mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-13 15:29:45 +03:00
A capture request is no longer limited to a single output buffer. Remove the limitation, but (for now) keep the check to ensure that at least one buffer is always provided. Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: Niklas Söderlund <niklas.soderlund@ragnatech.se> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Jacopo Mondi <jacopo@jmondi.org>
1290 lines
39 KiB
C++
1290 lines
39 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
|
/*
|
|
* Copyright (C) 2019, Google Inc.
|
|
*
|
|
* camera_device.cpp - libcamera Android Camera Device
|
|
*/
|
|
|
|
#include "camera_device.h"
|
|
#include "camera_ops.h"
|
|
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include <libcamera/controls.h>
|
|
#include <libcamera/formats.h>
|
|
#include <libcamera/property_ids.h>
|
|
|
|
#include "libcamera/internal/log.h"
|
|
#include "libcamera/internal/utils.h"
|
|
|
|
#include "camera_metadata.h"
|
|
#include "system/graphics.h"
|
|
|
|
using namespace libcamera;
|
|
|
|
namespace {
|
|
|
|
/*
|
|
* \var camera3Resolutions
|
|
* \brief The list of image resolutions defined as mandatory to be supported by
|
|
* the Android Camera3 specification
|
|
*/
|
|
const std::vector<Size> camera3Resolutions = {
|
|
{ 320, 240 },
|
|
{ 640, 480 },
|
|
{ 1280, 720 },
|
|
{ 1920, 1080 }
|
|
};
|
|
|
|
/*
|
|
* \struct Camera3Format
|
|
* \brief Data associated with an Android format identifier
|
|
* \var libcameraFormats List of libcamera pixel formats compatible with the
|
|
* Android format
|
|
* \var scalerFormat The format identifier to be reported to the android
|
|
* framework through the static format configuration map
|
|
* \var name The human-readable representation of the Android format code
|
|
*/
|
|
struct Camera3Format {
|
|
std::vector<PixelFormat> libcameraFormats;
|
|
camera_metadata_enum_android_scaler_available_formats_t scalerFormat;
|
|
const char *name;
|
|
};
|
|
|
|
/*
|
|
* \var camera3FormatsMap
|
|
* \brief Associate Android format code with ancillary data
|
|
*/
|
|
const std::map<int, const Camera3Format> camera3FormatsMap = {
|
|
{
|
|
HAL_PIXEL_FORMAT_BLOB, {
|
|
{ formats::MJPEG },
|
|
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB,
|
|
"BLOB"
|
|
}
|
|
}, {
|
|
HAL_PIXEL_FORMAT_YCbCr_420_888, {
|
|
{ formats::NV12, formats::NV21 },
|
|
ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888,
|
|
"YCbCr_420_888"
|
|
}
|
|
}, {
|
|
/*
|
|
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
|
|
* usage flag. For now, copy the YCbCr_420 configuration.
|
|
*/
|
|
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
|
|
{ formats::NV12, formats::NV21 },
|
|
ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED,
|
|
"IMPLEMENTATION_DEFINED"
|
|
}
|
|
},
|
|
};
|
|
|
|
} /* namespace */
|
|
|
|
LOG_DECLARE_CATEGORY(HAL);
|
|
|
|
/*
|
|
* \struct Camera3RequestDescriptor
|
|
*
|
|
* A utility structure that groups information about a capture request to be
|
|
* later re-used at request complete time to notify the framework.
|
|
*/
|
|
|
|
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
|
|
unsigned int frameNumber, unsigned int numBuffers)
|
|
: frameNumber(frameNumber), numBuffers(numBuffers)
|
|
{
|
|
buffers = new camera3_stream_buffer_t[numBuffers];
|
|
frameBuffers.reserve(numBuffers);
|
|
}
|
|
|
|
CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
|
|
{
|
|
delete[] buffers;
|
|
}
|
|
|
|
/*
|
|
* \class CameraDevice
|
|
*
|
|
* The CameraDevice class wraps a libcamera::Camera instance, and implements
|
|
* the camera3_device_t interface, bridging calls received from the Android
|
|
* camera service to the CameraDevice.
|
|
*
|
|
* The class translates parameters and operations from the Camera HALv3 API to
|
|
* the libcamera API to provide static information for a Camera, create request
|
|
* templates for it, process capture requests and then deliver capture results
|
|
* back to the framework using the designated callbacks.
|
|
*/
|
|
|
|
CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
|
|
: running_(false), camera_(camera), staticMetadata_(nullptr),
|
|
facing_(CAMERA_FACING_FRONT), orientation_(0)
|
|
{
|
|
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
|
|
}
|
|
|
|
CameraDevice::~CameraDevice()
|
|
{
|
|
if (staticMetadata_)
|
|
delete staticMetadata_;
|
|
|
|
for (auto &it : requestTemplates_)
|
|
delete it.second;
|
|
}
|
|
|
|
/*
|
|
* Initialize the camera static information.
|
|
* This method is called before the camera device is opened.
