mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-12 14:59:44 +03:00
Source files in libcamera start by a comment block header, which includes the file name and a one-line description of the file contents. While the latter is useful to get a quick overview of the file contents at a glance, the former is mostly a source of inconvenience. The name in the comments can easily get out of sync with the file name when files are renamed, and copy & paste during development have often lead to incorrect names being used to start with. Readers of the source code are expected to know which file they're looking it. Drop the file name from the header comment block. The change was generated with the following script: ---------------------------------------- dirs="include/libcamera src test utils" declare -rA patterns=( ['c']=' \* ' ['cpp']=' \* ' ['h']=' \* ' ['py']='# ' ['sh']='# ' ) for ext in ${!patterns[@]} ; do files=$(for dir in $dirs ; do find $dir -name "*.${ext}" ; done) pattern=${patterns[${ext}]} for file in $files ; do name=$(basename ${file}) sed -i "s/^\(${pattern}\)${name} - /\1/" "$file" done done ---------------------------------------- This misses several files that are out of sync with the comment block header. Those will be addressed separately and manually. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Daniel Scally <dan.scally@ideasonboard.com>
1614 lines
48 KiB
C++
1614 lines
48 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
|
/*
|
|
* Copyright (C) 2019, Google Inc.
|
|
*
|
|
* libcamera Android Camera Device
|
|
*/
|
|
|
|
#include "camera_device.h"
|
|
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <set>
|
|
#include <sys/mman.h>
|
|
#include <unistd.h>
|
|
#include <vector>
|
|
|
|
#include <libcamera/base/log.h>
|
|
#include <libcamera/base/unique_fd.h>
|
|
#include <libcamera/base/utils.h>
|
|
|
|
#include <libcamera/control_ids.h>
|
|
#include <libcamera/controls.h>
|
|
#include <libcamera/fence.h>
|
|
#include <libcamera/formats.h>
|
|
#include <libcamera/property_ids.h>
|
|
|
|
#include "system/graphics.h"
|
|
|
|
#include "camera_buffer.h"
|
|
#include "camera_hal_config.h"
|
|
#include "camera_ops.h"
|
|
#include "camera_request.h"
|
|
#include "hal_framebuffer.h"
|
|
|
|
using namespace libcamera;
|
|
|
|
LOG_DECLARE_CATEGORY(HAL)
|
|
|
|
namespace {
|
|
|
|
/*
|
|
* \struct Camera3StreamConfig
|
|
* \brief Data to store StreamConfiguration associated with camera3_stream(s)
|
|
* \var streams List of the pairs of a stream requested by Android HAL client
|
|
* and CameraStream::Type associated with the stream
|
|
* \var config StreamConfiguration for streams
|
|
*/
|
|
struct Camera3StreamConfig {
|
|
struct Camera3Stream {
|
|
camera3_stream_t *stream;
|
|
CameraStream::Type type;
|
|
};
|
|
|
|
std::vector<Camera3Stream> streams;
|
|
StreamConfiguration config;
|
|
};
|
|
|
|
/*
|
|
* Reorder the configurations so that libcamera::Camera can accept them as much
|
|
* as possible. The sort rule is as follows.
|
|
* 1.) The configuration for NV12 request whose resolution is the largest.
|
|
* 2.) The configuration for JPEG request.
|
|
* 3.) Others. Larger resolutions and different formats are put earlier.
|
|
*/
|
|
void sortCamera3StreamConfigs(std::vector<Camera3StreamConfig> &unsortedConfigs,
|
|
const camera3_stream_t *jpegStream)
|
|
{
|
|
const Camera3StreamConfig *jpegConfig = nullptr;
|
|
|
|
std::map<PixelFormat, std::vector<const Camera3StreamConfig *>> formatToConfigs;
|
|
for (const auto &streamConfig : unsortedConfigs) {
|
|
if (jpegStream && !jpegConfig) {
|
|
const auto &streams = streamConfig.streams;
|
|
if (std::find_if(streams.begin(), streams.end(),
|
|
[jpegStream](const auto &stream) {
|
|
return stream.stream == jpegStream;
|
|
}) != streams.end()) {
|
|
jpegConfig = &streamConfig;
|
|
continue;
|
|
}
|
|
}
|
|
formatToConfigs[streamConfig.config.pixelFormat].push_back(&streamConfig);
|
|
}
|
|
|
|
if (jpegStream && !jpegConfig)
|
|
LOG(HAL, Fatal) << "No Camera3StreamConfig is found for JPEG";
|
|
|
|
for (auto &fmt : formatToConfigs) {
|
|
auto &streamConfigs = fmt.second;
|
|
|
|
/* Sorted by resolution. Smaller is put first. */
|
|
std::sort(streamConfigs.begin(), streamConfigs.end(),
|
|
[](const auto *streamConfigA, const auto *streamConfigB) {
|
|
const Size &sizeA = streamConfigA->config.size;
|
|
const Size &sizeB = streamConfigB->config.size;
|
|
return sizeA < sizeB;
|
|
});
|
|
}
|
|
|
|
std::vector<Camera3StreamConfig> sortedConfigs;
|
|
sortedConfigs.reserve(unsortedConfigs.size());
|
|
|
|
/*
|
|
* NV12 is the most prioritized format. Put the configuration with NV12
|
|
* and the largest resolution first.
|
|
*/
|
|
const auto nv12It = formatToConfigs.find(formats::NV12);
|
|
if (nv12It != formatToConfigs.end()) {
|
|
auto &nv12Configs = nv12It->second;
|
|
const Camera3StreamConfig *nv12Largest = nv12Configs.back();
|
|
|
|
/*
|
|
* If JPEG will be created from NV12 and the size is larger than
|
|
* the largest NV12 configurations, then put the NV12
|
|
* configuration for JPEG first.
|
|
*/
|
|
if (jpegConfig && jpegConfig->config.pixelFormat == formats::NV12) {
|
|
const Size &nv12SizeForJpeg = jpegConfig->config.size;
|
|
const Size &nv12LargestSize = nv12Largest->config.size;
|
|
|
|
if (nv12LargestSize < nv12SizeForJpeg) {
|
|
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
|
|
sortedConfigs.push_back(std::move(*jpegConfig));
|
|
jpegConfig = nullptr;
|
|
}
|
|
}
|
|
|
|
LOG(HAL, Debug) << "Insert " << nv12Largest->config.toString();
|
|
sortedConfigs.push_back(*nv12Largest);
|
|
nv12Configs.pop_back();
|
|
|
|
if (nv12Configs.empty())
|
|
formatToConfigs.erase(nv12It);
|
|
}
|
|
|
|
/* If the configuration for JPEG is there, then put it. */
|
|
if (jpegConfig) {
|
|
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
|
|
sortedConfigs.push_back(std::move(*jpegConfig));
|
|
jpegConfig = nullptr;
|
|
}
|
|
|
|
/*
|
|
* Put configurations with different formats and larger resolutions
|
|
* earlier.
