mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-17 17:35:06 +03:00
The region weights for the the AGC zones are handled by the AGC algorithm. Apply them directly in the IPA (vc4.cpp) to the statistics that we pass to the AGC. Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Reviewed-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
931 lines
30 KiB
C++
931 lines
30 KiB
C++
/* SPDX-License-Identifier: BSD-2-Clause */
|
|
/*
|
|
* Copyright (C) 2019, Raspberry Pi Ltd
|
|
*
|
|
* agc.cpp - AGC/AEC control algorithm
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <tuple>
|
|
|
|
#include <libcamera/base/log.h>
|
|
|
|
#include "../awb_status.h"
|
|
#include "../device_status.h"
|
|
#include "../histogram.h"
|
|
#include "../lux_status.h"
|
|
#include "../metadata.h"
|
|
|
|
#include "agc.h"
|
|
|
|
using namespace RPiController;
|
|
using namespace libcamera;
|
|
using libcamera::utils::Duration;
|
|
using namespace std::literals::chrono_literals;
|
|
|
|
LOG_DEFINE_CATEGORY(RPiAgc)
|
|
|
|
#define NAME "rpi.agc"
|
|
|
|
int AgcMeteringMode::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
const YamlObject &yamlWeights = params["weights"];
|
|
|
|
for (const auto &p : yamlWeights.asList()) {
|
|
auto value = p.get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
weights.push_back(*value);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static std::tuple<int, std::string>
|
|
readMeteringModes(std::map<std::string, AgcMeteringMode> &metering_modes,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string first;
|
|
int ret;
|
|
|
|
for (const auto &[key, value] : params.asDict()) {
|
|
AgcMeteringMode meteringMode;
|
|
ret = meteringMode.read(value);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
metering_modes[key] = std::move(meteringMode);
|
|
if (first.empty())
|
|
first = key;
|
|
}
|
|
|
|
return { 0, first };
|
|
}
|
|
|
|
int AgcExposureMode::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
auto value = params["shutter"].getList<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
std::transform(value->begin(), value->end(), std::back_inserter(shutter),
|
|
[](double v) { return v * 1us; });
|
|
|
|
value = params["gain"].getList<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
gain = std::move(*value);
|
|
|
|
if (shutter.size() < 2 || gain.size() < 2) {
|
|
LOG(RPiAgc, Error)
|
|
<< "AgcExposureMode: must have at least two entries in exposure profile";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (shutter.size() != gain.size()) {
|
|
LOG(RPiAgc, Error)
|
|
<< "AgcExposureMode: expect same number of exposure and gain entries in exposure profile";
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static std::tuple<int, std::string>
|
|
readExposureModes(std::map<std::string, AgcExposureMode> &exposureModes,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string first;
|
|
int ret;
|
|
|
|
for (const auto &[key, value] : params.asDict()) {
|
|
AgcExposureMode exposureMode;
|
|
ret = exposureMode.read(value);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
exposureModes[key] = std::move(exposureMode);
|
|
if (first.empty())
|
|
first = key;
|
|
}
|
|
|
|
return { 0, first };
|
|
}
|
|
|
|
int AgcConstraint::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string boundString = params["bound"].get<std::string>("");
|
|
transform(boundString.begin(), boundString.end(),
|
|
boundString.begin(), ::toupper);
|
|
if (boundString != "UPPER" && boundString != "LOWER") {
|
|
LOG(RPiAgc, Error) << "AGC constraint type should be UPPER or LOWER";
|
|
return -EINVAL;
|
|
}
|
|
bound = boundString == "UPPER" ? Bound::UPPER : Bound::LOWER;
|
|
|
|
auto value = params["q_lo"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
qLo = *value;
|
|
|
|
value = params["q_hi"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
qHi = *value;
|
|
|
|
return yTarget.read(params["y_target"]);
|
|
}
|
|
|
|
static std::tuple<int, AgcConstraintMode>
|
|
readConstraintMode(const libcamera::YamlObject ¶ms)
|
|
{
|
|
AgcConstraintMode mode;
|
|
int ret;
|
|
|
|
for (const auto &p : params.asList()) {
|
|
AgcConstraint constraint;
|
|
ret = constraint.read(p);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
mode.push_back(std::move(constraint));
|
|
}
|
|
|
|
return { 0, mode };
|
|
}
|
|
|
|
static std::tuple<int, std::string>
|
|
