mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-14 16:09:51 +03:00
Now that we stop the asynchronous thread on a SwitchMode, we would do better to regenerate all the tables if the new camera mode crops in a significantly different way to the old one. A few minor tweaks make sense along with this: * Reset the lambda values when we reset everything. It wouldn't make sense to re-start with the old mode's values. * Use the last recorded colour temperature to generate new tables rather than any default value. * Set the frame "phase" counter to ensure the adaptive procedure will run asap. Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Naushir Patuck <naush@raspberrypi.com>
742 lines
24 KiB
C++
742 lines
24 KiB
C++
/* SPDX-License-Identifier: BSD-2-Clause */
|
|
/*
|
|
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
|
*
|
|
* alsc.cpp - ALSC (auto lens shading correction) control algorithm
|
|
*/
|
|
#include <math.h>
|
|
|
|
#include "../awb_status.h"
|
|
#include "alsc.hpp"
|
|
|
|
// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.
|
|
|
|
using namespace RPi;
|
|
|
|
#define NAME "rpi.alsc"
|
|
|
|
static const int X = ALSC_CELLS_X;
|
|
static const int Y = ALSC_CELLS_Y;
|
|
static const int XY = X * Y;
|
|
static const double INSUFFICIENT_DATA = -1.0;
|
|
|
|
Alsc::Alsc(Controller *controller)
|
|
: Algorithm(controller)
|
|
{
|
|
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
|
|
async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
|
|
}
|
|
|
|
Alsc::~Alsc()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
async_abort_ = true;
|
|
}
|
|
async_signal_.notify_one();
|
|
async_thread_.join();
|
|
}
|
|
|
|
char const *Alsc::Name() const
|
|
{
|
|
return NAME;
|
|
}
|
|
|
|
static void generate_lut(double *lut, boost::property_tree::ptree const ¶ms)
|
|
{
|
|
double cstrength = params.get<double>("corner_strength", 2.0);
|
|
if (cstrength <= 1.0)
|
|
throw std::runtime_error("Alsc: corner_strength must be > 1.0");
|
|
double asymmetry = params.get<double>("asymmetry", 1.0);
|
|
if (asymmetry < 0)
|
|
throw std::runtime_error("Alsc: asymmetry must be >= 0");
|
|
double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
|
|
double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
|
|
int num = 0;
|
|
for (int y = 0; y < Y; y++) {
|
|
for (int x = 0; x < X; x++) {
|
|
double dy = y - Y / 2 + 0.5,
|
|
dx = (x - X / 2 + 0.5) * asymmetry;
|
|
double r2 = (dx * dx + dy * dy) / R2;
|
|
lut[num++] =
|
|
(f1 * r2 + f2) * (f1 * r2 + f2) /
|
|
(f2 * f2); // this reproduces the cos^4 rule
|
|
}
|
|
}
|
|
}
|
|
|
|
static void read_lut(double *lut, boost::property_tree::ptree const ¶ms)
|
|
{
|
|
int num = 0;
|
|
const int max_num = XY;
|
|
for (auto &p : params) {
|
|
if (num == max_num)
|
|
throw std::runtime_error(
|
|
"Alsc: too many entries in LSC table");
|
|
lut[num++] = p.second.get_value<double>();
|
|
}
|
|
if (num < max_num)
|
|
throw std::runtime_error("Alsc: too few entries in LSC table");
|
|
}
|
|
|
|
static void read_calibrations(std::vector<AlscCalibration> &calibrations,
|
|
boost::property_tree::ptree const ¶ms,
|
|
std::string const &name)
|
|
{
|
|
if (params.get_child_optional(name)) {
|
|
double last_ct = 0;
|
|
for (auto &p : params.get_child(name)) {
|
|
double ct = p.second.get<double>("ct");
|
|
if (ct <= last_ct)
|
|
throw std::runtime_error(
|
|
"Alsc: entries in " + name +
|
|
" must be in increasing ct order");
|
|
AlscCalibration calibration;
|
|
calibration.ct = last_ct = ct;
|
|
boost::property_tree::ptree const &table =
|
|
p.second.get_child("table");
|
|
int num = 0;
|
|
for (auto it = table.begin(); it != table.end(); it++) {
|
|
if (num == XY)
|
|
throw std::runtime_error(
|
|
"Alsc: too many values for ct " +
|
|
std::to_string(ct) + " in " +
|
|
name);
|
|
calibration.table[num++] =
|
|
it->second.get_value<double>();
|
|
}
|
|
if (num != XY)
|
|