|
|
*/
|
|
while (!formatToConfigs.empty()) {
|
|
for (auto it = formatToConfigs.begin(); it != formatToConfigs.end();) {
|
|
auto &configs = it->second;
|
|
LOG(HAL, Debug) << "Insert " << configs.back()->config.toString();
|
|
sortedConfigs.push_back(*configs.back());
|
|
configs.pop_back();
|
|
|
|
if (configs.empty())
|
|
it = formatToConfigs.erase(it);
|
|
else
|
|
it++;
|
|
}
|
|
}
|
|
|
|
ASSERT(sortedConfigs.size() == unsortedConfigs.size());
|
|
|
|
unsortedConfigs = sortedConfigs;
|
|
}
|
|
|
|
const char *rotationToString(int rotation)
|
|
{
|
|
switch (rotation) {
|
|
case CAMERA3_STREAM_ROTATION_0:
|
|
return "0";
|
|
case CAMERA3_STREAM_ROTATION_90:
|
|
return "90";
|
|
case CAMERA3_STREAM_ROTATION_180:
|
|
return "180";
|
|
case CAMERA3_STREAM_ROTATION_270:
|
|
return "270";
|
|
}
|
|
return "INVALID";
|
|
}
|
|
|
|
const char *directionToString(int stream_type)
|
|
{
|
|
switch (stream_type) {
|
|
case CAMERA3_STREAM_OUTPUT:
|
|
return "Output";
|
|
case CAMERA3_STREAM_INPUT:
|
|
return "Input";
|
|
case CAMERA3_STREAM_BIDIRECTIONAL:
|
|
return "Bidirectional";
|
|
default:
|
|
LOG(HAL, Warning) << "Unknown stream type: " << stream_type;
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
#if defined(OS_CHROMEOS)
|
|
/*
|
|
* Check whether the crop_rotate_scale_degrees values for all streams in
|
|
* the list are valid according to the Chrome OS camera HAL API.
|
|
*/
|
|
bool validateCropRotate(const camera3_stream_configuration_t &streamList)
|
|
{
|
|
ASSERT(streamList.num_streams > 0);
|
|
const int cropRotateScaleDegrees =
|
|
streamList.streams[0]->crop_rotate_scale_degrees;
|
|
for (unsigned int i = 0; i < streamList.num_streams; ++i) {
|
|
const camera3_stream_t &stream = *streamList.streams[i];
|
|
|
|
switch (stream.crop_rotate_scale_degrees) {
|
|
case CAMERA3_STREAM_ROTATION_0:
|
|
case CAMERA3_STREAM_ROTATION_90:
|
|
case CAMERA3_STREAM_ROTATION_270:
|
|
break;
|
|
|
|
/* 180° rotation is specified by Chrome OS as invalid. */
|
|
case CAMERA3_STREAM_ROTATION_180:
|
|
default:
|
|
LOG(HAL, Error) << "Invalid crop_rotate_scale_degrees: "
|
|
<< stream.crop_rotate_scale_degrees;
|
|
return false;
|
|
}
|
|
|
|
if (cropRotateScaleDegrees != stream.crop_rotate_scale_degrees) {
|
|
LOG(HAL, Error) << "crop_rotate_scale_degrees in all "
|
|
<< "streams are not identical";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
} /* namespace */
|
|
|
|
/*
|
|
* \class CameraDevice
|
|
*
|
|
* The CameraDevice class wraps a libcamera::Camera instance, and implements
|
|
* the camera3_device_t interface, bridging calls received from the Android
|
|
* camera service to the CameraDevice.
|
|
*
|
|
* The class translates parameters and operations from the Camera HALv3 API to
|
|
* the libcamera API to provide static information for a Camera, create request
|
|
* templates for it, process capture requests and then deliver capture results
|
|
* back to the framework using the designated callbacks.
|
|
*/
|
|
|
|
CameraDevice::CameraDevice(unsigned int id, std::shared_ptr<Camera> camera)
|
|
: id_(id), state_(State::Stopped), camera_(std::move(camera)),
|
|
facing_(CAMERA_FACING_FRONT), orientation_(0)
|
|
{
|
|
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
|
|
|
|
maker_ = "libcamera";
|
|
model_ = "cameraModel";
|
|
|
|
/* \todo Support getting properties on Android */
|
|
std::ifstream fstream("/var/cache/camera/camera.prop");
|
|
if (!fstream.is_open())
|
|
return;
|
|
|
|
std::string line;
|
|
while (std::getline(fstream, line)) {
|
|
std::string::size_type delimPos = line.find("=");
|
|
if (delimPos == std::string::npos)
|
|
continue;
|
|
std::string key = line.substr(0, delimPos);
|
|
std::string val = line.substr(delimPos + 1);
|
|
|
|
if (!key.compare("ro.product.model"))
|
|
model_ = val;
|
|
else if (!key.compare("ro.product.manufacturer"))
|
|
maker_ = val;
|
|
}
|
|
}
|
|
|
|
CameraDevice::~CameraDevice() = default;
|
|
|
|
std::unique_ptr<CameraDevice> CameraDevice::create(unsigned int id,
|
|
std::shared_ptr<Camera> cam)
|
|
{
|
|
return std::unique_ptr<CameraDevice>(
|
|
new CameraDevice(id, std::move(cam)));
|
|
}
|
|
|
|
/*
|
|
* Initialize the camera static information retrieved from the
|
|
* Camera::properties or from the cameraConfigData.
|
|
*
|
|
* cameraConfigData is optional for external camera devices and can be
|
|
* nullptr.
|
|
*
|
|
* This function is called before the camera device is opened.
|
|
*/
|
|
int CameraDevice::initialize(const CameraConfigData *cameraConfigData)
|
|
{
|
|
/*
|
|
* Initialize orientation and facing side of the camera.
|
|
*
|
|
* If the libcamera::Camera provides those information as retrieved
|
|
* from firmware use them, otherwise fallback to values parsed from
|
|
* the configuration file. If the configuration file is not available
|
|
* the camera is external so its location and rotation can be safely
|
|
* defaulted.
|
|
*/
|
|
const ControlList &properties = camera_->properties();
|
|
|
|
const auto &location = properties.get(properties::Location);
|
|
if (location) {
|
|
switch (*location) {
|
|
case properties::CameraLocationFront:
|
|
facing_ = CAMERA_FACING_FRONT;
|
|
break;
|
|
case properties::CameraLocationBack:
|
|
facing_ = CAMERA_FACING_BACK;
|
|
break;
|
|
case properties::CameraLocationExternal:
|
|
/*
|
|
* If the camera is reported as external, but the
|
|
* CameraHalManager has overriden it, use what is
|
|
* reported in the configuration file. This typically
|
|
* happens for UVC cameras reported as 'External' by
|
|
* libcamera but installed in fixed position on the
|
|
* device.
|
|
*/
|
|
if (cameraConfigData && cameraConfigData->facing != -1)
|
|
facing_ = cameraConfigData->facing;
|
|
else
|
|
facing_ = CAMERA_FACING_EXTERNAL;
|
|
break;
|
|
}
|
|
|
|
if (cameraConfigData && cameraConfigData->facing != -1 &&
|
|
facing_ != cameraConfigData->facing) {
|
|
LOG(HAL, Warning)
|
|
<< "Camera location does not match"
|
|
<< " configuration file. Using " << facing_;
|
|
}
|
|
} else if (cameraConfigData) {
|
|
if (cameraConfigData->facing == -1) {
|
|
LOG(HAL, Error)
|
|
<< "Camera facing not in configuration file";
|
|
return -EINVAL;
|
|
}
|
|
facing_ = cameraConfigData->facing;
|
|
} else {
|
|
facing_ = CAMERA_FACING_EXTERNAL;
|
|
}
|
|
|
|
/*
|
|
* The Android orientation metadata specifies its rotation correction
|
|
* value in clockwise direction whereas libcamera specifies the
|
|
* rotation property in anticlockwise direction. Read the libcamera's
|
|
* rotation property (anticlockwise) and compute the corresponding
|
|
* value for clockwise direction as required by the Android orientation
|
|
* metadata.
|
|
*/
|
|
const auto &rotation = properties.get(properties::Rotation);
|
|
if (rotation) {
|
|
orientation_ = (360 - *rotation) % 360;
|
|
if (cameraConfigData && cameraConfigData->rotation != -1 &&
|
|
orientation_ != cameraConfigData->rotation) {
|
|
LOG(HAL, Warning)
|
|
<< "Camera orientation does not match"
|
|
<< " configuration file. Using " << orientation_;
|
|
}
|
|
} else if (cameraConfigData) {
|
|
if (cameraConfigData->rotation == -1) {
|
|
LOG(HAL, Error)
|
|
<< "Camera rotation not in configuration file";
|
|
return -EINVAL;
|
|
}
|
|
orientation_ = cameraConfigData->rotation;
|
|
} else {
|
|
orientation_ = 0;
|
|
}
|
|
|
|
return capabilities_.initialize(camera_, orientation_, facing_);
|
|
}
|
|
|
|
/*
|
|
* Open a camera device. The static information on the camera shall have been
|
|
* initialized with a call to CameraDevice::initialize().
