libcamera/src/ipa/rpi/controller/pwl.cpp
Naushir Patuck 726e9274ea pipeline: ipa: raspberrypi: Refactor and move the Raspberry Pi code
Split the Raspberry Pi pipeline handler and IPA source code into common
and VC4/BCM2835 specific file structures.

For the pipeline handler, the common code files now live in
src/libcamera/pipeline/rpi/common/
and the VC4-specific files in src/libcamera/pipeline/rpi/vc4/.

For the IPA, the common code files now live in
src/ipa/rpi/{cam_helper,controller}/
and the vc4 specific files in src/ipa/rpi/vc4/. With this change, the
camera tuning files are now installed under share/libcamera/ipa/rpi/vc4/.

To build the pipeline and IPA, the meson configuration options have now
changed from "raspberrypi" to "rpi/vc4":

meson setup build -Dipas=rpi/vc4 -Dpipelines=rpi/vc4

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Reviewed-by: Jacopo Mondi <jacopo.mondi@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
2023-05-04 20:47:40 +03:00

269 lines
6.9 KiB
C++

/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi Ltd
*
* pwl.cpp - piecewise linear functions
*/
#include <cassert>
#include <cmath>
#include <stdexcept>
#include "pwl.h"
using namespace RPiController;
int Pwl::read(const libcamera::YamlObject &params)
{
if (!params.size() || params.size() % 2)
return -EINVAL;
const auto &list = params.asList();
for (auto it = list.begin(); it != list.end(); it++) {
auto x = it->get<double>();
if (!x)
return -EINVAL;
if (it != list.begin() && *x <= points_.back().x)
return -EINVAL;
auto y = (++it)->get<double>();
if (!y)
return -EINVAL;
points_.push_back(Point(*x, *y));
}
return 0;
}
void Pwl::append(double x, double y, const double eps)
{
if (points_.empty() || points_.back().x + eps < x)
points_.push_back(Point(x, y));
}
void Pwl::prepend(double x, double y, const double eps)
{
if (points_.empty() || points_.front().x - eps > x)
points_.insert(points_.begin(), Point(x, y));
}
Pwl::Interval Pwl::domain() const
{
return Interval(points_[0].x, points_[points_.size() - 1].x);
}
Pwl::Interval Pwl::range() const
{
double lo = points_[0].y, hi = lo;
for (auto &p : points_)
lo = std::min(lo, p.y), hi = std::max(hi, p.y);
return Interval(lo, hi);
}
bool Pwl::empty() const
{
return points_.empty();
}
double Pwl::eval(double x, int *spanPtr, bool updateSpan) const
{
int span = findSpan(x, spanPtr && *spanPtr != -1 ? *spanPtr : points_.size() / 2 - 1);
if (spanPtr && updateSpan)
*spanPtr = span;
return points_[span].y +
(x - points_[span].x) * (points_[span + 1].y - points_[span].y) /
(points_[span + 1].x - points_[span].x);
}
int Pwl::findSpan(double x, int span) const
{
/*
* Pwls are generally small, so linear search may well be faster than
* binary, though could review this if large PWls start turning up.
*/
int lastSpan = points_.size() - 2;
/*
* some algorithms may call us with span pointing directly at the last
* control point
*/
span = std::max(0, std::min(lastSpan, span));
while (span < lastSpan && x >= points_[span + 1].x)
span++;
while (span && x < points_[span].x)
span--;
return span;
}
Pwl::PerpType Pwl::invert(Point const &xy, Point &perp, int &span,
const double eps) const
{
assert(span >= -1);
bool prevOffEnd = false;
for (span = span + 1; span < (int)points_.size() - 1; span++) {
Point spanVec = points_[span + 1] - points_[span];
double t = ((xy - points_[span]) % spanVec) / spanVec.len2();
if (t < -eps) /* off the start of this span */
{
if (span == 0) {
perp = points_[span];
return PerpType::Start;
} else if (prevOffEnd) {
perp = points_[span];
return PerpType::Vertex;
}
} else if (t > 1 + eps) /* off the end of this span */
{
if (span == (int)points_.size() - 2) {
perp = points_[span + 1];
return PerpType::End;
}
prevOffEnd = true;
} else /* a true perpendicular */