readConstraintModes(std::map<std::string, AgcConstraintMode> &constraintModes,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string first;
|
|
int ret;
|
|
|
|
for (const auto &[key, value] : params.asDict()) {
|
|
std::tie(ret, constraintModes[key]) = readConstraintMode(value);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
if (first.empty())
|
|
first = key;
|
|
}
|
|
|
|
return { 0, first };
|
|
}
|
|
|
|
int AgcConfig::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
LOG(RPiAgc, Debug) << "AgcConfig";
|
|
int ret;
|
|
|
|
std::tie(ret, defaultMeteringMode) =
|
|
readMeteringModes(meteringModes, params["metering_modes"]);
|
|
if (ret)
|
|
return ret;
|
|
std::tie(ret, defaultExposureMode) =
|
|
readExposureModes(exposureModes, params["exposure_modes"]);
|
|
if (ret)
|
|
return ret;
|
|
std::tie(ret, defaultConstraintMode) =
|
|
readConstraintModes(constraintModes, params["constraint_modes"]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = yTarget.read(params["y_target"]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
speed = params["speed"].get<double>(0.2);
|
|
startupFrames = params["startup_frames"].get<uint16_t>(10);
|
|
convergenceFrames = params["convergence_frames"].get<unsigned int>(6);
|
|
fastReduceThreshold = params["fast_reduce_threshold"].get<double>(0.4);
|
|
baseEv = params["base_ev"].get<double>(1.0);
|
|
|
|
/* Start with quite a low value as ramping up is easier than ramping down. */
|
|
defaultExposureTime = params["default_exposure_time"].get<double>(1000) * 1us;
|
|
defaultAnalogueGain = params["default_analogue_gain"].get<double>(1.0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
Agc::ExposureValues::ExposureValues()
|
|
: shutter(0s), analogueGain(0),
|
|
totalExposure(0s), totalExposureNoDG(0s)
|
|
{
|
|
}
|
|
|
|
Agc::Agc(Controller *controller)
|
|
: AgcAlgorithm(controller), meteringMode_(nullptr),
|
|
exposureMode_(nullptr), constraintMode_(nullptr),
|
|
frameCount_(0), lockCount_(0),
|
|
lastTargetExposure_(0s), ev_(1.0), flickerPeriod_(0s),
|
|
maxShutter_(0s), fixedShutter_(0s), fixedAnalogueGain_(0.0)
|
|
{
|
|
memset(&awb_, 0, sizeof(awb_));
|
|
/*
|
|
* Setting status_.totalExposureValue_ to zero initially tells us
|
|
* it's not been calculated yet (i.e. Process hasn't yet run).
|
|
*/
|
|
memset(&status_, 0, sizeof(status_));
|
|
status_.ev = ev_;
|
|
}
|
|
|
|
char const *Agc::name() const
|
|
{
|
|
return NAME;
|
|
}
|
|
|
|
int Agc::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
LOG(RPiAgc, Debug) << "Agc";
|
|
|
|
int ret = config_.read(params);
|
|
if (ret)
|
|
return ret;
|
|
|
|
const Size &size = getHardwareConfig().agcZoneWeights;
|
|
for (auto const &modes : config_.meteringModes) {
|
|
if (modes.second.weights.size() != size.width * size.height) {
|
|
LOG(RPiAgc, Error) << "AgcMeteringMode: Incorrect number of weights";
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the config's defaults (which are the first ones it read) as our
|
|
* current modes, until someone changes them. (they're all known to
|
|
* exist at this point)
|
|
*/
|
|
meteringModeName_ = config_.defaultMeteringMode;
|
|
meteringMode_ = &config_.meteringModes[meteringModeName_];
|
|
exposureModeName_ = config_.defaultExposureMode;
|
|
exposureMode_ = &config_.exposureModes[exposureModeName_];
|
|
constraintModeName_ = config_.defaultConstraintMode;
|
|
constraintMode_ = &config_.constraintModes[constraintModeName_];
|
|
/* Set up the "last shutter/gain" values, in case AGC starts "disabled". */
|
|
status_.shutterTime = config_.defaultExposureTime;
|
|
status_.analogueGain = config_.defaultAnalogueGain;
|
|
return 0;
|
|
}
|
|
|
|
void Agc::disableAuto()
|
|
{
|
|
fixedShutter_ = status_.shutterTime;
|
|
fixedAnalogueGain_ = status_.analogueGain;
|
|
}
|
|
|
|
void Agc::enableAuto()
|
|
{
|
|
fixedShutter_ = 0s;
|
|
fixedAnalogueGain_ = 0;
|
|
}
|
|
|
|
unsigned int Agc::getConvergenceFrames() const
|
|
{
|
|
/*
|
|
* If shutter and gain have been explicitly set, there is no
|
|
* convergence to happen, so no need to drop any frames - return zero.
|
|
*/
|
|
if (fixedShutter_ && fixedAnalogueGain_)
|
|
return 0;
|
|
else
|
|
return config_.convergenceFrames;
|
|
}
|
|
|
|
std::vector<double> const &Agc::getWeights() const
|
|
{
|
|
/*
|
|
* In case someone calls setMeteringMode and then this before the
|
|
* algorithm has run and updated the meteringMode_ pointer.