|
|
*/
|
|
int CameraDevice::open(const hw_module_t *hardwareModule)
|
|
{
|
|
int ret = camera_->acquire();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to acquire the camera";
|
|
return ret;
|
|
}
|
|
|
|
/* Initialize the hw_device_t in the instance camera3_module_t. */
|
|
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
|
|
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
|
|
camera3Device_.common.module = (hw_module_t *)hardwareModule;
|
|
camera3Device_.common.close = hal_dev_close;
|
|
|
|
/*
|
|
* The camera device operations. These actually implement
|
|
* the Android Camera HALv3 interface.
|
|
*/
|
|
camera3Device_.ops = &hal_dev_ops;
|
|
camera3Device_.priv = this;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::close()
|
|
{
|
|
stop();
|
|
|
|
camera_->release();
|
|
}
|
|
|
|
void CameraDevice::flush()
|
|
{
|
|
{
|
|
MutexLocker stateLock(stateMutex_);
|
|
if (state_ != State::Running)
|
|
return;
|
|
|
|
state_ = State::Flushing;
|
|
}
|
|
|
|
camera_->stop();
|
|
|
|
MutexLocker stateLock(stateMutex_);
|
|
state_ = State::Stopped;
|
|
}
|
|
|
|
void CameraDevice::stop()
|
|
{
|
|
MutexLocker stateLock(stateMutex_);
|
|
|
|
camera_->stop();
|
|
|
|
{
|
|
MutexLocker descriptorsLock(descriptorsMutex_);
|
|
descriptors_ = {};
|
|
}
|
|
|
|
streams_.clear();
|
|
|
|
state_ = State::Stopped;
|
|
}
|
|
|
|
unsigned int CameraDevice::maxJpegBufferSize() const
|
|
{
|
|
return capabilities_.maxJpegBufferSize();
|
|
}
|
|
|
|
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
|
|
{
|
|
callbacks_ = callbacks;
|
|
}
|
|
|
|
const camera_metadata_t *CameraDevice::getStaticMetadata()
|
|
{
|
|
return capabilities_.staticMetadata()->getMetadata();
|
|
}
|
|
|
|
/*
|
|
* Produce a metadata pack to be used as template for a capture request.
|
|
*/
|
|
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
|
|
{
|
|
auto it = requestTemplates_.find(type);
|
|
if (it != requestTemplates_.end())
|
|
return it->second->getMetadata();
|
|
|
|
/* Use the capture intent matching the requested template type. */
|
|
std::unique_ptr<CameraMetadata> requestTemplate;
|
|
uint8_t captureIntent;
|
|
switch (type) {
|
|
case CAMERA3_TEMPLATE_PREVIEW:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
|
requestTemplate = capabilities_.requestTemplatePreview();
|
|
break;
|
|
case CAMERA3_TEMPLATE_STILL_CAPTURE:
|
|
/*
|
|
* Use the preview template for still capture, they only differ
|
|
* for the torch mode we currently do not support.
|
|
*/
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
|
|
requestTemplate = capabilities_.requestTemplateStill();
|
|
break;
|
|
case CAMERA3_TEMPLATE_VIDEO_RECORD:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
|
|
requestTemplate = capabilities_.requestTemplateVideo();
|
|
break;
|
|
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
|
|
requestTemplate = capabilities_.requestTemplateVideo();
|
|
break;
|
|
case CAMERA3_TEMPLATE_MANUAL:
|
|
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
|
|
requestTemplate = capabilities_.requestTemplateManual();
|
|
break;
|
|
/* \todo Implement templates generation for the remaining use cases. */
|
|
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
|
|
default:
|
|
LOG(HAL, Error) << "Unsupported template request type: " << type;
|
|
return nullptr;
|
|
}
|
|
|
|
if (!requestTemplate || !requestTemplate->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct request template";
|
|
return nullptr;
|
|
}
|
|
|
|
requestTemplate->updateEntry(ANDROID_CONTROL_CAPTURE_INTENT,
|
|
captureIntent);
|
|
|
|
requestTemplates_[type] = std::move(requestTemplate);
|
|
return requestTemplates_[type]->getMetadata();
|
|
}
|
|
|
|
/*
|
|
* Inspect the stream_list to produce a list of StreamConfiguration to
|
|
* be use to configure the Camera.
|
|
*/
|
|
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
|
|
{
|
|
/* Before any configuration attempt, stop the camera. */
|
|
stop();
|
|
|
|
if (stream_list->num_streams == 0) {
|
|
LOG(HAL, Error) << "No streams in configuration";
|
|
return -EINVAL;
|
|
}
|
|
|
|
#if defined(OS_CHROMEOS)
|
|
if (!validateCropRotate(*stream_list))
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
/*
|
|
* Generate an empty configuration, and construct a StreamConfiguration
|
|
* for each camera3_stream to add to it.
|
|
*/
|
|
std::unique_ptr<CameraConfiguration> config = camera_->generateConfiguration();
|
|
if (!config) {
|
|
LOG(HAL, Error) << "Failed to generate camera configuration";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Clear and remove any existing configuration from previous calls, and
|
|
* ensure the required entries are available without further
|
|
* reallocation.
|
|
*/
|
|
streams_.clear();
|
|
streams_.reserve(stream_list->num_streams);
|
|
|
|
std::vector<Camera3StreamConfig> streamConfigs;
|
|
streamConfigs.reserve(stream_list->num_streams);
|
|
|
|
/* First handle all non-MJPEG streams. */
|
|
camera3_stream_t *jpegStream = nullptr;
|
|
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
|
|
camera3_stream_t *stream = stream_list->streams[i];
|
|
Size size(stream->width, stream->height);
|
|
|
|
PixelFormat format = capabilities_.toPixelFormat(stream->format);
|
|
|
|
LOG(HAL, Info) << "Stream #" << i
|
|
<< ", direction: " << directionToString(stream->stream_type)
|
|
<< ", width: " << stream->width
|
|
<< ", height: " << stream->height
|
|
<< ", format: " << utils::hex(stream->format)
|
|
<< ", rotation: " << rotationToString(stream->rotation)
|
|
#if defined(OS_CHROMEOS)
|
|
<< ", crop_rotate_scale_degrees: "
|
|
<< rotationToString(stream->crop_rotate_scale_degrees)
|
|
#endif
|
|
<< " (" << format << ")";
|
|
|
|
if (!format.isValid())
|
|
return -EINVAL;
|
|
|
|
/* \todo Support rotation. */
|
|
if (stream->rotation != CAMERA3_STREAM_ROTATION_0) {
|
|
LOG(HAL, Error) << "Rotation is not supported";
|
|
return -EINVAL;
|
|
}
|
|
#if defined(OS_CHROMEOS)
|
|
if (stream->crop_rotate_scale_degrees != CAMERA3_STREAM_ROTATION_0) {
|
|
LOG(HAL, Error) << "Rotation is not supported";
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/* Defer handling of MJPEG streams until all others are known. */
|
|
if (stream->format == HAL_PIXEL_FORMAT_BLOB) {
|
|
if (jpegStream) {
|
|
LOG(HAL, Error)
|
|
<< "Multiple JPEG streams are not supported";
|
|
return -EINVAL;
|
|
}
|
|
|
|
jpegStream = stream;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* While gralloc usage flags are supposed to report usage
|
|
* patterns to select a suitable buffer allocation strategy, in
|
|
* practice they're also used to make other decisions, such as
|
|
* selecting the actual format for the IMPLEMENTATION_DEFINED
|
|
* HAL pixel format. To avoid issues, we thus have to set the
|
|
* GRALLOC_USAGE_HW_CAMERA_WRITE flag unconditionally, even for
|
|
* streams that will be produced in software.