|
|
*/
|
|
int CameraDevice::initialize()
|
|
{
|
|
/* Initialize orientation and facing side of the camera. */
|
|
const ControlList &properties = camera_->properties();
|
|
|
|
if (properties.contains(properties::Location)) {
|
|
int32_t location = properties.get(properties::Location);
|
|
switch (location) {
|
|
case properties::CameraLocationFront:
|
|
facing_ = CAMERA_FACING_FRONT;
|
|
break;
|
|
case properties::CameraLocationBack:
|
|
facing_ = CAMERA_FACING_BACK;
|
|
break;
|
|
case properties::CameraLocationExternal:
|
|
facing_ = CAMERA_FACING_EXTERNAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The Android orientation metadata and libcamera rotation property are
|
|
* defined differently but have identical numerical values for Android
|
|
* devices such as phones and tablets.
|
|
*/
|
|
if (properties.contains(properties::Rotation))
|
|
orientation_ = properties.get(properties::Rotation);
|
|
|
|
int ret = camera_->acquire();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
|
|
return ret;
|
|
}
|
|
|
|
ret = initializeStreamConfigurations();
|
|
camera_->release();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize the format conversion map to translate from Android format
|
|
* identifier to libcamera pixel formats and fill in the list of supported
|
|
* stream configurations to be reported to the Android camera framework through
|
|
* the static stream configuration metadata.
|
|
*/
|
|
int CameraDevice::initializeStreamConfigurations()
|
|
{
|
|
/*
|
|
* Get the maximum output resolutions
|
|
* \todo Get this from the camera properties once defined
|
|
*/
|
|
std::unique_ptr<CameraConfiguration> cameraConfig =
|
|
camera_->generateConfiguration({ StillCapture });
|
|
if (!cameraConfig) {
|
|
LOG(HAL, Error) << "Failed to get maximum resolution";
|
|
return -EINVAL;
|
|
}
|
|
StreamConfiguration &cfg = cameraConfig->at(0);
|
|
|
|
/*
|
|
* \todo JPEG - Adjust the maximum available resolution by taking the
|
|
* JPEG encoder requirements into account (alignment and aspect ratio).
|
|
*/
|
|
const Size maxRes = cfg.size;
|
|
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
|
|
|
|
/*
|
|
* Build the list of supported image resolutions.
|
|
*
|
|
* The resolutions listed in camera3Resolution are mandatory to be
|
|
* supported, up to the camera maximum resolution.
|
|
*
|
|
* Augment the list by adding resolutions calculated from the camera
|
|
* maximum one.
|
|
*/
|
|
std::vector<Size> cameraResolutions;
|
|
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
|
|
std::back_inserter(cameraResolutions),
|
|
[&](const Size &res) { return res < maxRes; });
|
|
|
|
/*
|
|
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
|
|
* resolution.
|
|
*/
|
|
for (unsigned int divider = 2;; divider <<= 1) {
|
|
Size derivedSize{
|
|
maxRes.width / divider,
|
|
maxRes.height / divider,
|
|
};
|
|
|
|
if (derivedSize.width < 320 ||
|
|
derivedSize.height < 240)
|
|
break;
|
|
|
|
cameraResolutions.push_back(derivedSize);
|
|
}
|
|
cameraResolutions.push_back(maxRes);
|
|
|
|
/* Remove duplicated entries from the list of supported resolutions. */
|
|
std::sort(cameraResolutions.begin(), cameraResolutions.end());
|
|
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
|
|
cameraResolutions.erase(last, cameraResolutions.end());
|
|
|
|
/*
|
|
* Build the list of supported camera formats.
|
|
*
|
|
* To each Android format a list of compatible libcamera formats is
|
|
* associated. The first libcamera format that tests successful is added
|
|
* to the format translation map used when configuring the streams.
|
|
* It is then tested against the list of supported camera resolutions to
|
|
* build the stream configuration map reported through the camera static
|
|
* metadata.
|
|
*/
|
|
for (const auto &format : camera3FormatsMap) {
|
|
int androidFormat = format.first;
|
|
const Camera3Format &camera3Format = format.second;
|
|
const std::vector<PixelFormat> &libcameraFormats =
|
|
camera3Format.libcameraFormats;
|
|
|
|
/*
|
|
* Test the libcamera formats that can produce images
|
|
* compatible with the format defined by Android.
|
|
*/
|
|
PixelFormat mappedFormat;
|
|
for (const PixelFormat &pixelFormat : libcameraFormats) {
|
|
/* \todo Fixed mapping for JPEG. */
|
|
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
|
|
mappedFormat = formats::MJPEG;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The stream configuration size can be adjusted,
|
|
* not the pixel format.
|
|
*
|
|
* \todo This could be simplified once all pipeline
|
|
* handlers will report the StreamFormats list of
|
|
* supported formats.
|
|
*/
|
|
cfg.pixelFormat = pixelFormat;
|
|
|
|
CameraConfiguration::Status status = cameraConfig->validate();
|
|
if (status != CameraConfiguration::Invalid &&
|
|
cfg.pixelFormat == pixelFormat) {
|
|
mappedFormat = pixelFormat;
|
|
break;
|
|
}
|
|
}
|
|
if (!mappedFormat.isValid()) {
|
|
LOG(HAL, Error) << "Failed to map Android format "
|
|
<< camera3Format.name << " ("
|
|
<< utils::hex(androidFormat) << ")";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Record the mapping and then proceed to generate the
|
|
* stream configurations map, by testing the image resolutions.