|
|
*/
|
|
auto it = config_.meteringModes.find(meteringModeName_);
|
|
if (it == config_.meteringModes.end())
|
|
return meteringMode_->weights;
|
|
return it->second.weights;
|
|
}
|
|
|
|
void Agc::setEv(double ev)
|
|
{
|
|
ev_ = ev;
|
|
}
|
|
|
|
void Agc::setFlickerPeriod(Duration flickerPeriod)
|
|
{
|
|
flickerPeriod_ = flickerPeriod;
|
|
}
|
|
|
|
void Agc::setMaxShutter(Duration maxShutter)
|
|
{
|
|
maxShutter_ = maxShutter;
|
|
}
|
|
|
|
void Agc::setFixedShutter(Duration fixedShutter)
|
|
{
|
|
fixedShutter_ = fixedShutter;
|
|
/* Set this in case someone calls disableAuto() straight after. */
|
|
status_.shutterTime = limitShutter(fixedShutter_);
|
|
}
|
|
|
|
void Agc::setFixedAnalogueGain(double fixedAnalogueGain)
|
|
{
|
|
fixedAnalogueGain_ = fixedAnalogueGain;
|
|
/* Set this in case someone calls disableAuto() straight after. */
|
|
status_.analogueGain = limitGain(fixedAnalogueGain);
|
|
}
|
|
|
|
void Agc::setMeteringMode(std::string const &meteringModeName)
|
|
{
|
|
meteringModeName_ = meteringModeName;
|
|
}
|
|
|
|
void Agc::setExposureMode(std::string const &exposureModeName)
|
|
{
|
|
exposureModeName_ = exposureModeName;
|
|
}
|
|
|
|
void Agc::setConstraintMode(std::string const &constraintModeName)
|
|
{
|
|
constraintModeName_ = constraintModeName;
|
|
}
|
|
|
|
void Agc::switchMode(CameraMode const &cameraMode,
|
|
Metadata *metadata)
|
|
{
|
|
/* AGC expects the mode sensitivity always to be non-zero. */
|
|
ASSERT(cameraMode.sensitivity);
|
|
|
|
housekeepConfig();
|
|
|
|
/*
|
|
* Store the mode in the local state. We must cache the sensitivity of
|
|
* of the previous mode for the calculations below.
|
|
*/
|
|
double lastSensitivity = mode_.sensitivity;
|
|
mode_ = cameraMode;
|
|
|
|
Duration fixedShutter = limitShutter(fixedShutter_);
|
|
if (fixedShutter && fixedAnalogueGain_) {
|
|
/* We're going to reset the algorithm here with these fixed values. */
|
|
|
|
fetchAwbStatus(metadata);
|
|
double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
|
|
ASSERT(minColourGain != 0.0);
|
|
|
|
/* This is the equivalent of computeTargetExposure and applyDigitalGain. */
|
|
target_.totalExposureNoDG = fixedShutter_ * fixedAnalogueGain_;
|
|
target_.totalExposure = target_.totalExposureNoDG / minColourGain;
|
|
|
|
/* Equivalent of filterExposure. This resets any "history". */
|
|
filtered_ = target_;
|
|
|
|
/* Equivalent of divideUpExposure. */
|
|
filtered_.shutter = fixedShutter;
|
|
filtered_.analogueGain = fixedAnalogueGain_;
|
|
} else if (status_.totalExposureValue) {
|
|
/*
|
|
* On a mode switch, various things could happen:
|
|
* - the exposure profile might change
|
|
* - a fixed exposure or gain might be set
|
|
* - the new mode's sensitivity might be different
|
|
* We cope with the last of these by scaling the target values. After
|
|
* that we just need to re-divide the exposure/gain according to the
|
|
* current exposure profile, which takes care of everything else.
|
|
*/
|
|
|
|
double ratio = lastSensitivity / cameraMode.sensitivity;
|
|
target_.totalExposureNoDG *= ratio;
|
|
target_.totalExposure *= ratio;
|
|
filtered_.totalExposureNoDG *= ratio;
|
|
filtered_.totalExposure *= ratio;
|
|
|
|
divideUpExposure();
|
|
} else {
|
|
/*
|
|
* We come through here on startup, when at least one of the shutter
|
|
* or gain has not been fixed. We must still write those values out so
|
|
* that they will be applied immediately. We supply some arbitrary defaults
|
|
* for any that weren't set.
|
|
*/
|
|
|
|
/* Equivalent of divideUpExposure. */
|
|
filtered_.shutter = fixedShutter ? fixedShutter : config_.defaultExposureTime;
|
|
filtered_.analogueGain = fixedAnalogueGain_ ? fixedAnalogueGain_ : config_.defaultAnalogueGain;
|
|
}
|
|
|
|
writeAndFinish(metadata, false);
|
|
}
|
|
|
|
void Agc::prepare(Metadata *imageMetadata)
|
|
{
|
|
Duration totalExposureValue = status_.totalExposureValue;
|
|
AgcStatus delayedStatus;
|
|
|
|
if (!imageMetadata->get("agc.delayed_status", delayedStatus))
|
|
totalExposureValue = delayedStatus.totalExposureValue;
|
|
|
|
status_.digitalGain = 1.0;
|
|
fetchAwbStatus(imageMetadata); /* always fetch it so that Process knows it's been done */
|
|
|
|
if (status_.totalExposureValue) {
|
|
/* Process has run, so we have meaningful values. */
|
|
DeviceStatus deviceStatus;
|
|
if (imageMetadata->get("device.status", deviceStatus) == 0) {
|
|
Duration actualExposure = deviceStatus.shutterSpeed *
|
|
deviceStatus.analogueGain;
|
|
if (actualExposure) {
|
|
status_.digitalGain = totalExposureValue / actualExposure;
|
|
LOG(RPiAgc, Debug) << "Want total exposure " << totalExposureValue;
|
|
/*
|
|
* Never ask for a gain < 1.0, and also impose
|
|
* some upper limit. Make it customisable?