|
|
*/
|
|
stream->usage |= GRALLOC_USAGE_HW_CAMERA_WRITE;
|
|
|
|
/*
|
|
* If a CameraStream with the same size and format as the
|
|
* current stream has already been requested, associate the two.
|
|
*/
|
|
auto iter = std::find_if(
|
|
streamConfigs.begin(), streamConfigs.end(),
|
|
[&size, &format](const Camera3StreamConfig &streamConfig) {
|
|
return streamConfig.config.size == size &&
|
|
streamConfig.config.pixelFormat == format;
|
|
});
|
|
if (iter != streamConfigs.end()) {
|
|
/* Add usage to copy the buffer in streams[0] to stream. */
|
|
iter->streams[0].stream->usage |= GRALLOC_USAGE_SW_READ_OFTEN;
|
|
stream->usage |= GRALLOC_USAGE_SW_WRITE_OFTEN;
|
|
iter->streams.push_back({ stream, CameraStream::Type::Mapped });
|
|
continue;
|
|
}
|
|
|
|
Camera3StreamConfig streamConfig;
|
|
streamConfig.streams = { { stream, CameraStream::Type::Direct } };
|
|
streamConfig.config.size = size;
|
|
streamConfig.config.pixelFormat = format;
|
|
streamConfigs.push_back(std::move(streamConfig));
|
|
}
|
|
|
|
/* Now handle the MJPEG streams, adding a new stream if required. */
|
|
if (jpegStream) {
|
|
CameraStream::Type type;
|
|
int index = -1;
|
|
|
|
/* Search for a compatible stream in the non-JPEG ones. */
|
|
for (size_t i = 0; i < streamConfigs.size(); ++i) {
|
|
Camera3StreamConfig &streamConfig = streamConfigs[i];
|
|
const auto &cfg = streamConfig.config;
|
|
|
|
/*
|
|
* \todo The PixelFormat must also be compatible with
|
|
* the encoder.
|
|
*/
|
|
if (cfg.size.width != jpegStream->width ||
|
|
cfg.size.height != jpegStream->height)
|
|
continue;
|
|
|
|
LOG(HAL, Info)
|
|
<< "Android JPEG stream mapped to libcamera stream " << i;
|
|
|
|
type = CameraStream::Type::Mapped;
|
|
index = i;
|
|
|
|
/*
|
|
* The source stream will be read by software to
|
|
* produce the JPEG stream.
|
|
*/
|
|
camera3_stream_t *stream = streamConfig.streams[0].stream;
|
|
stream->usage |= GRALLOC_USAGE_SW_READ_OFTEN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Without a compatible match for JPEG encoding we must
|
|
* introduce a new stream to satisfy the request requirements.
|
|
*/
|
|
if (index < 0) {
|
|
/*
|
|
* \todo The pixelFormat should be a 'best-fit' choice
|
|
* and may require a validation cycle. This is not yet
|
|
* handled, and should be considered as part of any
|
|
* stream configuration reworks.
|
|
*/
|
|
Camera3StreamConfig streamConfig;
|
|
streamConfig.config.size.width = jpegStream->width;
|
|
streamConfig.config.size.height = jpegStream->height;
|
|
streamConfig.config.pixelFormat = formats::NV12;
|
|
streamConfigs.push_back(std::move(streamConfig));
|
|
|
|
LOG(HAL, Info) << "Adding " << streamConfig.config.toString()
|
|
<< " for MJPEG support";
|
|
|
|
type = CameraStream::Type::Internal;
|
|
index = streamConfigs.size() - 1;
|
|
}
|
|
|
|
/* The JPEG stream will be produced by software. */
|
|
jpegStream->usage |= GRALLOC_USAGE_SW_WRITE_OFTEN;
|
|
|
|
streamConfigs[index].streams.push_back({ jpegStream, type });
|
|
}
|
|
|
|
sortCamera3StreamConfigs(streamConfigs, jpegStream);
|
|
for (const auto &streamConfig : streamConfigs) {
|
|
config->addConfiguration(streamConfig.config);
|
|
|
|
CameraStream *sourceStream = nullptr;
|
|
for (auto &stream : streamConfig.streams) {
|
|
streams_.emplace_back(this, config.get(), stream.type,
|
|
stream.stream, sourceStream,
|
|
config->size() - 1);
|
|
stream.stream->priv = static_cast<void *>(&streams_.back());
|
|
|
|
/*
|
|
* The streamConfig.streams vector contains as its first
|
|
* element a Direct (or Internal) stream, and then an
|
|
* optional set of Mapped streams derived from the
|
|
* Direct stream. Cache the Direct stream pointer, to
|
|
* be used when constructing the subsequent mapped
|
|
* streams.
|
|
*/
|
|
if (stream.type == CameraStream::Type::Direct)
|
|
sourceStream = &streams_.back();
|
|
}
|
|
}
|
|
|
|
switch (config->validate()) {
|
|
case CameraConfiguration::Valid:
|
|
break;
|
|
case CameraConfiguration::Adjusted:
|
|
LOG(HAL, Info) << "Camera configuration adjusted";
|
|
|
|
for (const StreamConfiguration &cfg : *config)
|
|
LOG(HAL, Info) << " - " << cfg.toString();
|
|
|
|
return -EINVAL;
|
|
case CameraConfiguration::Invalid:
|
|
LOG(HAL, Info) << "Camera configuration invalid";
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Once the CameraConfiguration has been adjusted/validated
|
|
* it can be applied to the camera.
|
|
*/
|
|
int ret = camera_->configure(config.get());
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to configure camera '"
|
|
<< camera_->id() << "'";
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Configure the HAL CameraStream instances using the associated
|
|
* StreamConfiguration and set the number of required buffers in
|
|
* the Android camera3_stream_t.