|
|
*/
|
|
formatsMap_[androidFormat] = mappedFormat;
|
|
|
|
for (const Size &res : cameraResolutions) {
|
|
cfg.pixelFormat = mappedFormat;
|
|
cfg.size = res;
|
|
|
|
CameraConfiguration::Status status = cameraConfig->validate();
|
|
/*
|
|
* Unconditionally report we can produce JPEG.
|
|
*
|
|
* \todo The JPEG stream will be implemented as an
|
|
* HAL-only stream, but some cameras can produce it
|
|
* directly. As of now, claim support for JPEG without
|
|
* inspecting where the JPEG stream is produced.
|
|
*/
|
|
if (androidFormat != HAL_PIXEL_FORMAT_BLOB &&
|
|
status != CameraConfiguration::Valid)
|
|
continue;
|
|
|
|
streamConfigurations_.push_back({ res, camera3Format.scalerFormat });
|
|
}
|
|
}
|
|
|
|
LOG(HAL, Debug) << "Collected stream configuration map: ";
|
|
for (const auto &entry : streamConfigurations_)
|
|
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
|
|
<< utils::hex(entry.androidScalerCode) << " }";
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Open a camera device. The static information on the camera shall have been
|
|
* initialized with a call to CameraDevice::initialize().
|
|
*/
|
|
int CameraDevice::open(const hw_module_t *hardwareModule)
|
|
{
|
|
int ret = camera_->acquire();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to acquire the camera";
|
|
return ret;
|
|
}
|
|
|
|
/* Initialize the hw_device_t in the instance camera3_module_t. */
|
|
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
|
|
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
|
|
camera3Device_.common.module = (hw_module_t *)hardwareModule;
|
|
camera3Device_.common.close = hal_dev_close;
|
|
|
|
/*
|
|
* The camera device operations. These actually implement
|
|
* the Android Camera HALv3 interface.
|
|
*/
|
|
camera3Device_.ops = &hal_dev_ops;
|
|
camera3Device_.priv = this;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::close()
|
|
{
|
|
camera_->stop();
|
|
camera_->release();
|
|
|
|
running_ = false;
|
|
}
|
|
|
|
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
|
|
{
|
|
callbacks_ = callbacks;
|
|
}
|
|
|
|
std::tuple<uint32_t, uint32_t> CameraDevice::calculateStaticMetadataSize()
|
|
{
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 50 entries, 647 bytes of static metadata
|
|
*/
|
|
uint32_t numEntries = 50;
|
|
uint32_t byteSize = 647;
|
|
|
|
/*
|
|
* Calculate space occupation in bytes for dynamically built metadata
|
|
* entries.
|
|
*
|
|
* Each stream configuration entry requires 52 bytes:
|
|
* 4 32bits integers for ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS
|
|
* 1 32bits integer for ANDROID_SCALER_AVAILABLE_FORMATS
|
|
* 4 64bits integers for ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS
|
|
*/
|
|
byteSize += streamConfigurations_.size() * 52;
|
|
|
|
return std::make_tuple(numEntries, byteSize);
|
|
}
|
|
|
|
/*
|
|
* Return static information for the camera.
|
|
*/
|
|
const camera_metadata_t *CameraDevice::getStaticMetadata()
|
|
{
|
|
if (staticMetadata_)
|
|
return staticMetadata_->get();
|
|
|
|
/*
|
|
* The here reported metadata are enough to implement a basic capture
|
|
* example application, but a real camera implementation will require
|
|
* more.