throw std::runtime_error(
|
|
"Alsc: too few values for ct " +
|
|
std::to_string(ct) + " in " + name);
|
|
calibrations.push_back(calibration);
|
|
RPI_LOG("Read " << name << " calibration for ct "
|
|
<< ct);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Alsc::Read(boost::property_tree::ptree const ¶ms)
|
|
{
|
|
RPI_LOG("Alsc");
|
|
config_.frame_period = params.get<uint16_t>("frame_period", 12);
|
|
config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
|
|
config_.speed = params.get<double>("speed", 0.05);
|
|
double sigma = params.get<double>("sigma", 0.01);
|
|
config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
|
|
config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
|
|
config_.min_count = params.get<double>("min_count", 10.0);
|
|
config_.min_G = params.get<uint16_t>("min_G", 50);
|
|
config_.omega = params.get<double>("omega", 1.3);
|
|
config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
|
|
config_.luminance_strength =
|
|
params.get<double>("luminance_strength", 1.0);
|
|
for (int i = 0; i < XY; i++)
|
|
config_.luminance_lut[i] = 1.0;
|
|
if (params.get_child_optional("corner_strength"))
|
|
generate_lut(config_.luminance_lut, params);
|
|
else if (params.get_child_optional("luminance_lut"))
|
|
read_lut(config_.luminance_lut,
|
|
params.get_child("luminance_lut"));
|
|
else
|
|
RPI_WARN("Alsc: no luminance table - assume unity everywhere");
|
|
read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
|
|
read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
|
|
config_.default_ct = params.get<double>("default_ct", 4500.0);
|
|
config_.threshold = params.get<double>("threshold", 1e-3);
|
|
}
|
|
|
|
static void get_cal_table(double ct,
|
|
std::vector<AlscCalibration> const &calibrations,
|
|
double cal_table[XY]);
|
|
static void resample_cal_table(double const cal_table_in[XY],
|
|
CameraMode const &camera_mode,
|
|
double cal_table_out[XY]);
|
|
static void compensate_lambdas_for_cal(double const cal_table[XY],
|
|
double const old_lambdas[XY],
|
|
double new_lambdas[XY]);
|
|
static void add_luminance_to_tables(double results[3][Y][X],
|
|
double const lambda_r[XY], double lambda_g,
|
|
double const lambda_b[XY],
|
|
double const luminance_lut[XY],
|
|
double luminance_strength);
|
|
|
|
void Alsc::Initialise()
|
|
{
|
|
RPI_LOG("Alsc");
|
|
frame_count2_ = frame_count_ = frame_phase_ = 0;
|
|
first_time_ = true;
|
|
ct_ = config_.default_ct;
|
|
// The lambdas are initialised in the SwitchMode.
|
|
}
|
|
|
|
void Alsc::waitForAysncThread()
|
|
{
|
|
if (async_started_) {
|
|
async_started_ = false;
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
sync_signal_.wait(lock, [&] {
|
|
return async_finished_;
|
|
});
|
|
async_finished_ = false;
|
|
}
|
|
}
|
|
|
|
static bool compare_modes(CameraMode const &cm0, CameraMode const &cm1)
|
|
{
|
|
// Return true if the modes crop from the sensor significantly differently.
|
|
int left_diff = abs(cm0.crop_x - cm1.crop_x);
|
|
int top_diff = abs(cm0.crop_y - cm1.crop_y);
|
|
int right_diff = fabs(cm0.crop_x + cm0.scale_x * cm0.width -
|
|
cm1.crop_x - cm1.scale_x * cm1.width);
|
|
int bottom_diff = fabs(cm0.crop_y + cm0.scale_y * cm0.height -
|
|
cm1.crop_y - cm1.scale_y * cm1.height);
|
|
// These thresholds are a rather arbitrary amount chosen to trigger
|
|
// when carrying on with the previously calculated tables might be
|
|
// worse than regenerating them (but without the adaptive algorithm).
|
|
int threshold_x = cm0.sensor_width >> 4;
|
|
int threshold_y = cm0.sensor_height >> 4;
|
|
return left_diff > threshold_x || right_diff > threshold_x ||
|
|
top_diff > threshold_y || bottom_diff > threshold_y;
|
|
}
|
|
|
|
void Alsc::SwitchMode(CameraMode const &camera_mode, Metadata *metadata)
|
|
{
|
|
(void)metadata;
|
|
|
|
// We're going to start over with the tables if there's any "significant"
|
|
// change.