|
|
*/
|
|
for (CameraStream &cameraStream : streams_) {
|
|
ret = cameraStream.configure();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to configure camera stream";
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
config_ = std::move(config);
|
|
return 0;
|
|
}
|
|
|
|
std::unique_ptr<HALFrameBuffer>
|
|
CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer,
|
|
PixelFormat pixelFormat, const Size &size)
|
|
{
|
|
CameraBuffer buf(camera3buffer, pixelFormat, size, PROT_READ);
|
|
if (!buf.isValid()) {
|
|
LOG(HAL, Fatal) << "Failed to create CameraBuffer";
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<FrameBuffer::Plane> planes(buf.numPlanes());
|
|
for (size_t i = 0; i < buf.numPlanes(); ++i) {
|
|
SharedFD fd{ camera3buffer->data[i] };
|
|
if (!fd.isValid()) {
|
|
LOG(HAL, Fatal) << "No valid fd";
|
|
return nullptr;
|
|
}
|
|
|
|
planes[i].fd = fd;
|
|
planes[i].offset = buf.offset(i);
|
|
planes[i].length = buf.size(i);
|
|
}
|
|
|
|
return std::make_unique<HALFrameBuffer>(planes, camera3buffer);
|
|
}
|
|
|
|
int CameraDevice::processControls(Camera3RequestDescriptor *descriptor)
|
|
{
|
|
const CameraMetadata &settings = descriptor->settings_;
|
|
if (!settings.isValid())
|
|
return 0;
|
|
|
|
/* Translate the Android request settings to libcamera controls. */
|
|
ControlList &controls = descriptor->request_->controls();
|
|
camera_metadata_ro_entry_t entry;
|
|
if (settings.getEntry(ANDROID_SCALER_CROP_REGION, &entry)) {
|
|
const int32_t *data = entry.data.i32;
|
|
Rectangle cropRegion{ data[0], data[1],
|
|
static_cast<unsigned int>(data[2]),
|
|
static_cast<unsigned int>(data[3]) };
|
|
controls.set(controls::ScalerCrop, cropRegion);
|
|
}
|
|
|
|
if (settings.getEntry(ANDROID_SENSOR_TEST_PATTERN_MODE, &entry)) {
|
|
const int32_t data = *entry.data.i32;
|
|
int32_t testPatternMode = controls::draft::TestPatternModeOff;
|
|
switch (data) {
|
|
case ANDROID_SENSOR_TEST_PATTERN_MODE_OFF:
|
|
testPatternMode = controls::draft::TestPatternModeOff;
|
|
break;
|
|
|
|
case ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR:
|
|
testPatternMode = controls::draft::TestPatternModeSolidColor;
|
|
break;
|
|
|
|
case ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS:
|
|
testPatternMode = controls::draft::TestPatternModeColorBars;
|
|
break;
|
|
|
|
case ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY:
|
|
testPatternMode = controls::draft::TestPatternModeColorBarsFadeToGray;
|
|
break;
|
|
|
|
case ANDROID_SENSOR_TEST_PATTERN_MODE_PN9:
|
|
testPatternMode = controls::draft::TestPatternModePn9;
|
|
break;
|
|
|
|
case ANDROID_SENSOR_TEST_PATTERN_MODE_CUSTOM1:
|
|
testPatternMode = controls::draft::TestPatternModeCustom1;
|
|
break;
|
|
|
|
default:
|
|
LOG(HAL, Error)
|
|
<< "Unknown test pattern mode: " << data;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
controls.set(controls::draft::TestPatternMode, testPatternMode);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::abortRequest(Camera3RequestDescriptor *descriptor) const
|
|
{
|
|
notifyError(descriptor->frameNumber_, nullptr, CAMERA3_MSG_ERROR_REQUEST);
|
|
|
|
for (auto &buffer : descriptor->buffers_)
|
|
buffer.status = Camera3RequestDescriptor::Status::Error;
|
|
|
|
descriptor->status_ = Camera3RequestDescriptor::Status::Error;
|
|
}
|
|
|
|
bool CameraDevice::isValidRequest(camera3_capture_request_t *camera3Request) const
|
|
{
|
|
if (!camera3Request) {
|
|
LOG(HAL, Error) << "No capture request provided";
|
|
return false;
|
|
}
|
|
|
|
if (!camera3Request->num_output_buffers ||
|
|
!camera3Request->output_buffers) {
|
|
LOG(HAL, Error) << "No output buffers provided";
|
|
return false;
|
|
}
|
|
|
|
/* configureStreams() has not been called or has failed. */
|
|
if (streams_.empty() || !config_) {
|
|
LOG(HAL, Error) << "No stream is configured";
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < camera3Request->num_output_buffers; i++) {
|
|
const camera3_stream_buffer_t &outputBuffer =
|
|
camera3Request->output_buffers[i];
|
|
if (!outputBuffer.buffer || !(*outputBuffer.buffer)) {
|
|
LOG(HAL, Error) << "Invalid native handle";
|
|
return false;
|
|
}
|
|
|
|
const native_handle_t *handle = *outputBuffer.buffer;
|
|
constexpr int kNativeHandleMaxFds = 1024;
|
|
if (handle->numFds < 0 || handle->numFds > kNativeHandleMaxFds) {
|
|
LOG(HAL, Error)
|
|
<< "Invalid number of fds (" << handle->numFds
|
|
<< ") in buffer " << i;
|
|
return false;
|
|
}
|
|
|
|
constexpr int kNativeHandleMaxInts = 1024;
|
|
if (handle->numInts < 0 || handle->numInts > kNativeHandleMaxInts) {
|
|
LOG(HAL, Error)
|
|
<< "Invalid number of ints (" << handle->numInts
|
|
<< ") in buffer " << i;
|
|
return false;
|
|
}
|
|
|
|
const camera3_stream *camera3Stream = outputBuffer.stream;
|
|
if (!camera3Stream)
|
|
return false;
|
|
|
|
const CameraStream *cameraStream =
|
|
static_cast<CameraStream *>(camera3Stream->priv);
|
|
|
|
auto found = std::find_if(streams_.begin(), streams_.end(),
|
|
[cameraStream](const CameraStream &stream) {
|
|
return &stream == cameraStream;
|
|
});
|
|
if (found == streams_.end()) {
|
|
LOG(HAL, Error)
|
|
<< "No corresponding configured stream found";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
|
|
{
|
|
if (!isValidRequest(camera3Request))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Save the request descriptors for use at completion time.
|
|
* The descriptor and the associated memory reserved here are freed
|
|
* at request complete time.
|
|
*/
|
|
auto descriptor = std::make_unique<Camera3RequestDescriptor>(camera_.get(),
|
|
camera3Request);
|
|
|
|
/*
|
|
* \todo The Android request model is incremental, settings passed in
|
|
* previous requests are to be effective until overridden explicitly in
|
|
* a new request. Do we need to cache settings incrementally here, or is
|
|
* it handled by the Android camera service ?
|
|
*/
|
|
if (camera3Request->settings)
|
|
lastSettings_ = camera3Request->settings;
|
|
|
|
descriptor->settings_ = lastSettings_;
|
|
|
|
LOG(HAL, Debug) << "Queueing request " << descriptor->request_->cookie()
|
|
<< " with " << descriptor->buffers_.size() << " streams";
|
|
|
|
/*
|
|
* Process all the Direct and Internal streams first, they map directly
|
|
* to a libcamera stream. Streams of type Mapped will be handled later.
|
|
*
|
|
* Collect the CameraStream associated to each requested capture stream.
|
|
* Since requestedStreams is an std:set<>, no duplications can happen.
|
|
*/
|
|
std::set<CameraStream *> requestedStreams;
|
|
for (const auto &[i, buffer] : utils::enumerate(descriptor->buffers_)) {
|
|
CameraStream *cameraStream = buffer.stream;
|
|
camera3_stream_t *camera3Stream = cameraStream->camera3Stream();
|
|
|
|
std::stringstream ss;
|
|
ss << i << " - (" << camera3Stream->width << "x"
|
|
<< camera3Stream->height << ")"
|
|
<< "[" << utils::hex(camera3Stream->format) << "] -> "
|
|
<< "(" << cameraStream->configuration().size << ")["
|
|
<< cameraStream->configuration().pixelFormat << "]";
|
|
|
|
/*
|
|
* Inspect the camera stream type, create buffers opportunely
|
|
* and add them to the Request if required.
|
|
*/
|
|
FrameBuffer *frameBuffer = nullptr;
|
|
UniqueFD acquireFence;
|
|
|
|
MutexLocker lock(descriptor->streamsProcessMutex_);
|
|
|
|
switch (cameraStream->type()) {
|
|
case CameraStream::Type::Mapped:
|
|
/* Mapped streams will be handled in the next loop. */
|
|
continue;
|
|
|
|
case CameraStream::Type::Direct:
|
|
/*
|
|
* Create a libcamera buffer using the dmabuf
|
|
* descriptors of the camera3Buffer for each stream and
|
|
* associate it with the Camera3RequestDescriptor for
|
|
* lifetime management only.
|
|
*/
|
|
buffer.frameBuffer =
|
|
createFrameBuffer(*buffer.camera3Buffer,
|
|
cameraStream->configuration().pixelFormat,
|
|
cameraStream->configuration().size);
|
|
frameBuffer = buffer.frameBuffer.get();
|
|
acquireFence = std::move(buffer.fence);
|
|
LOG(HAL, Debug) << ss.str() << " (direct)";
|
|
break;
|
|
|
|
case CameraStream::Type::Internal:
|
|
/*
|
|
* Get the frame buffer from the CameraStream internal
|
|
* buffer pool.