|
|
*/
|
|
status_.digitalGain = std::max(1.0, std::min(status_.digitalGain, 4.0));
|
|
LOG(RPiAgc, Debug) << "Actual exposure " << actualExposure;
|
|
LOG(RPiAgc, Debug) << "Use digitalGain " << status_.digitalGain;
|
|
LOG(RPiAgc, Debug) << "Effective exposure "
|
|
<< actualExposure * status_.digitalGain;
|
|
/* Decide whether AEC/AGC has converged. */
|
|
updateLockStatus(deviceStatus);
|
|
}
|
|
} else
|
|
LOG(RPiAgc, Warning) << name() << ": no device metadata";
|
|
imageMetadata->set("agc.status", status_);
|
|
}
|
|
}
|
|
|
|
void Agc::process(StatisticsPtr &stats, Metadata *imageMetadata)
|
|
{
|
|
frameCount_++;
|
|
/*
|
|
* First a little bit of housekeeping, fetching up-to-date settings and
|
|
* configuration, that kind of thing.
|
|
*/
|
|
housekeepConfig();
|
|
/* Get the current exposure values for the frame that's just arrived. */
|
|
fetchCurrentExposure(imageMetadata);
|
|
/* Compute the total gain we require relative to the current exposure. */
|
|
double gain, targetY;
|
|
computeGain(stats, imageMetadata, gain, targetY);
|
|
/* Now compute the target (final) exposure which we think we want. */
|
|
computeTargetExposure(gain);
|
|
/*
|
|
* Some of the exposure has to be applied as digital gain, so work out
|
|
* what that is. This function also tells us whether it's decided to
|
|
* "desaturate" the image more quickly.
|
|
*/
|
|
bool desaturate = applyDigitalGain(gain, targetY);
|
|
/* The results have to be filtered so as not to change too rapidly. */
|
|
filterExposure(desaturate);
|
|
/*
|
|
* The last thing is to divide up the exposure value into a shutter time
|
|
* and analogue gain, according to the current exposure mode.
|
|
*/
|
|
divideUpExposure();
|
|
/* Finally advertise what we've done. */
|
|
writeAndFinish(imageMetadata, desaturate);
|
|
}
|
|
|
|
void Agc::updateLockStatus(DeviceStatus const &deviceStatus)
|
|
{
|
|
const double errorFactor = 0.10; /* make these customisable? */
|
|
const int maxLockCount = 5;
|
|
/* Reset "lock count" when we exceed this multiple of errorFactor */
|
|
const double resetMargin = 1.5;
|
|
|
|
/* Add 200us to the exposure time error to allow for line quantisation. */
|
|
Duration exposureError = lastDeviceStatus_.shutterSpeed * errorFactor + 200us;
|
|
double gainError = lastDeviceStatus_.analogueGain * errorFactor;
|
|
Duration targetError = lastTargetExposure_ * errorFactor;
|
|
|
|
/*
|
|
* Note that we don't know the exposure/gain limits of the sensor, so
|
|
* the values we keep requesting may be unachievable. For this reason
|
|
* we only insist that we're close to values in the past few frames.
