mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-20 10:55:07 +03:00
The "current" prefix in the currentYGain variable name is confusing: - In Agc::estimateLuminance(), the variable contains the gain to be applied to the image, which is neither a "current" gain nor a "Y" gain. Rename it to "gain". - In Agc::computeExposure(), the variable contains the gain computed by the relative luminance method, so rename it to "yGain". While at it, rename variables to match the libcamera coding style. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Jean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
340 lines
11 KiB
C++
340 lines
11 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
||
/*
|
||
* Copyright (C) 2021, Ideas On Board
|
||
*
|
||
* ipu3_agc.cpp - AGC/AEC mean-based control algorithm
|
||
*/
|
||
|
||
#include "agc.h"
|
||
|
||
#include <algorithm>
|
||
#include <chrono>
|
||
#include <cmath>
|
||
|
||
#include <libcamera/base/log.h>
|
||
|
||
#include <libcamera/ipa/core_ipa_interface.h>
|
||
|
||
#include "libipa/histogram.h"
|
||
|
||
/**
|
||
* \file agc.h
|
||
*/
|
||
|
||
namespace libcamera {
|
||
|
||
using namespace std::literals::chrono_literals;
|
||
|
||
namespace ipa::ipu3::algorithms {
|
||
|
||
/**
|
||
* \class Agc
|
||
* \brief A mean-based auto-exposure algorithm
|
||
*
|
||
* This algorithm calculates a shutter time and an analogue gain so that the
|
||
* average value of the green channel of the brightest 2% of pixels approaches
|
||
* 0.5. The AWB gains are not used here, and all cells in the grid have the same
|
||
* weight, like an average-metering case. In this metering mode, the camera uses
|
||
* light information from the entire scene and creates an average for the final
|
||
* exposure setting, giving no weighting to any particular portion of the
|
||
* metered area.
|
||
*
|
||
* Reference: Battiato, Messina & Castorina. (2008). Exposure
|
||
* Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12.
|
||
*/
|
||
|
||
LOG_DEFINE_CATEGORY(IPU3Agc)
|
||
|
||
/* Limits for analogue gain values */
|
||
static constexpr double kMinAnalogueGain = 1.0;
|
||
static constexpr double kMaxAnalogueGain = 8.0;
|
||
|
||
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
|
||
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
|
||
|
||
/* Histogram constants */
|
||
static constexpr uint32_t knumHistogramBins = 256;
|
||
|
||
/* Target value to reach for the top 2% of the histogram */
|
||
static constexpr double kEvGainTarget = 0.5;
|
||
|
||
/* Number of frames to wait before calculating stats on minimum exposure */
|
||
static constexpr uint32_t kNumStartupFrames = 10;
|
||
|
||
/*
|
||
* Relative luminance target.
|
||
*
|
||
* It's a number that's chosen so that, when the camera points at a grey
|
||
* target, the resulting image brightness is considered right.
|
||
*/
|
||
static constexpr double kRelativeLuminanceTarget = 0.16;
|
||
|
||
Agc::Agc()
|
||
: frameCount_(0), iqMean_(0.0), lineDuration_(0s), minShutterSpeed_(0s),
|
||
maxShutterSpeed_(0s), filteredExposure_(0s), currentExposure_(0s)
|
||
{
|
||
}
|
||
|
||
/**
|
||
* \brief Configure the AGC given a configInfo
|
||
* \param[in] context The shared IPA context
|
||
* \param[in] configInfo The IPA configuration data
|
||
*
|
||
* \return 0
|
||
*/
|
||
int Agc::configure(IPAContext &context, const IPAConfigInfo &configInfo)
|
||
{
|
||
stride_ = context.configuration.grid.stride;
|
||
|
||
/* \todo use the IPAContext to provide the limits */
|
||
lineDuration_ = configInfo.sensorInfo.lineLength * 1.0s
|
||
/ configInfo.sensorInfo.pixelRate;
|
||
|
||
minShutterSpeed_ = context.configuration.agc.minShutterSpeed;
|
||
maxShutterSpeed_ = std::min(context.configuration.agc.maxShutterSpeed,
|
||
kMaxShutterSpeed);
|
||
|
||
minAnalogueGain_ = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
|
||
maxAnalogueGain_ = std::min(context.configuration.agc.maxAnalogueGain, kMaxAnalogueGain);
|
||
|
||
/* Configure the default exposure and gain. */
|
||
context.frameContext.agc.gain = minAnalogueGain_;
|
||
context.frameContext.agc.exposure = minShutterSpeed_ / lineDuration_;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* \brief Estimate the mean value of the top 2% of the histogram
|
||
* \param[in] stats The statistics computed by the ImgU
|
||
* \param[in] grid The grid used to store the statistics in the IPU3
|
||
*/
|
||
void Agc::measureBrightness(const ipu3_uapi_stats_3a *stats,
|
||
const ipu3_uapi_grid_config &grid)
|
||
{
|
||
/* Initialise the histogram array */
|
||
uint32_t hist[knumHistogramBins] = { 0 };
|
||
|
||
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
|
||
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
|
||
uint32_t cellPosition = cellY * stride_ + cellX;
|
||
|
||
const ipu3_uapi_awb_set_item *cell =
|
||
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
|
||
&stats->awb_raw_buffer.meta_data[cellPosition]
|
||
);
|
||
|
||
uint8_t gr = cell->Gr_avg;
|
||
uint8_t gb = cell->Gb_avg;
|
||
/*
|
||
* Store the average green value to estimate the
|
||
* brightness. Even the overexposed pixels are
|
||
* taken into account.