|
|
*/
|
|
uint32_t numEntries;
|
|
uint32_t byteSize;
|
|
std::tie(numEntries, byteSize) = calculateStaticMetadataSize();
|
|
staticMetadata_ = new CameraMetadata(numEntries, byteSize);
|
|
if (!staticMetadata_->isValid()) {
|
|
LOG(HAL, Error) << "Failed to allocate static metadata";
|
|
delete staticMetadata_;
|
|
staticMetadata_ = nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
/* Color correction static metadata. */
|
|
std::vector<uint8_t> aberrationModes = {
|
|
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
|
|
aberrationModes.data(),
|
|
aberrationModes.size());
|
|
|
|
/* Control static metadata. */
|
|
std::vector<uint8_t> aeAvailableAntiBandingModes = {
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
|
|
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
|
|
aeAvailableAntiBandingModes.data(),
|
|
aeAvailableAntiBandingModes.size());
|
|
|
|
std::vector<uint8_t> aeAvailableModes = {
|
|
ANDROID_CONTROL_AE_MODE_ON,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
|
|
aeAvailableModes.data(),
|
|
aeAvailableModes.size());
|
|
|
|
std::vector<int32_t> availableAeFpsTarget = {
|
|
15, 30,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
|
|
availableAeFpsTarget.data(),
|
|
availableAeFpsTarget.size());
|
|
|
|
std::vector<int32_t> aeCompensationRange = {
|
|
0, 0,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
|
|
aeCompensationRange.data(),
|
|
aeCompensationRange.size());
|
|
|
|
const camera_metadata_rational_t aeCompensationStep[] = {
|
|
{ 0, 1 }
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
|
|
aeCompensationStep, 1);
|
|
|
|
std::vector<uint8_t> availableAfModes = {
|
|
ANDROID_CONTROL_AF_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
|
|
availableAfModes.data(),
|
|
availableAfModes.size());
|
|
|
|
std::vector<uint8_t> availableEffects = {
|
|
ANDROID_CONTROL_EFFECT_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
|
|
availableEffects.data(),
|
|
availableEffects.size());
|
|
|
|
std::vector<uint8_t> availableSceneModes = {
|
|
ANDROID_CONTROL_SCENE_MODE_DISABLED,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
|
|
availableSceneModes.data(),
|
|
availableSceneModes.size());
|
|
|
|
std::vector<uint8_t> availableStabilizationModes = {
|
|
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
|
|
availableStabilizationModes.data(),
|
|
availableStabilizationModes.size());
|
|
|
|
std::vector<uint8_t> availableAwbModes = {
|
|
ANDROID_CONTROL_AWB_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
|
|
availableAwbModes.data(),
|
|
availableAwbModes.size());
|
|
|
|
std::vector<int32_t> availableMaxRegions = {
|
|
0, 0, 0,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
|
|
availableMaxRegions.data(),
|
|
availableMaxRegions.size());
|
|
|
|
std::vector<uint8_t> sceneModesOverride = {
|
|
ANDROID_CONTROL_AE_MODE_ON,
|
|
ANDROID_CONTROL_AWB_MODE_AUTO,
|
|
ANDROID_CONTROL_AF_MODE_AUTO,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
|
|
sceneModesOverride.data(),
|
|
sceneModesOverride.size());
|
|
|
|
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
|
|
&aeLockAvailable, 1);
|
|
|
|
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
|
|
&awbLockAvailable, 1);
|
|
|
|
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
|
|
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
|
|
&availableControlModes, 1);
|
|
|
|
/* JPEG static metadata. */
|
|
std::vector<int32_t> availableThumbnailSizes = {
|
|
0, 0,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
|
|
availableThumbnailSizes.data(),
|
|
availableThumbnailSizes.size());
|
|
|
|
/* Sensor static metadata. */
|
|
int32_t pixelArraySize[] = {
|
|
2592, 1944,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
|
|
&pixelArraySize, 2);
|
|
|
|
int32_t sensorSizes[] = {
|
|
0, 0, 2560, 1920,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
|
|
&sensorSizes, 4);
|
|
|
|
int32_t sensitivityRange[] = {
|
|
32, 2400,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
|
|
&sensitivityRange, 2);
|
|
|
|
uint16_t filterArr = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_GRBG;
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
|
|
&filterArr, 1);
|
|
|
|
int64_t exposureTimeRange[] = {
|
|
100000, 200000000,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
|
|
&exposureTimeRange, 2);
|
|
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, &orientation_, 1);
|
|
|
|
std::vector<int32_t> testPatterModes = {
|
|
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
|
|
testPatterModes.data(),
|
|
testPatterModes.size());
|
|
|
|
std::vector<float> physicalSize = {
|
|
2592, 1944,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
|
|
physicalSize.data(),
|
|
physicalSize.size());
|
|
|
|
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
|
|
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
|
|
×tampSource, 1);
|
|
|
|
/* Statistics static metadata. */
|
|
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
|
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
|
|
&faceDetectMode, 1);
|
|
|
|
int32_t maxFaceCount = 0;
|
|
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
|
|
&maxFaceCount, 1);
|
|
|
|
/* Sync static metadata. */
|
|
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
|
|
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
|
|
|
|
/* Flash static metadata. */
|
|
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
|
|
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
|
|
&flashAvailable, 1);
|
|
|
|
/* Lens static metadata. */
|
|
std::vector<float> lensApertures = {
|
|
2.53 / 100,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
|
|
lensApertures.data(),
|
|
lensApertures.size());
|
|
|
|
uint8_t lensFacing;
|
|
switch (facing_) {
|
|
default:
|
|
case CAMERA_FACING_FRONT:
|
|
lensFacing = ANDROID_LENS_FACING_FRONT;
|
|
break;
|
|
case CAMERA_FACING_BACK:
|
|
lensFacing = ANDROID_LENS_FACING_BACK;
|
|
break;
|
|
case CAMERA_FACING_EXTERNAL:
|
|
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
|
|
break;
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);
|
|
|
|
std::vector<float> lensFocalLenghts = {
|
|
1,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
|
|
lensFocalLenghts.data(),
|
|
lensFocalLenghts.size());
|
|
|
|
std::vector<uint8_t> opticalStabilizations = {
|
|
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
|
|
opticalStabilizations.data(),
|
|
opticalStabilizations.size());
|
|
|
|
float hypeFocalDistance = 0;
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
|
|
&hypeFocalDistance, 1);
|
|
|
|
float minFocusDistance = 0;
|
|
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
|
|
&minFocusDistance, 1);
|
|
|
|
/* Noise reduction modes. */
|
|
uint8_t noiseReductionModes = ANDROID_NOISE_REDUCTION_MODE_OFF;
|
|
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
