|
op.controls = ctrls;
|
|
|
|
queueFrameAction.emit(frame, op);
|
|
}
|
|
|
|
} /* namespace ipa::ipu3 */
|
|
|
|
/*
|
|
* External IPA module interface
|
|
*/
|
|
|
|
extern "C" {
|
|
const struct IPAModuleInfo ipaModuleInfo = {
|
|
IPA_MODULE_API_VERSION,
|
|
1,
|
|
"PipelineHandlerIPU3",
|
|
"ipu3",
|
|
};
|
|
|
|
IPAInterface *ipaCreate()
|
|
{
|
|
return new ipa::ipu3::IPAIPU3();
|
|
}
|
|
}
|
|
|
|
} /* namespace libcamera */
|