|
|
*/
|
|
if (deviceStatus.shutterSpeed > lastDeviceStatus_.shutterSpeed - exposureError &&
|
|
deviceStatus.shutterSpeed < lastDeviceStatus_.shutterSpeed + exposureError &&
|
|
deviceStatus.analogueGain > lastDeviceStatus_.analogueGain - gainError &&
|
|
deviceStatus.analogueGain < lastDeviceStatus_.analogueGain + gainError &&
|
|
status_.targetExposureValue > lastTargetExposure_ - targetError &&
|
|
status_.targetExposureValue < lastTargetExposure_ + targetError)
|
|
lockCount_ = std::min(lockCount_ + 1, maxLockCount);
|
|
else if (deviceStatus.shutterSpeed < lastDeviceStatus_.shutterSpeed - resetMargin * exposureError ||
|
|
deviceStatus.shutterSpeed > lastDeviceStatus_.shutterSpeed + resetMargin * exposureError ||
|
|
deviceStatus.analogueGain < lastDeviceStatus_.analogueGain - resetMargin * gainError ||
|
|
deviceStatus.analogueGain > lastDeviceStatus_.analogueGain + resetMargin * gainError ||
|
|
status_.targetExposureValue < lastTargetExposure_ - resetMargin * targetError ||
|
|
status_.targetExposureValue > lastTargetExposure_ + resetMargin * targetError)
|
|
lockCount_ = 0;
|
|
|
|
lastDeviceStatus_ = deviceStatus;
|
|
lastTargetExposure_ = status_.targetExposureValue;
|
|
|
|
LOG(RPiAgc, Debug) << "Lock count updated to " << lockCount_;
|
|
status_.locked = lockCount_ == maxLockCount;
|
|
}
|
|
|
|
static void copyString(std::string const &s, char *d, size_t size)
|
|
{
|
|
size_t length = s.copy(d, size - 1);
|
|
d[length] = '\0';
|
|
}
|
|
|
|
void Agc::housekeepConfig()
|
|
{
|
|
/* First fetch all the up-to-date settings, so no one else has to do it. */
|
|
status_.ev = ev_;
|
|
status_.fixedShutter = limitShutter(fixedShutter_);
|
|
status_.fixedAnalogueGain = fixedAnalogueGain_;
|
|
status_.flickerPeriod = flickerPeriod_;
|
|
LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixedShutter "
|
|
<< status_.fixedShutter << " fixedAnalogueGain "
|
|
<< status_.fixedAnalogueGain;
|
|
/*
|
|
* Make sure the "mode" pointers point to the up-to-date things, if
|
|
* they've changed.
|
|
*/
|
|
if (strcmp(meteringModeName_.c_str(), status_.meteringMode)) {
|
|
auto it = config_.meteringModes.find(meteringModeName_);
|
|
if (it == config_.meteringModes.end())
|
|
LOG(RPiAgc, Fatal) << "No metering mode " << meteringModeName_;
|
|
meteringMode_ = &it->second;
|
|
copyString(meteringModeName_, status_.meteringMode,
|
|
sizeof(status_.meteringMode));
|
|
}
|
|
if (strcmp(exposureModeName_.c_str(), status_.exposureMode)) {
|
|
auto it = config_.exposureModes.find(exposureModeName_);
|
|
if (it == config_.exposureModes.end())
|
|
LOG(RPiAgc, Fatal) << "No exposure profile " << exposureModeName_;
|
|
exposureMode_ = &it->second;
|
|
copyString(exposureModeName_, status_.exposureMode,
|
|
sizeof(status_.exposureMode));
|
|
}
|
|
if (strcmp(constraintModeName_.c_str(), status_.constraintMode)) {
|
|
auto it =
|
|
config_.constraintModes.find(constraintModeName_);
|
|
if (it == config_.constraintModes.end())
|
|
LOG(RPiAgc, Fatal) << "No constraint list " << constraintModeName_;
|
|
constraintMode_ = &it->second;
|
|
copyString(constraintModeName_, status_.constraintMode,
|
|
sizeof(status_.constraintMode));
|
|
}
|
|
LOG(RPiAgc, Debug) << "exposureMode "
|
|
<< exposureModeName_ << " constraintMode "
|
|
<< constraintModeName_ << " meteringMode "
|
|
<< meteringModeName_;
|
|
}
|
|
|
|
void Agc::fetchCurrentExposure(Metadata *imageMetadata)
|
|
{
|
|
std::unique_lock<Metadata> lock(*imageMetadata);
|
|
DeviceStatus *deviceStatus =
|
|
imageMetadata->getLocked<DeviceStatus>("device.status");
|
|
if (!deviceStatus)
|
|
LOG(RPiAgc, Fatal) << "No device metadata";
|
|
current_.shutter = deviceStatus->shutterSpeed;
|
|
current_.analogueGain = deviceStatus->analogueGain;
|
|
AgcStatus *agcStatus =
|
|
imageMetadata->getLocked<AgcStatus>("agc.status");
|
|
current_.totalExposure = agcStatus ? agcStatus->totalExposureValue : 0s;
|
|
current_.totalExposureNoDG = current_.shutter * current_.analogueGain;
|
|
}
|
|
|
|
void Agc::fetchAwbStatus(Metadata *imageMetadata)
|
|
{
|
|
awb_.gainR = 1.0; /* in case not found in metadata */
|
|
awb_.gainG = 1.0;
|
|
awb_.gainB = 1.0;
|
|
if (imageMetadata->get("awb.status", awb_) != 0)
|
|
LOG(RPiAgc, Debug) << "No AWB status found";
|
|
}
|
|
|
|
static double computeInitialY(StatisticsPtr &stats, AwbStatus const &awb,
|
|
std::vector<double> &weights, double gain)
|
|
{
|
|
constexpr uint64_t maxVal = 1 << Statistics::NormalisationFactorPow2;
|
|
|
|
ASSERT(weights.size() == stats->agcRegions.numRegions());
|
|
|
|
/*
|
|
* Note that the weights are applied by the IPA to the statistics directly,
|
|
* before they are given to us here.