|
|
bool reset_tables = first_time_ || compare_modes(camera_mode_, camera_mode);
|
|
|
|
// Ensure the other thread isn't running while we do this.
|
|
waitForAysncThread();
|
|
|
|
camera_mode_ = camera_mode;
|
|
|
|
// We must resample the luminance table like we do the others, but it's
|
|
// fixed so we can simply do it up front here.
|
|
resample_cal_table(config_.luminance_lut, camera_mode_, luminance_table_);
|
|
|
|
if (reset_tables) {
|
|
// Upon every "table reset", arrange for something sensible to be
|
|
// generated. Construct the tables for the previous recorded colour
|
|
// temperature. In order to start over from scratch we initialise
|
|
// the lambdas, but the rest of this code then echoes the code in
|
|
// doAlsc, without the adaptive algorithm.
|
|
for (int i = 0; i < XY; i++)
|
|
lambda_r_[i] = lambda_b_[i] = 1.0;
|
|
double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
|
|
get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
|
|
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
|
|
get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
|
|
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
|
|
compensate_lambdas_for_cal(cal_table_r, lambda_r_,
|
|
async_lambda_r_);
|
|
compensate_lambdas_for_cal(cal_table_b, lambda_b_,
|
|
async_lambda_b_);
|
|
add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
|
|
async_lambda_b_, luminance_table_,
|
|
config_.luminance_strength);
|
|
memcpy(prev_sync_results_, sync_results_,
|
|
sizeof(prev_sync_results_));
|
|
frame_phase_ = config_.frame_period; // run the algo again asap
|
|
first_time_ = false;
|
|
}
|
|
}
|
|
|
|
void Alsc::fetchAsyncResults()
|
|
{
|
|
RPI_LOG("Fetch ALSC results");
|
|
async_finished_ = false;
|
|
async_started_ = false;
|
|
memcpy(sync_results_, async_results_, sizeof(sync_results_));
|
|
}
|
|
|
|
static double get_ct(Metadata *metadata, double default_ct)
|
|
{
|
|
AwbStatus awb_status;
|
|
awb_status.temperature_K = default_ct; // in case nothing found
|
|
if (metadata->Get("awb.status", awb_status) != 0)
|
|
RPI_WARN("Alsc: no AWB results found, using "
|
|
<< awb_status.temperature_K);
|
|
else
|
|
RPI_LOG("Alsc: AWB results found, using "
|
|
<< awb_status.temperature_K);
|
|
return awb_status.temperature_K;
|
|
}
|
|
|
|
static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
|
|
AlscStatus const &status)
|
|
{
|
|
bcm2835_isp_stats_region *input_regions = stats->awb_stats;
|
|
double *r_table = (double *)status.r;
|
|
double *g_table = (double *)status.g;
|
|
double *b_table = (double *)status.b;
|
|
for (int i = 0; i < XY; i++) {
|
|
regions[i].r_sum = input_regions[i].r_sum / r_table[i];
|
|
regions[i].g_sum = input_regions[i].g_sum / g_table[i];
|
|
regions[i].b_sum = input_regions[i].b_sum / b_table[i];
|
|
regions[i].counted = input_regions[i].counted;
|
|
// (don't care about the uncounted value)
|
|
}
|
|
}
|
|
|
|
void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
|
|
{
|
|
RPI_LOG("Starting ALSC thread");
|
|
// Get the current colour temperature. It's all we need from the
|
|
// metadata. Default to the last CT value (which could be the default).
|
|
ct_ = get_ct(image_metadata, ct_);
|
|
// We have to copy the statistics here, dividing out our best guess of
|
|
// the LSC table that the pipeline applied to them.
|
|
AlscStatus alsc_status;
|
|
if (image_metadata->Get("alsc.status", alsc_status) != 0) {
|
|
RPI_WARN("No ALSC status found for applied gains!");
|
|
for (int y = 0; y < Y; y++)
|
|
for (int x = 0; x < X; x++) {
|
|
alsc_status.r[y][x] = 1.0;
|
|
alsc_status.g[y][x] = 1.0;
|
|
alsc_status.b[y][x] = 1.0;
|
|
}
|
|
}
|
|
copy_stats(statistics_, stats, alsc_status);
|
|
frame_phase_ = 0;
|
|
async_started_ = true;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
async_start_ = true;
|
|
}
|
|
async_signal_.notify_one();
|
|
}
|
|
|
|
void Alsc::Prepare(Metadata *image_metadata)
|
|
{
|
|
// Count frames since we started, and since we last poked the async
|
|
// thread.