|
|
&noiseReductionModes, 1);
|
|
|
|
/* Scaler static metadata. */
|
|
float maxDigitalZoom = 1;
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
|
|
&maxDigitalZoom, 1);
|
|
|
|
std::vector<uint32_t> availableStreamFormats;
|
|
availableStreamFormats.reserve(streamConfigurations_.size());
|
|
std::transform(streamConfigurations_.begin(), streamConfigurations_.end(),
|
|
std::back_inserter(availableStreamFormats),
|
|
[](const auto &entry) { return entry.androidScalerCode; });
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_FORMATS,
|
|
availableStreamFormats.data(),
|
|
availableStreamFormats.size());
|
|
|
|
std::vector<uint32_t> availableStreamConfigurations;
|
|
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
|
|
for (const auto &entry : streamConfigurations_) {
|
|
availableStreamConfigurations.push_back(entry.androidScalerCode);
|
|
availableStreamConfigurations.push_back(entry.resolution.width);
|
|
availableStreamConfigurations.push_back(entry.resolution.height);
|
|
availableStreamConfigurations.push_back(
|
|
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
|
|
availableStreamConfigurations.data(),
|
|
availableStreamConfigurations.size());
|
|
|
|
std::vector<int64_t> availableStallDurations = {
|
|
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
|
|
availableStallDurations.data(),
|
|
availableStallDurations.size());
|
|
|
|
/* \todo Collect the minimum frame duration from the camera. */
|
|
std::vector<int64_t> minFrameDurations;
|
|
minFrameDurations.reserve(streamConfigurations_.size() * 4);
|
|
for (const auto &entry : streamConfigurations_) {
|
|
minFrameDurations.push_back(entry.androidScalerCode);
|
|
minFrameDurations.push_back(entry.resolution.width);
|
|
minFrameDurations.push_back(entry.resolution.height);
|
|
minFrameDurations.push_back(33333333);
|
|
}
|
|
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
|
|
minFrameDurations.data(),
|
|
minFrameDurations.size());
|
|
|
|
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
|
|
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
|
|
|
|
/* Info static metadata. */
|
|
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
|
|
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
|
|
&supportedHWLevel, 1);
|
|
|
|
/* Request static metadata. */
|
|
int32_t partialResultCount = 1;
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
|
|
&partialResultCount, 1);
|
|
|
|
uint8_t maxPipelineDepth = 2;
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
|
|
&maxPipelineDepth, 1);
|
|
|
|
std::vector<uint8_t> availableCapabilities = {
|
|
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
|
|
availableCapabilities.data(),
|
|
availableCapabilities.size());
|
|
|
|
std::vector<int32_t> availableCharacteristicsKeys = {
|
|
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
|
|
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
|
|
ANDROID_CONTROL_AE_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
|
|
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
|
|
ANDROID_CONTROL_AE_COMPENSATION_STEP,
|
|
ANDROID_CONTROL_AF_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_AVAILABLE_EFFECTS,
|
|
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
|
|
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
|
|
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
|
|
ANDROID_CONTROL_MAX_REGIONS,
|
|
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
|
|
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
|
|
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
|
|
ANDROID_CONTROL_AVAILABLE_MODES,
|
|
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
|
|
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
|
|
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
|
|
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
|
|
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
|
|
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
|
|
ANDROID_SENSOR_ORIENTATION,
|
|
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
|
|
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
|
|
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
|
|
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
|
|
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
|
|
ANDROID_SYNC_MAX_LATENCY,
|
|
ANDROID_FLASH_INFO_AVAILABLE,
|
|
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
|
|
ANDROID_LENS_FACING,
|
|
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
|
|
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
|
|
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
|
|
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
|
|
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
|
|
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
|
|
ANDROID_SCALER_AVAILABLE_FORMATS,
|
|
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
|
|
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
|
|
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
|
|
ANDROID_SCALER_CROPPING_TYPE,
|
|
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
|
|
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
|
|
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
|
|
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
|
|
availableCharacteristicsKeys.data(),
|
|
availableCharacteristicsKeys.size());
|
|
|
|
std::vector<int32_t> availableRequestKeys = {
|
|
ANDROID_CONTROL_AE_MODE,
|
|
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
|
|
ANDROID_CONTROL_AE_LOCK,
|
|
ANDROID_CONTROL_AF_TRIGGER,
|
|
ANDROID_CONTROL_AWB_MODE,
|
|
ANDROID_CONTROL_AWB_LOCK,
|
|
ANDROID_FLASH_MODE,
|
|
ANDROID_STATISTICS_FACE_DETECT_MODE,
|
|
ANDROID_NOISE_REDUCTION_MODE,
|
|
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
ANDROID_CONTROL_CAPTURE_INTENT,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
|
|
availableRequestKeys.data(),
|
|
availableRequestKeys.size());
|
|
|
|
std::vector<int32_t> availableResultKeys = {
|
|
ANDROID_CONTROL_AE_STATE,
|
|
ANDROID_CONTROL_AE_LOCK,
|
|
ANDROID_CONTROL_AF_STATE,
|
|
ANDROID_CONTROL_AWB_STATE,
|
|
ANDROID_CONTROL_AWB_LOCK,
|
|
ANDROID_LENS_STATE,
|
|
ANDROID_SCALER_CROP_REGION,
|
|
ANDROID_SENSOR_TIMESTAMP,
|
|
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
|
|
ANDROID_SENSOR_EXPOSURE_TIME,
|
|
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
|
|
ANDROID_STATISTICS_SCENE_FLICKER,
|
|
};
|
|
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
|
|
availableResultKeys.data(),
|
|
availableResultKeys.size());
|
|
|
|
if (!staticMetadata_->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct static metadata";
|
|
delete staticMetadata_;
|
|
staticMetadata_ = nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
return staticMetadata_->get();
|
|
}
|
|
|
|
/*
|
|
* Produce a metadata pack to be used as template for a capture request.