|
||
*/
|
||
hist[(gr + gb) / 2]++;
|
||
}
|
||
}
|
||
|
||
/* Estimate the quantile mean of the top 2% of the histogram */
|
||
iqMean_ = Histogram(Span<uint32_t>(hist)).interQuantileMean(0.98, 1.0);
|
||
}
|
||
|
||
/**
|
||
* \brief Apply a filter on the exposure value to limit the speed of changes
|
||
*/
|
||
void Agc::filterExposure()
|
||
{
|
||
double speed = 0.2;
|
||
|
||
/* Adapt instantly if we are in startup phase */
|
||
if (frameCount_ < kNumStartupFrames)
|
||
speed = 1.0;
|
||
|
||
if (filteredExposure_ == 0s) {
|
||
/* DG stands for digital gain.*/
|
||
filteredExposure_ = currentExposure_;
|
||
} else {
|
||
/*
|
||
* If we are close to the desired result, go faster to avoid making
|
||
* multiple micro-adjustments.
|
||
* \todo Make this customisable?
|
||
*/
|
||
if (filteredExposure_ < 1.2 * currentExposure_ &&
|
||
filteredExposure_ > 0.8 * currentExposure_)
|
||
speed = sqrt(speed);
|
||
|
||
filteredExposure_ = speed * currentExposure_ +
|
||
filteredExposure_ * (1.0 - speed);
|
||
}
|
||
|
||
LOG(IPU3Agc, Debug) << "After filtering, total_exposure " << filteredExposure_;
|
||
}
|
||
|
||
/**
|
||
* \brief Estimate the new exposure and gain values
|
||
* \param[inout] frameContext The shared IPA frame Context
|
||
* \param[in] yGain The gain calculated based on the relative luminance target
|
||
*/
|
||
void Agc::computeExposure(IPAFrameContext &frameContext, double yGain)
|
||
{
|
||
/* Get the effective exposure and gain applied on the sensor. */
|
||
uint32_t exposure = frameContext.sensor.exposure;
|
||
double analogueGain = frameContext.sensor.gain;
|
||
|
||
/*
|
||
* Estimate the gain needed to have the proportion of pixels in a given
|
||
* desired range. iqMean_ returns the mean value of the top 2% of the
|
||
* cumulative histogram, and we want it to be as close as possible to a
|
||
* configured target.
|
||
*/
|
||
double evGain = kEvGainTarget * knumHistogramBins / iqMean_;
|
||
|
||
if (evGain < yGain)
|
||
evGain = yGain;
|
||
|
||
/* Consider within 1% of the target as correctly exposed */
|
||
if (std::abs(evGain - 1.0) < 0.01)
|
||
LOG(IPU3Agc, Debug) << "We are well exposed (iqMean = "
|
||
<< iqMean_ << ")";
|
||
|
||
/* extracted from Rpi::Agc::computeTargetExposure */
|
||
|
||
/* Calculate the shutter time in seconds */
|
||
utils::Duration currentShutter = exposure * lineDuration_;
|
||
|
||
/*
|
||
* Update the exposure value for the next computation using the values
|
||
* of exposure and gain really used by the sensor.
|
||
*/
|
||
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
|
||
|
||
LOG(IPU3Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
|
||
<< " Shutter speed " << currentShutter
|
||
<< " Gain " << analogueGain
|
||
<< " Needed ev gain " << evGain;
|
||
|
||
/*
|
||
* Calculate the current exposure value for the scene as the latest
|
||
* exposure value applied multiplied by the new estimated gain.
|
||
*/
|
||
currentExposure_ = effectiveExposureValue * evGain;
|
||
|
||
/* Clamp the exposure value to the min and max authorized */
|
||
utils::Duration maxTotalExposure = maxShutterSpeed_ * maxAnalogueGain_;
|
||
currentExposure_ = std::min(currentExposure_, maxTotalExposure);
|
||
LOG(IPU3Agc, Debug) << "Target total exposure " << currentExposure_
|
||
<< ", maximum is " << maxTotalExposure;
|
||
|
||
/* \todo: estimate if we need to desaturate */
|
||
filterExposure();
|
||
|
||
/* Divide the exposure value as new exposure and gain values */
|
||
utils::Duration exposureValue = filteredExposure_;
|
||
utils::Duration shutterTime;
|
||
|
||
/*
|
||
* Push the shutter time up to the maximum first, and only then
|
||
* increase the gain.