|
|
*/
|
|
double rSum = 0, gSum = 0, bSum = 0, pixelSum = 0;
|
|
for (unsigned int i = 0; i < stats->agcRegions.numRegions(); i++) {
|
|
auto ®ion = stats->agcRegions.get(i);
|
|
rSum += std::min<double>(region.val.rSum * gain, (maxVal - 1) * region.counted);
|
|
gSum += std::min<double>(region.val.gSum * gain, (maxVal - 1) * region.counted);
|
|
bSum += std::min<double>(region.val.bSum * gain, (maxVal - 1) * region.counted);
|
|
pixelSum += region.counted;
|
|
}
|
|
if (pixelSum == 0.0) {
|
|
LOG(RPiAgc, Warning) << "computeInitialY: pixelSum is zero";
|
|
return 0;
|
|
}
|
|
double ySum = rSum * awb.gainR * .299 +
|
|
gSum * awb.gainG * .587 +
|
|
bSum * awb.gainB * .114;
|
|
return ySum / pixelSum / maxVal;
|
|
}
|
|
|
|
/*
|
|
* We handle extra gain through EV by adjusting our Y targets. However, you
|
|
* simply can't monitor histograms once they get very close to (or beyond!)
|
|
* saturation, so we clamp the Y targets to this value. It does mean that EV
|
|
* increases don't necessarily do quite what you might expect in certain
|
|
* (contrived) cases.
|
|
*/
|
|
|
|
static constexpr double EvGainYTargetLimit = 0.9;
|
|
|
|
static double constraintComputeGain(AgcConstraint &c, const Histogram &h, double lux,
|
|
double evGain, double &targetY)
|
|
{
|
|
targetY = c.yTarget.eval(c.yTarget.domain().clip(lux));
|
|
targetY = std::min(EvGainYTargetLimit, targetY * evGain);
|
|
double iqm = h.interQuantileMean(c.qLo, c.qHi);
|
|
return (targetY * h.bins()) / iqm;
|
|
}
|
|
|
|
void Agc::computeGain(StatisticsPtr &statistics, Metadata *imageMetadata,
|
|
double &gain, double &targetY)
|
|
{
|
|
struct LuxStatus lux = {};
|
|
lux.lux = 400; /* default lux level to 400 in case no metadata found */
|
|
if (imageMetadata->get("lux.status", lux) != 0)
|
|
LOG(RPiAgc, Warning) << "No lux level found";
|
|
const Histogram &h = statistics->yHist;
|
|
double evGain = status_.ev * config_.baseEv;
|
|
/*
|
|
* The initial gain and target_Y come from some of the regions. After
|
|
* that we consider the histogram constraints.
|
|
*/
|
|
targetY = config_.yTarget.eval(config_.yTarget.domain().clip(lux.lux));
|
|
targetY = std::min(EvGainYTargetLimit, targetY * evGain);
|
|
|
|
/*
|
|
* Do this calculation a few times as brightness increase can be
|
|
* non-linear when there are saturated regions.
|
|
*/
|
|
gain = 1.0;
|
|
for (int i = 0; i < 8; i++) {
|
|
double initialY = computeInitialY(statistics, awb_, meteringMode_->weights, gain);
|
|
double extraGain = std::min(10.0, targetY / (initialY + .001));
|
|
gain *= extraGain;
|
|
LOG(RPiAgc, Debug) << "Initial Y " << initialY << " target " << targetY
|
|
<< " gives gain " << gain;
|
|
if (extraGain < 1.01) /* close enough */
|
|
break;
|
|
}
|
|
|
|
for (auto &c : *constraintMode_) {
|
|
double newTargetY;
|
|
double newGain = constraintComputeGain(c, h, lux.lux, evGain, newTargetY);
|
|
LOG(RPiAgc, Debug) << "Constraint has target_Y "
|
|
<< newTargetY << " giving gain " << newGain;
|
|
if (c.bound == AgcConstraint::Bound::LOWER && newGain > gain) {
|
|
LOG(RPiAgc, Debug) << "Lower bound constraint adopted";
|
|
gain = newGain;
|
|
targetY = newTargetY;
|
|
} else if (c.bound == AgcConstraint::Bound::UPPER && newGain < gain) {
|
|
LOG(RPiAgc, Debug) << "Upper bound constraint adopted";
|
|
gain = newGain;
|
|
targetY = newTargetY;
|
|
}
|
|
}
|
|
LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << targetY << " ev "
|
|
<< status_.ev << " base_ev " << config_.baseEv
|
|
<< ")";
|
|
}
|
|
|
|
void Agc::computeTargetExposure(double gain)
|
|
{
|
|
if (status_.fixedShutter && status_.fixedAnalogueGain) {
|
|
/*
|
|
* When ag and shutter are both fixed, we need to drive the
|
|
* total exposure so that we end up with a digital gain of at least
|
|
* 1/minColourGain. Otherwise we'd desaturate channels causing
|
|
* white to go cyan or magenta.