|
|
*
|
|
* The buffer has to be returned to the CameraStream
|
|
* once it has been processed.
|
|
*/
|
|
frameBuffer = cameraStream->getBuffer();
|
|
buffer.internalBuffer = frameBuffer;
|
|
LOG(HAL, Debug) << ss.str() << " (internal)";
|
|
|
|
descriptor->pendingStreamsToProcess_.insert(
|
|
{ cameraStream, &buffer });
|
|
break;
|
|
}
|
|
|
|
if (!frameBuffer) {
|
|
LOG(HAL, Error) << "Failed to create frame buffer";
|
|
return -ENOMEM;
|
|
}
|
|
|
|
auto fence = std::make_unique<Fence>(std::move(acquireFence));
|
|
descriptor->request_->addBuffer(cameraStream->stream(),
|
|
frameBuffer, std::move(fence));
|
|
|
|
requestedStreams.insert(cameraStream);
|
|
}
|
|
|
|
/*
|
|
* Now handle the Mapped streams. If no buffer has been added for them
|
|
* because their corresponding direct source stream is not part of this
|
|
* particular request, add one here.
|
|
*/
|
|
for (const auto &[i, buffer] : utils::enumerate(descriptor->buffers_)) {
|
|
CameraStream *cameraStream = buffer.stream;
|
|
camera3_stream_t *camera3Stream = cameraStream->camera3Stream();
|
|
|
|
if (cameraStream->type() != CameraStream::Type::Mapped)
|
|
continue;
|
|
|
|
LOG(HAL, Debug) << i << " - (" << camera3Stream->width << "x"
|
|
<< camera3Stream->height << ")"
|
|
<< "[" << utils::hex(camera3Stream->format) << "] -> "
|
|
<< "(" << cameraStream->configuration().size << ")["
|
|
<< cameraStream->configuration().pixelFormat << "]"
|
|
<< " (mapped)";
|
|
|
|
MutexLocker lock(descriptor->streamsProcessMutex_);
|
|
descriptor->pendingStreamsToProcess_.insert({ cameraStream, &buffer });
|
|
|
|
/*
|
|
* Make sure the CameraStream this stream is mapped on has been
|
|
* added to the request.
|
|
*/
|
|
CameraStream *sourceStream = cameraStream->sourceStream();
|
|
ASSERT(sourceStream);
|
|
if (requestedStreams.find(sourceStream) != requestedStreams.end())
|
|
continue;
|
|
|
|
/*
|
|
* If that's not the case, we need to add a buffer to the request
|
|
* for this stream.
|
|
*/
|
|
FrameBuffer *frameBuffer = cameraStream->getBuffer();
|
|
buffer.internalBuffer = frameBuffer;
|
|
|
|
descriptor->request_->addBuffer(sourceStream->stream(),
|
|
frameBuffer, nullptr);
|
|
|
|
requestedStreams.insert(sourceStream);
|
|
}
|
|
|
|
/*
|
|
* Translate controls from Android to libcamera and queue the request
|
|
* to the camera.
|
|
*/
|
|
int ret = processControls(descriptor.get());
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If flush is in progress set the request status to error and place it
|
|
* on the queue to be later completed. If the camera has been stopped we
|
|
* have to re-start it to be able to process the request.
|
|
*/
|
|
MutexLocker stateLock(stateMutex_);
|
|
|
|
if (state_ == State::Flushing) {
|
|
Camera3RequestDescriptor *rawDescriptor = descriptor.get();
|
|
{
|
|
MutexLocker descriptorsLock(descriptorsMutex_);
|
|
descriptors_.push(std::move(descriptor));
|
|
}
|
|
abortRequest(rawDescriptor);
|
|
completeDescriptor(rawDescriptor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (state_ == State::Stopped) {
|
|
lastSettings_ = {};
|
|
|
|
ret = camera_->start();
|
|
if (ret) {
|
|
LOG(HAL, Error) << "Failed to start camera";
|
|
return ret;
|
|
}
|
|
|
|
state_ = State::Running;
|
|
}
|
|
|
|
Request *request = descriptor->request_.get();
|
|
|
|
{
|
|
MutexLocker descriptorsLock(descriptorsMutex_);
|
|
descriptors_.push(std::move(descriptor));
|
|
}
|
|
|
|
camera_->queueRequest(request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void CameraDevice::requestComplete(Request *request)
|
|
{
|
|
Camera3RequestDescriptor *descriptor =
|
|
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
|
|
|
|
/*
|
|
* Prepare the capture result for the Android camera stack.
|
|
*
|
|
* The buffer status is set to Success and later changed to Error if
|
|
* post-processing/compression fails.
|
|
*/
|
|
for (auto &buffer : descriptor->buffers_) {
|
|
CameraStream *stream = buffer.stream;
|
|
|
|
/*
|
|
* Streams of type Direct have been queued to the
|
|
* libcamera::Camera and their acquire fences have
|
|
* already been waited on by the library.
|
|
*
|
|
* Acquire fences of streams of type Internal and Mapped
|
|
* will be handled during post-processing.
|
|
*/
|
|
if (stream->type() == CameraStream::Type::Direct) {
|
|
/* If handling of the fence has failed restore buffer.fence. */
|
|
std::unique_ptr<Fence> fence = buffer.frameBuffer->releaseFence();
|
|
if (fence)
|
|
buffer.fence = fence->release();
|
|
}
|
|
buffer.status = Camera3RequestDescriptor::Status::Success;
|
|
}
|
|
|
|
/*
|
|
* If the Request has failed, abort the request by notifying the error
|
|
* and complete the request with all buffers in error state.
|
|
*/
|
|
if (request->status() != Request::RequestComplete) {
|
|
LOG(HAL, Error) << "Request " << request->cookie()
|
|
<< " not successfully completed: "
|
|
<< request->status();
|
|
|
|
abortRequest(descriptor);
|
|
completeDescriptor(descriptor);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Notify shutter as soon as we have verified we have a valid request.
|
|
*
|
|
* \todo The shutter event notification should be sent to the framework
|
|
* as soon as possible, earlier than request completion time.
|
|
*/
|
|
uint64_t sensorTimestamp = static_cast<uint64_t>(request->metadata()
|
|
.get(controls::SensorTimestamp)
|
|
.value_or(0));
|
|
notifyShutter(descriptor->frameNumber_, sensorTimestamp);
|
|
|
|
LOG(HAL, Debug) << "Request " << request->cookie() << " completed with "
|
|
<< descriptor->request_->buffers().size() << " streams";
|
|
|
|
/*
|
|
* Generate the metadata associated with the captured buffers.
|
|
*
|
|
* Notify if the metadata generation has failed, but continue processing
|
|
* buffers and return an empty metadata pack.
|
|
*/
|
|
descriptor->resultMetadata_ = getResultMetadata(*descriptor);
|
|
if (!descriptor->resultMetadata_) {
|
|
notifyError(descriptor->frameNumber_, nullptr, CAMERA3_MSG_ERROR_RESULT);
|
|
|
|
/*
|
|
* The camera framework expects an empty metadata pack on error.
|
|
*
|
|
* \todo Check that the post-processor code handles this situation
|
|
* correctly.
|
|
*/
|
|
descriptor->resultMetadata_ = std::make_unique<CameraMetadata>(0, 0);
|
|
}
|
|
|
|
/* Handle post-processing. */
|
|
MutexLocker locker(descriptor->streamsProcessMutex_);
|
|
|
|
/*
|
|
* Queue all the post-processing streams request at once. The completion
|
|
* slot streamProcessingComplete() can only execute when we are out
|
|
* this critical section. This helps to handle synchronous errors here
|
|
* itself.