|
||
*/
|
||
shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain_,
|
||
minShutterSpeed_, maxShutterSpeed_);
|
||
double stepGain = std::clamp(exposureValue / shutterTime,
|
||
minAnalogueGain_, maxAnalogueGain_);
|
||
LOG(IPU3Agc, Debug) << "Divided up shutter and gain are "
|
||
<< shutterTime << " and "
|
||
<< stepGain;
|
||
|
||
/* Update the estimated exposure and gain. */
|
||
frameContext.agc.exposure = shutterTime / lineDuration_;
|
||
frameContext.agc.gain = stepGain;
|
||
}
|
||
|
||
/**
|
||
* \brief Estimate the relative luminance of the frame with a given gain
|
||
* \param[in] frameContext The shared IPA frame context
|
||
* \param[in] grid The grid used to store the statistics in the IPU3
|
||
* \param[in] stats The IPU3 statistics and ISP results
|
||
* \param[in] gain The gain to apply to the frame
|
||
* \return The relative luminance
|
||
*
|
||
* Luma is the weighted sum of gamma-compressed R′G′B′ components of a color
|
||
* video. The luma values are normalized as 0.0 to 1.0, with 1.0 being a
|
||
* theoretical perfect reflector of 100% reference white. We use the Rec. 601
|
||
* luma here.
|
||
*
|
||
* More detailed information can be found in:
|
||
* https://en.wikipedia.org/wiki/Relative_luminance
|
||
*/
|
||
double Agc::estimateLuminance(IPAFrameContext &frameContext,
|
||
const ipu3_uapi_grid_config &grid,
|
||
const ipu3_uapi_stats_3a *stats,
|
||
double gain)
|
||
{
|
||
double redSum = 0, greenSum = 0, blueSum = 0;
|
||
|
||
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
|
||
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
|
||
uint32_t cellPosition = cellY * stride_ + cellX;
|
||
|
||
const ipu3_uapi_awb_set_item *cell =
|
||
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
|
||
&stats->awb_raw_buffer.meta_data[cellPosition]
|
||
);
|
||
|
||
redSum += cell->R_avg * gain;
|
||
greenSum += (cell->Gr_avg + cell->Gb_avg) / 2 * gain;
|
||
blueSum += cell->B_avg * gain;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Apply the AWB gains to approximate colours correctly, use the Rec.
|
||
* 601 formula to calculate the relative luminance, and normalize it.
|
||
*/
|
||
double ySum = redSum * frameContext.awb.gains.red * 0.299
|
||
+ greenSum * frameContext.awb.gains.green * 0.587
|
||
+ blueSum * frameContext.awb.gains.blue * 0.114;
|
||
|
||
return ySum / (grid.height * grid.width) / 255;
|
||
}
|
||
|
||
/**
|
||
* \brief Process IPU3 statistics, and run AGC operations
|
||
* \param[in] context The shared IPA context
|
||
* \param[in] stats The IPU3 statistics and ISP results
|
||
*
|
||
* Identify the current image brightness, and use that to estimate the optimal
|
||
* new exposure and gain for the scene.
|
||
*/
|
||
void Agc::process(IPAContext &context, const ipu3_uapi_stats_3a *stats)
|
||
{
|
||
measureBrightness(stats, context.configuration.grid.bdsGrid);
|
||
|
||
double yGain = 1.0;
|
||
double yTarget = kRelativeLuminanceTarget;
|
||
|
||
/*
|
||
* Do this calculation a few times as brightness increase can be
|
||
* non-linear when there are saturated regions.
|
||
*/
|
||
for (unsigned int i = 0; i < 8; i++) {
|
||
double yValue = estimateLuminance(context.frameContext,
|
||
context.configuration.grid.bdsGrid,
|
||
stats, yGain);
|
||
double extraGain = std::min(10.0, yTarget / (yValue + .001));
|
||
|
||
yGain *= extraGain;
|
||
LOG(IPU3Agc, Debug) << "Y value: " << yValue
|
||
<< ", Y target: " << yTarget
|
||
<< ", gives gain " << yGain;
|
||
if (extraGain < 1.01)
|
||
break;
|
||
}
|
||
|
||
computeExposure(context.frameContext, yGain);
|
||
frameCount_++;
|
||
}
|
||
|
||
} /* namespace ipa::ipu3::algorithms */
|
||
|
||
} /* namespace libcamera */
|