|
|
if (frame_count_ < (int)config_.startup_frames)
|
|
frame_count_++;
|
|
double speed = frame_count_ < (int)config_.startup_frames
|
|
? 1.0
|
|
: config_.speed;
|
|
RPI_LOG("Alsc: frame_count " << frame_count_ << " speed " << speed);
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
if (async_started_ && async_finished_) {
|
|
RPI_LOG("ALSC thread finished");
|
|
fetchAsyncResults();
|
|
}
|
|
}
|
|
// Apply IIR filter to results and program into the pipeline.
|
|
double *ptr = (double *)sync_results_,
|
|
*pptr = (double *)prev_sync_results_;
|
|
for (unsigned int i = 0;
|
|
i < sizeof(sync_results_) / sizeof(double); i++)
|
|
pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
|
|
// Put output values into status metadata.
|
|
AlscStatus status;
|
|
memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
|
|
memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
|
|
memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
|
|
image_metadata->Set("alsc.status", status);
|
|
}
|
|
|
|
void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
|
|
{
|
|
// Count frames since we started, and since we last poked the async
|
|
// thread.
|
|
if (frame_phase_ < (int)config_.frame_period)
|
|
frame_phase_++;
|
|
if (frame_count2_ < (int)config_.startup_frames)
|
|
frame_count2_++;
|
|
RPI_LOG("Alsc: frame_phase " << frame_phase_);
|
|
if (frame_phase_ >= (int)config_.frame_period ||
|
|
frame_count2_ < (int)config_.startup_frames) {
|
|
if (async_started_ == false) {
|
|
RPI_LOG("ALSC thread starting");
|
|
restartAsync(stats, image_metadata);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Alsc::asyncFunc()
|
|
{
|
|
while (true) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
async_signal_.wait(lock, [&] {
|
|
return async_start_ || async_abort_;
|
|
});
|
|
async_start_ = false;
|
|
if (async_abort_)
|
|
break;
|
|
}
|
|
doAlsc();
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
async_finished_ = true;
|
|
}
|
|
sync_signal_.notify_one();
|
|
}
|
|
}
|
|
|
|
void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations,
|
|
double cal_table[XY])
|
|
{
|
|
if (calibrations.empty()) {
|
|
for (int i = 0; i < XY; i++)
|
|
cal_table[i] = 1.0;
|
|
RPI_LOG("Alsc: no calibrations found");
|
|
} else if (ct <= calibrations.front().ct) {
|
|
memcpy(cal_table, calibrations.front().table,
|
|
XY * sizeof(double));
|
|
RPI_LOG("Alsc: using calibration for "
|
|
<< calibrations.front().ct);
|
|
} else if (ct >= calibrations.back().ct) {
|
|
memcpy(cal_table, calibrations.back().table,
|
|
XY * sizeof(double));
|
|
RPI_LOG("Alsc: using calibration for "
|
|
<< calibrations.front().ct);
|
|
} else {
|
|
int idx = 0;
|
|
while (ct > calibrations[idx + 1].ct)
|
|
idx++;
|
|
double ct0 = calibrations[idx].ct,
|
|
ct1 = calibrations[idx + 1].ct;
|
|
RPI_LOG("Alsc: ct is " << ct << ", interpolating between "
|
|
<< ct0 << " and " << ct1);
|
|
for (int i = 0; i < XY; i++)
|
|
cal_table[i] =
|
|
(calibrations[idx].table[i] * (ct1 - ct) +
|
|
calibrations[idx + 1].table[i] * (ct - ct0)) /
|
|
(ct1 - ct0);
|
|
}
|
|
}
|
|
|
|
void resample_cal_table(double const cal_table_in[XY],
|
|
CameraMode const &camera_mode, double cal_table_out[XY])
|
|
{
|
|
// Precalculate and cache the x sampling locations and phases to save
|
|
// recomputing them on every row.