|
|
*/
|
|
auto iter = descriptor->pendingStreamsToProcess_.begin();
|
|
while (iter != descriptor->pendingStreamsToProcess_.end()) {
|
|
CameraStream *stream = iter->first;
|
|
Camera3RequestDescriptor::StreamBuffer *buffer = iter->second;
|
|
|
|
FrameBuffer *src = request->findBuffer(stream->stream());
|
|
if (!src) {
|
|
LOG(HAL, Error) << "Failed to find a source stream buffer";
|
|
setBufferStatus(*buffer, Camera3RequestDescriptor::Status::Error);
|
|
iter = descriptor->pendingStreamsToProcess_.erase(iter);
|
|
continue;
|
|
}
|
|
|
|
buffer->srcBuffer = src;
|
|
|
|
++iter;
|
|
int ret = stream->process(buffer);
|
|
if (ret) {
|
|
setBufferStatus(*buffer, Camera3RequestDescriptor::Status::Error);
|
|
descriptor->pendingStreamsToProcess_.erase(stream);
|
|
|
|
/*
|
|
* If the framebuffer is internal to CameraStream return
|
|
* it back now that we're done processing it.
|
|
*/
|
|
if (buffer->internalBuffer)
|
|
stream->putBuffer(buffer->internalBuffer);
|
|
}
|
|
}
|
|
|
|
if (descriptor->pendingStreamsToProcess_.empty()) {
|
|
locker.unlock();
|
|
completeDescriptor(descriptor);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Complete the Camera3RequestDescriptor
|
|
* \param[in] descriptor The Camera3RequestDescriptor that has completed
|
|
*
|
|
* The function marks the Camera3RequestDescriptor as 'complete'. It shall be
|
|
* called when all the streams in the Camera3RequestDescriptor have completed
|
|
* capture (or have been generated via post-processing) and the request is ready
|
|
* to be sent back to the framework.
|
|
*
|
|
* \context This function is \threadsafe.
|
|
*/
|
|
void CameraDevice::completeDescriptor(Camera3RequestDescriptor *descriptor)
|
|
{
|
|
MutexLocker lock(descriptorsMutex_);
|
|
descriptor->complete_ = true;
|
|
|
|
sendCaptureResults();
|
|
}
|
|
|
|
/**
|
|
* \brief Sequentially send capture results to the framework
|
|
*
|
|
* Iterate over the descriptors queue to send completed descriptors back to the
|
|
* framework, in the same order as they have been queued. For each complete
|
|
* descriptor, populate a locally-scoped camera3_capture_result_t from the
|
|
* descriptor, send the capture result back by calling the
|
|
* process_capture_result() callback, and remove the descriptor from the queue.
|
|
* Stop iterating if the descriptor at the front of the queue is not complete.
|
|
*
|
|
* This function should never be called directly in the codebase. Use
|
|
* completeDescriptor() instead.
|
|
*/
|
|
void CameraDevice::sendCaptureResults()
|
|
{
|
|
while (!descriptors_.empty() && !descriptors_.front()->isPending()) {
|
|
auto descriptor = std::move(descriptors_.front());
|
|
descriptors_.pop();
|
|
|
|
camera3_capture_result_t captureResult = {};
|
|
|
|
captureResult.frame_number = descriptor->frameNumber_;
|
|
|
|
if (descriptor->resultMetadata_)
|
|
captureResult.result =
|
|
descriptor->resultMetadata_->getMetadata();
|
|
|
|
std::vector<camera3_stream_buffer_t> resultBuffers;
|
|
resultBuffers.reserve(descriptor->buffers_.size());
|
|
|
|
for (auto &buffer : descriptor->buffers_) {
|
|
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_ERROR;
|
|
|
|
if (buffer.status == Camera3RequestDescriptor::Status::Success)
|
|
status = CAMERA3_BUFFER_STATUS_OK;
|
|
|
|
/*
|
|
* Pass the buffer fence back to the camera framework as
|
|
* a release fence. This instructs the framework to wait
|
|
* on the acquire fence in case we haven't done so
|
|
* ourselves for any reason.
|
|
*/
|
|
resultBuffers.push_back({ buffer.stream->camera3Stream(),
|
|
buffer.camera3Buffer, status,
|
|
-1, buffer.fence.release() });
|
|
}
|
|
|
|
captureResult.num_output_buffers = resultBuffers.size();
|
|
captureResult.output_buffers = resultBuffers.data();
|
|
|
|
if (descriptor->status_ == Camera3RequestDescriptor::Status::Success)
|
|
captureResult.partial_result = 1;
|
|
|
|
callbacks_->process_capture_result(callbacks_, &captureResult);
|
|
}
|
|
}
|
|
|
|
void CameraDevice::setBufferStatus(Camera3RequestDescriptor::StreamBuffer &streamBuffer,
|
|
Camera3RequestDescriptor::Status status)
|
|
{
|
|
streamBuffer.status = status;
|
|
if (status != Camera3RequestDescriptor::Status::Success) {
|
|
notifyError(streamBuffer.request->frameNumber_,
|
|
streamBuffer.stream->camera3Stream(),
|
|
CAMERA3_MSG_ERROR_BUFFER);
|
|
|
|
/* Also set error status on entire request descriptor. */
|
|
streamBuffer.request->status_ =
|
|
Camera3RequestDescriptor::Status::Error;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Handle post-processing completion of a stream in a capture request
|
|
* \param[in] streamBuffer The StreamBuffer for which processing is complete
|
|
* \param[in] status Stream post-processing status
|
|
*
|
|
* This function is called from the post-processor's thread whenever a camera
|
|
* stream has finished post processing. The corresponding entry is dropped from
|
|
* the descriptor's pendingStreamsToProcess_ map.
|
|
*
|
|
* If the pendingStreamsToProcess_ map is then empty, all streams requiring to
|
|
* be generated from post-processing have been completed. Mark the descriptor as
|
|
* complete using completeDescriptor() in that case.
|
|
*/
|
|
void CameraDevice::streamProcessingComplete(Camera3RequestDescriptor::StreamBuffer *streamBuffer,
|
|
Camera3RequestDescriptor::Status status)
|
|
{
|
|
setBufferStatus(*streamBuffer, status);
|
|
|
|
/*
|
|
* If the framebuffer is internal to CameraStream return it back now
|
|
* that we're done processing it.
|
|
*/
|
|
if (streamBuffer->internalBuffer)
|
|
streamBuffer->stream->putBuffer(streamBuffer->internalBuffer);
|
|
|
|
Camera3RequestDescriptor *request = streamBuffer->request;
|
|
|
|
{
|
|
MutexLocker locker(request->streamsProcessMutex_);
|
|
|
|
request->pendingStreamsToProcess_.erase(streamBuffer->stream);
|
|
if (!request->pendingStreamsToProcess_.empty())
|
|
return;
|
|
}
|
|
|
|
completeDescriptor(streamBuffer->request);
|
|
}
|
|
|
|
std::string CameraDevice::logPrefix() const
|
|
{
|
|
return "'" + camera_->id() + "'";
|
|
}
|
|
|
|
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
|
|
{
|
|
camera3_notify_msg_t notify = {};
|
|
|
|
notify.type = CAMERA3_MSG_SHUTTER;
|
|
notify.message.shutter.frame_number = frameNumber;
|
|
notify.message.shutter.timestamp = timestamp;
|
|
|
|
callbacks_->notify(callbacks_, ¬ify);
|
|
}
|
|
|
|
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream,
|
|
camera3_error_msg_code code) const
|
|
{
|
|
camera3_notify_msg_t notify = {};
|
|
|
|
notify.type = CAMERA3_MSG_ERROR;
|
|
notify.message.error.error_stream = stream;
|
|
notify.message.error.frame_number = frameNumber;
|
|
notify.message.error.error_code = code;
|
|
|
|
callbacks_->notify(callbacks_, ¬ify);
|
|
}
|
|
|
|
/*
|
|
* Produce a set of fixed result metadata.