|
|
*/
|
|
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
|
|
{
|
|
auto it = requestTemplates_.find(type);
|
|
if (it != requestTemplates_.end())
|
|
return it->second->get();
|
|
|
|
/* Use the capture intent matching the requested template type. */
|
|
uint8_t captureIntent;
|
|
switch (type) {
|
|
case CAMERA3_TEMPLATE_PREVIEW:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
|
break;
|
|
case CAMERA3_TEMPLATE_STILL_CAPTURE:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
|
|
break;
|
|
case CAMERA3_TEMPLATE_VIDEO_RECORD:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
|
|
break;
|
|
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
|
|
break;
|
|
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
|
|
break;
|
|
case CAMERA3_TEMPLATE_MANUAL:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
|
|
break;
|
|
default:
|
|
LOG(HAL, Error) << "Invalid template request type: " << type;
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 12 entries, 15 bytes
|
|
*/
|
|
CameraMetadata *requestTemplate = new CameraMetadata(15, 20);
|
|
if (!requestTemplate->isValid()) {
|
|
LOG(HAL, Error) << "Failed to allocate template metadata";
|
|
delete requestTemplate;
|
|
return nullptr;
|
|
}
|
|
|
|
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
|
|
&aeMode, 1);
|
|
|
|
int32_t aeExposureCompensation = 0;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
&aeExposureCompensation, 1);
|
|
|
|
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
|
|
&aePrecaptureTrigger, 1);
|
|
|
|
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
|
|
&aeLock, 1);
|
|
|
|
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
|
|
&afTrigger, 1);
|
|
|
|
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
|
|
&awbMode, 1);
|
|
|
|
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
|
|
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
|
|
&awbLock, 1);
|
|
|
|
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_FLASH_MODE,
|
|
&flashMode, 1);
|
|
|
|
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
|
|
&faceDetectMode, 1);
|
|
|
|
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
|
|
&noiseReduction, 1);
|
|
|
|
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
|
|
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
&aberrationMode, 1);
|
|
|
|
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
|
|
&captureIntent, 1);
|
|
|
|
if (!requestTemplate->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct request template";
|
|
delete requestTemplate;
|
|
return nullptr;
|
|
}
|
|
|
|
requestTemplates_[type] = requestTemplate;
|
|
return requestTemplate->get();
|
|
}
|
|
|
|
PixelFormat CameraDevice::toPixelFormat(int format)
|
|
{
|
|
/* Translate Android format code to libcamera pixel format. */
|
|
auto it = formatsMap_.find(format);
|
|
if (it == formatsMap_.end()) {
|
|
LOG(HAL, Error) << "Requested format " << utils::hex(format)
|
|
<< " not supported";
|
|
return PixelFormat();
|
|
}
|
|
|
|
return it->second;
|
|
}
|
|
|
|
/*
|
|
* Inspect the stream_list to produce a list of StreamConfiguration to
|
|
* be use to configure the Camera.
|
|
*/
|
|
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
|
|
{
|
|
/*
|
|
* Generate an empty configuration, and construct a StreamConfiguration
|
|
* for each camera3_stream to add to it.
|
|
*/
|
|
config_ = camera_->generateConfiguration();
|
|
if (!config_) {
|
|
LOG(HAL, Error) << "Failed to generate camera configuration";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Clear and remove any existing configuration from previous calls, and
|
|
* ensure the required entries are available without further
|
|
* re-allcoation.
|
|
*/
|
|
streams_.clear();
|
|
streams_.reserve(stream_list->num_streams);
|
|
|
|
/*
|
|
* Track actually created streams, as there may not be a 1:1 mapping of
|
|
* camera3 streams to libcamera streams.