|
|
int x_lo[X], x_hi[X];
|
|
double xf[X];
|
|
double scale_x = camera_mode.sensor_width /
|
|
(camera_mode.width * camera_mode.scale_x);
|
|
double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width;
|
|
double x = .5 / scale_x + x_off * X - .5;
|
|
double x_inc = 1 / scale_x;
|
|
for (int i = 0; i < X; i++, x += x_inc) {
|
|
x_lo[i] = floor(x);
|
|
xf[i] = x - x_lo[i];
|
|
x_hi[i] = std::min(x_lo[i] + 1, X - 1);
|
|
x_lo[i] = std::max(x_lo[i], 0);
|
|
}
|
|
// Now march over the output table generating the new values.
|
|
double scale_y = camera_mode.sensor_height /
|
|
(camera_mode.height * camera_mode.scale_y);
|
|
double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height;
|
|
double y = .5 / scale_y + y_off * Y - .5;
|
|
double y_inc = 1 / scale_y;
|
|
for (int j = 0; j < Y; j++, y += y_inc) {
|
|
int y_lo = floor(y);
|
|
double yf = y - y_lo;
|
|
int y_hi = std::min(y_lo + 1, Y - 1);
|
|
y_lo = std::max(y_lo, 0);
|
|
double const *row_above = cal_table_in + X * y_lo;
|
|
double const *row_below = cal_table_in + X * y_hi;
|
|
for (int i = 0; i < X; i++) {
|
|
double above = row_above[x_lo[i]] * (1 - xf[i]) +
|
|
row_above[x_hi[i]] * xf[i];
|
|
double below = row_below[x_lo[i]] * (1 - xf[i]) +
|
|
row_below[x_hi[i]] * xf[i];
|
|
*(cal_table_out++) = above * (1 - yf) + below * yf;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate chrominance statistics (R/G and B/G) for each region.
|
|
static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
|
|
static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY],
|
|
double Cb[XY], uint32_t min_count, uint16_t min_G)
|
|
{
|
|
for (int i = 0; i < XY; i++) {
|
|
bcm2835_isp_stats_region &zone = awb_region[i];
|
|
if (zone.counted <= min_count ||
|
|
zone.g_sum / zone.counted <= min_G) {
|
|
Cr[i] = Cb[i] = INSUFFICIENT_DATA;
|
|
continue;
|
|
}
|
|
Cr[i] = zone.r_sum / (double)zone.g_sum;
|
|
Cb[i] = zone.b_sum / (double)zone.g_sum;
|
|
}
|
|
}
|
|
|
|
static void apply_cal_table(double const cal_table[XY], double C[XY])
|
|
{
|
|
for (int i = 0; i < XY; i++)
|
|
if (C[i] != INSUFFICIENT_DATA)
|
|
C[i] *= cal_table[i];
|
|
}
|
|
|
|
void compensate_lambdas_for_cal(double const cal_table[XY],
|
|
double const old_lambdas[XY],
|
|
double new_lambdas[XY])
|
|
{
|
|
double min_new_lambda = std::numeric_limits<double>::max();
|
|
for (int i = 0; i < XY; i++) {
|
|
new_lambdas[i] = old_lambdas[i] * cal_table[i];
|
|
min_new_lambda = std::min(min_new_lambda, new_lambdas[i]);
|
|
}
|
|
for (int i = 0; i < XY; i++)
|
|
new_lambdas[i] /= min_new_lambda;
|
|
}
|
|
|
|
static void print_cal_table(double const C[XY])
|
|
{
|
|
printf("table: [\n");
|
|
for (int j = 0; j < Y; j++) {
|
|
for (int i = 0; i < X; i++) {
|
|
printf("%5.3f", 1.0 / C[j * X + i]);
|
|
if (i != X - 1 || j != Y - 1)
|
|
printf(",");
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("]\n");
|
|
}
|
|
|
|
// Compute weight out of 1.0 which reflects how similar we wish to make the
|
|
// colours of these two regions.
|
|
static double compute_weight(double C_i, double C_j, double sigma)
|
|
{
|
|
if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA)
|
|
return 0;
|
|
double diff = (C_i - C_j) / sigma;
|
|
return exp(-diff * diff / 2);
|
|
}
|
|
|
|
// Compute all weights.
|
|
static void compute_W(double const C[XY], double sigma, double W[XY][4])
|
|
{
|
|
for (int i = 0; i < XY; i++) {
|
|
// Start with neighbour above and go clockwise.
|
|
W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0;
|
|
W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma)
|
|
: 0;
|
|
W[i][2] =
|
|
i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0;
|
|
W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0;
|
|
}
|
|
}
|
|
|
|
// Compute M, the large but sparse matrix such that M * lambdas = 0.