|
|
*/
|
|
double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
|
|
ASSERT(minColourGain != 0.0);
|
|
target_.totalExposure =
|
|
status_.fixedShutter * status_.fixedAnalogueGain / minColourGain;
|
|
} else {
|
|
/*
|
|
* The statistics reflect the image without digital gain, so the final
|
|
* total exposure we're aiming for is:
|
|
*/
|
|
target_.totalExposure = current_.totalExposureNoDG * gain;
|
|
/* The final target exposure is also limited to what the exposure mode allows. */
|
|
Duration maxShutter = status_.fixedShutter
|
|
? status_.fixedShutter
|
|
: exposureMode_->shutter.back();
|
|
maxShutter = limitShutter(maxShutter);
|
|
Duration maxTotalExposure =
|
|
maxShutter *
|
|
(status_.fixedAnalogueGain != 0.0
|
|
? status_.fixedAnalogueGain
|
|
: exposureMode_->gain.back());
|
|
target_.totalExposure = std::min(target_.totalExposure, maxTotalExposure);
|
|
}
|
|
LOG(RPiAgc, Debug) << "Target totalExposure " << target_.totalExposure;
|
|
}
|
|
|
|
bool Agc::applyDigitalGain(double gain, double targetY)
|
|
{
|
|
double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
|
|
ASSERT(minColourGain != 0.0);
|
|
double dg = 1.0 / minColourGain;
|
|
/*
|
|
* I think this pipeline subtracts black level and rescales before we
|
|
* get the stats, so no need to worry about it.
|
|
*/
|
|
LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain
|
|
<< " target_Y " << targetY;
|
|
/*
|
|
* Finally, if we're trying to reduce exposure but the target_Y is
|
|
* "close" to 1.0, then the gain computed for that constraint will be
|
|
* only slightly less than one, because the measured Y can never be
|
|
* larger than 1.0. When this happens, demand a large digital gain so
|
|
* that the exposure can be reduced, de-saturating the image much more
|
|
* quickly (and we then approach the correct value more quickly from
|
|
* below).
|
|
*/
|
|
bool desaturate = targetY > config_.fastReduceThreshold &&
|
|
gain < sqrt(targetY);
|
|
if (desaturate)
|
|
dg /= config_.fastReduceThreshold;
|
|
LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate;
|
|
target_.totalExposureNoDG = target_.totalExposure / dg;
|
|
LOG(RPiAgc, Debug) << "Target totalExposureNoDG " << target_.totalExposureNoDG;
|
|
return desaturate;
|
|
}
|
|
|
|
void Agc::filterExposure(bool desaturate)
|
|
{
|
|
double speed = config_.speed;
|
|
/*
|
|
* AGC adapts instantly if both shutter and gain are directly specified
|
|
* or we're in the startup phase.
|
|
*/
|
|
if ((status_.fixedShutter && status_.fixedAnalogueGain) ||
|
|
frameCount_ <= config_.startupFrames)
|
|
speed = 1.0;
|
|
if (!filtered_.totalExposure) {
|
|
filtered_.totalExposure = target_.totalExposure;
|
|
filtered_.totalExposureNoDG = target_.totalExposureNoDG;
|
|
} else {
|
|
/*
|
|
* If close to the result go faster, to save making so many
|
|
* micro-adjustments on the way. (Make this customisable?)
|
|
*/
|
|
if (filtered_.totalExposure < 1.2 * target_.totalExposure &&
|
|
filtered_.totalExposure > 0.8 * target_.totalExposure)
|
|
speed = sqrt(speed);
|
|
filtered_.totalExposure = speed * target_.totalExposure +
|
|
filtered_.totalExposure * (1.0 - speed);
|
|
/*
|
|
* When desaturing, take a big jump down in totalExposureNoDG,
|
|
* which we'll hide with digital gain.
|
|
*/
|
|
if (desaturate)
|
|
filtered_.totalExposureNoDG =
|
|
target_.totalExposureNoDG;
|
|
else
|
|
filtered_.totalExposureNoDG =
|
|
speed * target_.totalExposureNoDG +
|
|
filtered_.totalExposureNoDG * (1.0 - speed);
|
|
}
|
|
/*
|
|
* We can't let the totalExposureNoDG exposure deviate too far below the
|
|
* total exposure, as there might not be enough digital gain available
|
|
* in the ISP to hide it (which will cause nasty oscillation).
|
|
*/
|
|
if (filtered_.totalExposureNoDG <
|
|
filtered_.totalExposure * config_.fastReduceThreshold)
|
|
filtered_.totalExposureNoDG = filtered_.totalExposure * config_.fastReduceThreshold;
|
|
LOG(RPiAgc, Debug) << "After filtering, totalExposure " << filtered_.totalExposure
|
|
<< " no dg " << filtered_.totalExposureNoDG;
|
|
}
|
|
|
|
void Agc::divideUpExposure()
|
|
{
|
|
/*
|
|
* Sending the fixed shutter/gain cases through the same code may seem
|
|
* unnecessary, but it will make more sense when extend this to cover
|
|
* variable aperture.