|
|
*/
|
|
unsigned int streamIndex = 0;
|
|
|
|
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
|
|
camera3_stream_t *stream = stream_list->streams[i];
|
|
|
|
PixelFormat format = toPixelFormat(stream->format);
|
|
|
|
LOG(HAL, Info) << "Stream #" << i
|
|
<< ", direction: " << stream->stream_type
|
|
<< ", width: " << stream->width
|
|
<< ", height: " << stream->height
|
|
<< ", format: " << utils::hex(stream->format)
|
|
<< " (" << format.toString() << ")";
|
|
|
|
if (!format.isValid())
|
|
return -EINVAL;
|
|
|
|
StreamConfiguration streamConfiguration;
|
|
|
|
streamConfiguration.size.width = stream->width;
|
|
streamConfiguration.size.height = stream->height;
|
|
streamConfiguration.pixelFormat = format;
|
|
|
|
config_->addConfiguration(streamConfiguration);
|
|
|
|
streams_[i].index = streamIndex++;
|
|
stream->priv = static_cast<void *>(&streams_[i]);
|
|
}
|
|
|
|
switch (config_->validate()) {
|
|
case CameraConfiguration::Valid:
|
|
break;
|
|
case CameraConfiguration::Adjusted:
|
|
LOG(HAL, Info) << "Camera configuration adjusted";
|
|
config_.reset();
|
|
return -EINVAL;
|
|
case CameraConfiguration::Invalid:
|
|
LOG(HAL, Info) << "Camera configuration invalid";
|
|
config_.reset();
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
|
|
camera3_stream_t *stream = stream_list->streams[i];
|
|
CameraStream *cameraStream = &streams_[i];
|
|
StreamConfiguration &cfg = config_->at(cameraStream->index);
|
|
|
|
/* Use the bufferCount confirmed by the validation process. */
|
|
stream->max_buffers = cfg.bufferCount;
|
|
}
|
|
|
|
/*
|
|
* Once the CameraConfiguration has been adjusted/validated
|
|
* it can be applied to the camera.
|
|
*/
|
|
int ret = camera_->configure(config_.get());
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to configure camera '"
|
|
<< camera_->name() << "'";
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
|
|
{
|
|
std::vector<FrameBuffer::Plane> planes;
|
|
for (unsigned int i = 0; i < 3; i++) {
|
|
FrameBuffer::Plane plane;
|
|
plane.fd = FileDescriptor(camera3buffer->data[i]);
|
|
/*
|
|
* Setting length to zero here is OK as the length is only used
|
|
* to map the memory of the plane. Libcamera do not need to poke
|
|
* at the memory content queued by the HAL.
|
|
*/
|
|
plane.length = 0;
|
|
planes.push_back(std::move(plane));
|
|
}
|
|
|
|
return new FrameBuffer(std::move(planes));
|
|
}
|
|
|
|
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
|
|
{
|
|
if (!camera3Request->num_output_buffers) {
|
|
LOG(HAL, Error) << "No output buffers provided";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Start the camera if that's the first request we handle. */
|
|
if (!running_) {
|
|
int ret = camera_->start();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to start camera";
|
|
return ret;
|
|
}
|
|
|
|
running_ = true;
|
|
}
|
|
|
|
/*
|
|
* Queue a request for the Camera with the provided dmabuf file
|
|
* descriptors.
|
|
*/
|
|
const camera3_stream_buffer_t *camera3Buffers =
|
|
camera3Request->output_buffers;
|
|
|
|
/*
|
|
* Save the request descriptors for use at completion time.
|
|
* The descriptor and the associated memory reserved here are freed
|
|
* at request complete time.
|
|
*/
|
|
Camera3RequestDescriptor *descriptor =
|
|
new Camera3RequestDescriptor(camera3Request->frame_number,
|
|
camera3Request->num_output_buffers);
|
|
|
|
Request *request =
|
|
camera_->createRequest(reinterpret_cast<uint64_t>(descriptor));
|
|
|
|
for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
|
|
CameraStream *cameraStream =
|
|
static_cast<CameraStream *>(camera3Buffers[i].stream->priv);
|
|
|
|
/*
|
|
* Keep track of which stream the request belongs to and store
|
|
* the native buffer handles.
|
|
*/
|
|
descriptor->buffers[i].stream = camera3Buffers[i].stream;
|
|
descriptor->buffers[i].buffer = camera3Buffers[i].buffer;
|
|
|
|
/*
|
|
* Create a libcamera buffer using the dmabuf descriptors of
|
|
* the camera3Buffer for each stream. The FrameBuffer is
|
|
* directly associated with the Camera3RequestDescriptor for
|
|
* lifetime management only.