{
perp = points_[span] + spanVec * t;
return PerpType::Perpendicular;
}
}
return PerpType::None;
}
Pwl Pwl::inverse(bool *trueInverse, const double eps) const
{
bool appended = false, prepended = false, neither = false;
Pwl inverse;
for (Point const &p : points_) {
if (inverse.empty())
inverse.append(p.y, p.x, eps);
else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
std::abs(inverse.points_.front().x - p.y) <= eps)
/* do nothing */;
else if (p.y > inverse.points_.back().x) {
inverse.append(p.y, p.x, eps);
appended = true;
} else if (p.y < inverse.points_.front().x) {
inverse.prepend(p.y, p.x, eps);
prepended = true;
} else
neither = true;
}
/*
* This is not a proper inverse if we found ourselves putting points
* onto both ends of the inverse, or if there were points that couldn't
* go on either.
*/
if (trueInverse)
*trueInverse = !(neither || (appended && prepended));
return inverse;
}
Pwl Pwl::compose(Pwl const &other, const double eps) const
{
double thisX = points_[0].x, thisY = points_[0].y;
int thisSpan = 0, otherSpan = other.findSpan(thisY, 0);
Pwl result({ { thisX, other.eval(thisY, &otherSpan, false) } });
while (thisSpan != (int)points_.size() - 1) {
double dx = points_[thisSpan + 1].x - points_[thisSpan].x,
dy = points_[thisSpan + 1].y - points_[thisSpan].y;
if (std::abs(dy) > eps &&
otherSpan + 1 < (int)other.points_.size() &&
points_[thisSpan + 1].y >=
other.points_[otherSpan + 1].x + eps) {
/*
* next control point in result will be where this
* function's y reaches the next span in other
*/
thisX = points_[thisSpan].x +
(other.points_[otherSpan + 1].x -
points_[thisSpan].y) *
dx / dy;
thisY = other.points_[++otherSpan].x;
} else if (std::abs(dy) > eps && otherSpan > 0 &&
points_[thisSpan + 1].y <=
other.points_[otherSpan - 1].x - eps) {
/*
* next control point in result will be where this
* function's y reaches the previous span in other
*/
thisX = points_[thisSpan].x +
(other.points_[otherSpan + 1].x -
points_[thisSpan].y) *
dx / dy;
thisY = other.points_[--otherSpan].x;
} else {
/* we stay in the same span in other */
thisSpan++;
thisX = points_[thisSpan].x,
thisY = points_[thisSpan].y;
}
result.append(thisX, other.eval(thisY, &otherSpan, false),
eps);
}
return result;
}
void Pwl::map(std::function<void(double x, double y)> f) const
{
for (auto &pt : points_)
f(pt.x, pt.y);
}
void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1,
std::function<void(double x, double y0, double y1)> f)
{
int span0 = 0, span1 = 0;
double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
while (span0 < (int)pwl0.points_.size() - 1 ||
span1 < (int)pwl1.points_.size() - 1) {
if (span0 == (int)pwl0.points_.size() - 1)
x = pwl1.points_[++span1].x;
else if (span1 == (int)pwl1.points_.size() - 1)
x = pwl0.points_[++span0].x;
else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x)
x = pwl1.points_[++span1].x;
else
x = pwl0.points_[++span0].x;
f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false));
}
}
Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1,
std::function<double(double x, double y0, double y1)> f,
const double eps)
{
Pwl result;
map2(pwl0, pwl1, [&](double x, double y0, double y1) {
result.append(x, f(x, y0, y1), eps);
});
return result;
}
void Pwl::matchDomain(Interval const &domain, bool clip, const double eps)
{
int span = 0;
prepend(domain.start, eval(clip ? points_[0].x : domain.start, &span),
eps);
span = points_.size() - 2;
append(domain.end, eval(clip ? points_.back().x : domain.end, &span),
eps);
}
Pwl &Pwl::operator*=(double d)
{
for (auto &pt : points_)
pt.y *= d;
return *this;
}
void Pwl::debug(FILE *fp) const
{
fprintf(fp, "Pwl {\n");
for (auto &p : points_)
fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
fprintf(fp, "}\n");
}