|
|
*/
|
|
Duration exposureValue = filtered_.totalExposureNoDG;
|
|
Duration shutterTime;
|
|
double analogueGain;
|
|
shutterTime = status_.fixedShutter ? status_.fixedShutter
|
|
: exposureMode_->shutter[0];
|
|
shutterTime = limitShutter(shutterTime);
|
|
analogueGain = status_.fixedAnalogueGain != 0.0 ? status_.fixedAnalogueGain
|
|
: exposureMode_->gain[0];
|
|
analogueGain = limitGain(analogueGain);
|
|
if (shutterTime * analogueGain < exposureValue) {
|
|
for (unsigned int stage = 1;
|
|
stage < exposureMode_->gain.size(); stage++) {
|
|
if (!status_.fixedShutter) {
|
|
Duration stageShutter =
|
|
limitShutter(exposureMode_->shutter[stage]);
|
|
if (stageShutter * analogueGain >= exposureValue) {
|
|
shutterTime = exposureValue / analogueGain;
|
|
break;
|
|
}
|
|
shutterTime = stageShutter;
|
|
}
|
|
if (status_.fixedAnalogueGain == 0.0) {
|
|
if (exposureMode_->gain[stage] * shutterTime >= exposureValue) {
|
|
analogueGain = exposureValue / shutterTime;
|
|
break;
|
|
}
|
|
analogueGain = exposureMode_->gain[stage];
|
|
analogueGain = limitGain(analogueGain);
|
|
}
|
|
}
|
|
}
|
|
LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutterTime << " and "
|
|
<< analogueGain;
|
|
/*
|
|
* Finally adjust shutter time for flicker avoidance (require both
|
|
* shutter and gain not to be fixed).
|
|
*/
|
|
if (!status_.fixedShutter && !status_.fixedAnalogueGain &&
|
|
status_.flickerPeriod) {
|
|
int flickerPeriods = shutterTime / status_.flickerPeriod;
|
|
if (flickerPeriods) {
|
|
Duration newShutterTime = flickerPeriods * status_.flickerPeriod;
|
|
analogueGain *= shutterTime / newShutterTime;
|
|
/*
|
|
* We should still not allow the ag to go over the
|
|
* largest value in the exposure mode. Note that this
|
|
* may force more of the total exposure into the digital
|
|
* gain as a side-effect.
|
|
*/
|
|
analogueGain = std::min(analogueGain, exposureMode_->gain.back());
|
|
analogueGain = limitGain(analogueGain);
|
|
shutterTime = newShutterTime;
|
|
}
|
|
LOG(RPiAgc, Debug) << "After flicker avoidance, shutter "
|
|
<< shutterTime << " gain " << analogueGain;
|
|
}
|
|
filtered_.shutter = shutterTime;
|
|
filtered_.analogueGain = analogueGain;
|
|
}
|
|
|
|
void Agc::writeAndFinish(Metadata *imageMetadata, bool desaturate)
|
|
{
|
|
status_.totalExposureValue = filtered_.totalExposure;
|
|
status_.targetExposureValue = desaturate ? 0s : target_.totalExposureNoDG;
|
|
status_.shutterTime = filtered_.shutter;
|
|
status_.analogueGain = filtered_.analogueGain;
|
|
/*
|
|
* Write to metadata as well, in case anyone wants to update the camera
|
|
* immediately.
|
|
*/
|
|
imageMetadata->set("agc.status", status_);
|
|
LOG(RPiAgc, Debug) << "Output written, total exposure requested is "
|
|
<< filtered_.totalExposure;
|
|
LOG(RPiAgc, Debug) << "Camera exposure update: shutter time " << filtered_.shutter
|
|
<< " analogue gain " << filtered_.analogueGain;
|
|
}
|
|
|
|
Duration Agc::limitShutter(Duration shutter)
|
|
{
|
|
/*
|
|
* shutter == 0 is a special case for fixed shutter values, and must pass
|
|
* through unchanged
|
|
*/
|
|
if (!shutter)
|
|
return shutter;
|
|
|
|
shutter = std::clamp(shutter, mode_.minShutter, maxShutter_);
|
|
return shutter;
|
|
}
|
|
|
|
double Agc::limitGain(double gain) const
|
|
{
|
|
/*
|
|
* Only limit the lower bounds of the gain value to what the sensor limits.
|
|
* The upper bound on analogue gain will be made up with additional digital
|
|
* gain applied by the ISP.
|
|
*
|
|
* gain == 0.0 is a special case for fixed shutter values, and must pass
|
|
* through unchanged
|
|
*/
|
|
if (!gain)
|
|
return gain;
|
|
|
|
gain = std::max(gain, mode_.minAnalogueGain);
|
|
return gain;
|
|
}
|
|
|
|
/* Register algorithm with the system. */
|
|
static Algorithm *create(Controller *controller)
|
|
{
|
|
return (Algorithm *)new Agc(controller);
|
|
}
|
|
static RegisterAlgorithm reg(NAME, &create);
|