|
|
*/
|
|
FrameBuffer *buffer = createFrameBuffer(*camera3Buffers[i].buffer);
|
|
if (!buffer) {
|
|
LOG(HAL, Error) << "Failed to create buffer";
|
|
delete request;
|
|
delete descriptor;
|
|
return -ENOMEM;
|
|
}
|
|
descriptor->frameBuffers.emplace_back(buffer);
|
|
|
|
StreamConfiguration *streamConfiguration = &config_->at(cameraStream->index);
|
|
Stream *stream = streamConfiguration->stream();
|
|
|
|
request->addBuffer(stream, buffer);
|
|
}
|
|
|
|
int ret = camera_->queueRequest(request);
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to queue request";
|
|
delete request;
|
|
delete descriptor;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::requestComplete(Request *request)
|
|
{
|
|
const std::map<Stream *, FrameBuffer *> &buffers = request->buffers();
|
|
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
|
|
std::unique_ptr<CameraMetadata> resultMetadata;
|
|
|
|
if (request->status() != Request::RequestComplete) {
|
|
LOG(HAL, Error) << "Request not succesfully completed: "
|
|
<< request->status();
|
|
status = CAMERA3_BUFFER_STATUS_ERROR;
|
|
}
|
|
|
|
/* Prepare to call back the Android camera stack. */
|
|
Camera3RequestDescriptor *descriptor =
|
|
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
|
|
|
|
camera3_capture_result_t captureResult = {};
|
|
captureResult.frame_number = descriptor->frameNumber;
|
|
captureResult.num_output_buffers = descriptor->numBuffers;
|
|
for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
|
|
descriptor->buffers[i].acquire_fence = -1;
|
|
descriptor->buffers[i].release_fence = -1;
|
|
descriptor->buffers[i].status = status;
|
|
}
|
|
captureResult.output_buffers =
|
|
const_cast<const camera3_stream_buffer_t *>(descriptor->buffers);
|
|
|
|
/*
|
|
* \todo The timestamp used for the metadata is currently always taken
|
|
* from the first buffer (which may be the first stream) in the Request.
|
|
* It might be appropriate to return a 'correct' (as determined by
|
|
* pipeline handlers) timestamp in the Request itself.
|
|
*/
|
|
FrameBuffer *buffer = buffers.begin()->second;
|
|
|
|
if (status == CAMERA3_BUFFER_STATUS_OK) {
|
|
notifyShutter(descriptor->frameNumber,
|
|
buffer->metadata().timestamp);
|
|
|
|
captureResult.partial_result = 1;
|
|
resultMetadata = getResultMetadata(descriptor->frameNumber,
|
|
buffer->metadata().timestamp);
|
|
captureResult.result = resultMetadata->get();
|
|
}
|
|
|
|
if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
|
|
/* \todo Improve error handling. In case we notify an error
|
|
* because the metadata generation fails, a shutter event has
|
|
* already been notified for this frame number before the error
|
|
* is here signalled. Make sure the error path plays well with
|
|
* the camera stack state machine.
|
|
*/
|
|
notifyError(descriptor->frameNumber,
|
|
descriptor->buffers[0].stream);
|
|
}
|
|
|
|
callbacks_->process_capture_result(callbacks_, &captureResult);
|
|
|
|
delete descriptor;
|
|
}
|
|
|
|
std::string CameraDevice::logPrefix() const
|
|
{
|
|
return "'" + camera_->name() + "'";
|
|
}
|
|
|
|
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
|
|
{
|
|
camera3_notify_msg_t notify = {};
|
|
|
|
notify.type = CAMERA3_MSG_SHUTTER;
|
|
notify.message.shutter.frame_number = frameNumber;
|
|
notify.message.shutter.timestamp = timestamp;
|
|
|
|
callbacks_->notify(callbacks_, ¬ify);
|
|
}
|
|
|
|
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
|
|
{
|
|
camera3_notify_msg_t notify = {};
|
|
|
|
notify.type = CAMERA3_MSG_ERROR;
|
|
notify.message.error.error_stream = stream;
|
|
notify.message.error.frame_number = frameNumber;
|
|
notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
|
|
|
|
callbacks_->notify(callbacks_, ¬ify);
|
|
}
|
|
|
|
/*
|
|
* Produce a set of fixed result metadata.
|
|
*/
|
|
std::unique_ptr<CameraMetadata> CameraDevice::getResultMetadata(int frame_number,
|
|
int64_t timestamp)
|
|
{
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 12 entries, 36 bytes
|
|
*/
|
|
std::unique_ptr<CameraMetadata> resultMetadata =
|
|
std::make_unique<CameraMetadata>(15, 50);
|
|
if (!resultMetadata->isValid()) {
|
|
LOG(HAL, Error) << "Failed to allocate static metadata";
|
|
return nullptr;
|
|
}
|
|
|
|
const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &ae_state, 1);
|
|
|
|
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
|
|
|
|
uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &af_state, 1);
|
|
|
|
const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &awb_state, 1);
|
|
|
|
const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &awb_lock, 1);
|
|
|
|
const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
|
|
resultMetadata->addEntry(ANDROID_LENS_STATE, &lens_state, 1);
|
|
|
|
int32_t sensorSizes[] = {
|
|
0, 0, 2560, 1920,
|
|
};
|
|
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, sensorSizes, 4);
|
|
|
|
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
|
|
|
|
/* 33.3 msec */
|
|
const int64_t rolling_shutter_skew = 33300000;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
|
|
&rolling_shutter_skew, 1);
|
|
|
|
/* 16.6 msec */
|
|
const int64_t exposure_time = 16600000;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
|
|
&exposure_time, 1);
|
|
|
|
const uint8_t lens_shading_map_mode =
|
|
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
|
|
&lens_shading_map_mode, 1);
|
|
|
|
const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
|
|
&scene_flicker, 1);
|
|
|
|
/*
|
|
* Return the result metadata pack even is not valid: get() will return
|
|
* nullptr.
|
|
*/
|
|
if (!resultMetadata->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct result metadata";
|
|
}
|
|
|
|
return resultMetadata;
|
|
}
|