|
|
*/
|
|
std::unique_ptr<CameraMetadata>
|
|
CameraDevice::getResultMetadata(const Camera3RequestDescriptor &descriptor) const
|
|
{
|
|
const ControlList &metadata = descriptor.request_->metadata();
|
|
const CameraMetadata &settings = descriptor.settings_;
|
|
camera_metadata_ro_entry_t entry;
|
|
bool found;
|
|
|
|
/*
|
|
* \todo Keep this in sync with the actual number of entries.
|
|
* Currently: 40 entries, 156 bytes
|
|
*
|
|
* Reserve more space for the JPEG metadata set by the post-processor.
|
|
* Currently:
|
|
* ANDROID_JPEG_GPS_COORDINATES (double x 3) = 24 bytes
|
|
* ANDROID_JPEG_GPS_PROCESSING_METHOD (byte x 32) = 32 bytes
|
|
* ANDROID_JPEG_GPS_TIMESTAMP (int64) = 8 bytes
|
|
* ANDROID_JPEG_SIZE (int32_t) = 4 bytes
|
|
* ANDROID_JPEG_QUALITY (byte) = 1 byte
|
|
* ANDROID_JPEG_ORIENTATION (int32_t) = 4 bytes
|
|
* ANDROID_JPEG_THUMBNAIL_QUALITY (byte) = 1 byte
|
|
* ANDROID_JPEG_THUMBNAIL_SIZE (int32 x 2) = 8 bytes
|
|
* Total bytes for JPEG metadata: 82
|
|
*/
|
|
std::unique_ptr<CameraMetadata> resultMetadata =
|
|
std::make_unique<CameraMetadata>(88, 166);
|
|
if (!resultMetadata->isValid()) {
|
|
LOG(HAL, Error) << "Failed to allocate result metadata";
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* \todo The value of the results metadata copied from the settings
|
|
* will have to be passed to the libcamera::Camera and extracted
|
|
* from libcamera::Request::metadata.
|
|
*/
|
|
|
|
uint8_t value = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
|
|
value);
|
|
|
|
value = ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE, value);
|
|
|
|
int32_t value32 = 0;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
|
|
value32);
|
|
|
|
value = ANDROID_CONTROL_AE_LOCK_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, value);
|
|
|
|
value = ANDROID_CONTROL_AE_MODE_ON;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_MODE, value);
|
|
|
|
if (settings.getEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, &entry))
|
|
/*
|
|
* \todo Retrieve the AE FPS range from the libcamera metadata.
|
|
* As libcamera does not support that control, as a temporary
|
|
* workaround return what the framework asked.
|
|
*/
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
|
|
entry.data.i32, 2);
|
|
|
|
found = settings.getEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &entry);
|
|
value = found ? *entry.data.u8 :
|
|
(uint8_t)ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, value);
|
|
|
|
value = ANDROID_CONTROL_AE_STATE_CONVERGED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, value);
|
|
|
|
value = ANDROID_CONTROL_AF_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_MODE, value);
|
|
|
|
value = ANDROID_CONTROL_AF_STATE_INACTIVE;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, value);
|
|
|
|
value = ANDROID_CONTROL_AF_TRIGGER_IDLE;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AF_TRIGGER, value);
|
|
|
|
value = ANDROID_CONTROL_AWB_MODE_AUTO;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_MODE, value);
|
|
|
|
value = ANDROID_CONTROL_AWB_LOCK_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, value);
|
|
|
|
value = ANDROID_CONTROL_AWB_STATE_CONVERGED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, value);
|
|
|
|
value = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_CAPTURE_INTENT, value);
|
|
|
|
value = ANDROID_CONTROL_EFFECT_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_EFFECT_MODE, value);
|
|
|
|
value = ANDROID_CONTROL_MODE_AUTO;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_MODE, value);
|
|
|
|
value = ANDROID_CONTROL_SCENE_MODE_DISABLED;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_SCENE_MODE, value);
|
|
|
|
value = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, value);
|
|
|
|
value = ANDROID_FLASH_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_FLASH_MODE, value);
|
|
|
|
value = ANDROID_FLASH_STATE_UNAVAILABLE;
|
|
resultMetadata->addEntry(ANDROID_FLASH_STATE, value);
|
|
|
|
if (settings.getEntry(ANDROID_LENS_APERTURE, &entry))
|
|
resultMetadata->addEntry(ANDROID_LENS_APERTURE, entry.data.f, 1);
|
|
|
|
float focal_length = 1.0;
|
|
resultMetadata->addEntry(ANDROID_LENS_FOCAL_LENGTH, focal_length);
|
|
|
|
value = ANDROID_LENS_STATE_STATIONARY;
|
|
resultMetadata->addEntry(ANDROID_LENS_STATE, value);
|
|
|
|
value = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
|
|
value);
|
|
|
|
value32 = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_TEST_PATTERN_MODE, value32);
|
|
|
|
value = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE, value);
|
|
|
|
value = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
|
|
value);
|
|
|
|
value = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, value);
|
|
|
|
value = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
|
|
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER, value);
|
|
|
|
value = ANDROID_NOISE_REDUCTION_MODE_OFF;
|
|
resultMetadata->addEntry(ANDROID_NOISE_REDUCTION_MODE, value);
|
|
|
|
/* 33.3 msec */
|
|
const int64_t rolling_shutter_skew = 33300000;
|
|
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
|
|
rolling_shutter_skew);
|
|
|
|
/* Add metadata tags reported by libcamera. */
|
|
const int64_t timestamp = metadata.get(controls::SensorTimestamp).value_or(0);
|
|
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, timestamp);
|
|
|
|
const auto &pipelineDepth = metadata.get(controls::draft::PipelineDepth);
|
|
if (pipelineDepth)
|
|
resultMetadata->addEntry(ANDROID_REQUEST_PIPELINE_DEPTH,
|
|
*pipelineDepth);
|
|
|
|
const auto &exposureTime = metadata.get(controls::ExposureTime);
|
|
if (exposureTime)
|
|
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
|
|
*exposureTime * 1000ULL);
|
|
|
|
const auto &frameDuration = metadata.get(controls::FrameDuration);
|
|
if (frameDuration)
|
|
resultMetadata->addEntry(ANDROID_SENSOR_FRAME_DURATION,
|
|
*frameDuration * 1000);
|
|
|
|
const auto &scalerCrop = metadata.get(controls::ScalerCrop);
|
|
if (scalerCrop) {
|
|
const Rectangle &crop = *scalerCrop;
|
|
int32_t cropRect[] = {
|
|
crop.x, crop.y, static_cast<int32_t>(crop.width),
|
|
static_cast<int32_t>(crop.height),
|
|
};
|
|
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, cropRect);
|
|
}
|
|
|
|
const auto &testPatternMode = metadata.get(controls::draft::TestPatternMode);
|
|
if (testPatternMode)
|
|
resultMetadata->addEntry(ANDROID_SENSOR_TEST_PATTERN_MODE,
|
|
*testPatternMode);
|
|
|
|
/*
|
|
* Return the result metadata pack even is not valid: get() will return
|
|
* nullptr.
|
|
*/
|
|
if (!resultMetadata->isValid()) {
|
|
LOG(HAL, Error) << "Failed to construct result metadata";
|
|
}
|
|
|
|
if (resultMetadata->resized()) {
|
|
auto [entryCount, dataCount] = resultMetadata->usage();
|
|
LOG(HAL, Info)
|
|
<< "Result metadata resized: " << entryCount
|
|
<< " entries and " << dataCount << " bytes used";
|
|
}
|
|
|
|
return resultMetadata;
|
|
}
|