|
|
static void construct_M(double const C[XY], double const W[XY][4],
|
|
double M[XY][4])
|
|
{
|
|
double epsilon = 0.001;
|
|
for (int i = 0; i < XY; i++) {
|
|
// Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
|
|
// be zero so the equation is still set up correctly.
|
|
int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
|
|
!!(i % X); // total number of neighbours
|
|
// we'll divide the diagonal out straight away
|
|
double diagonal =
|
|
(epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) *
|
|
C[i];
|
|
M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) /
|
|
diagonal
|
|
: 0;
|
|
M[i][1] = i % X < X - 1
|
|
? (W[i][1] * C[i + 1] + epsilon / m * C[i]) /
|
|
diagonal
|
|
: 0;
|
|
M[i][2] = i < XY - X
|
|
? (W[i][2] * C[i + X] + epsilon / m * C[i]) /
|
|
diagonal
|
|
: 0;
|
|
M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) /
|
|
diagonal
|
|
: 0;
|
|
}
|
|
}
|
|
|
|
// In the compute_lambda_ functions, note that the matrix coefficients for the
|
|
// left/right neighbours are zero down the left/right edges, so we don't need
|
|
// need to test the i value to exclude them.
|
|
static double compute_lambda_bottom(int i, double const M[XY][4],
|
|
double lambda[XY])
|
|
{
|
|
return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
|
|
M[i][3] * lambda[i - 1];
|
|
}
|
|
static double compute_lambda_bottom_start(int i, double const M[XY][4],
|
|
double lambda[XY])
|
|
{
|
|
return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
|
|
}
|
|
static double compute_lambda_interior(int i, double const M[XY][4],
|
|
double lambda[XY])
|
|
{
|
|
return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
|
|
M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
|
|
}
|
|
static double compute_lambda_top(int i, double const M[XY][4],
|
|
double lambda[XY])
|
|
{
|
|
return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
|
|
M[i][3] * lambda[i - 1];
|
|
}
|
|
static double compute_lambda_top_end(int i, double const M[XY][4],
|
|
double lambda[XY])
|
|
{
|
|
return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
|
|
}
|
|
|
|
// Gauss-Seidel iteration with over-relaxation.
|
|
static double gauss_seidel2_SOR(double const M[XY][4], double omega,
|
|
double lambda[XY])
|
|
{
|
|
double old_lambda[XY];
|
|
for (int i = 0; i < XY; i++)
|
|
old_lambda[i] = lambda[i];
|
|
int i;
|
|
lambda[0] = compute_lambda_bottom_start(0, M, lambda);
|
|
for (i = 1; i < X; i++)
|
|
lambda[i] = compute_lambda_bottom(i, M, lambda);
|
|
for (; i < XY - X; i++)
|
|
lambda[i] = compute_lambda_interior(i, M, lambda);
|
|
for (; i < XY - 1; i++)
|
|
lambda[i] = compute_lambda_top(i, M, lambda);
|
|
lambda[i] = compute_lambda_top_end(i, M, lambda);
|
|
// Also solve the system from bottom to top, to help spread the updates
|
|
// better.
|
|
lambda[i] = compute_lambda_top_end(i, M, lambda);
|
|
for (i = XY - 2; i >= XY - X; i--)
|
|
lambda[i] = compute_lambda_top(i, M, lambda);
|
|
for (; i >= X; i--)
|
|
lambda[i] = compute_lambda_interior(i, M, lambda);
|
|
for (; i >= 1; i--)
|
|
lambda[i] = compute_lambda_bottom(i, M, lambda);
|
|
lambda[0] = compute_lambda_bottom_start(0, M, lambda);
|
|
double max_diff = 0;
|
|
for (int i = 0; i < XY; i++) {
|
|
lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
|
|
if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff))
|
|
max_diff = lambda[i] - old_lambda[i];
|
|
}
|
|
return max_diff;
|
|
}
|
|
|
|
// Normalise the values so that the smallest value is 1.
|
|
static void normalise(double *ptr, size_t n)
|
|
{
|
|
double minval = ptr[0];
|
|
for (size_t i = 1; i < n; i++)
|
|
minval = std::min(minval, ptr[i]);
|
|
for (size_t i = 0; i < n; i++)
|
|
ptr[i] /= minval;
|
|
}
|
|
|
|
static void run_matrix_iterations(double const C[XY], double lambda[XY],
|
|
double const W[XY][4], double omega,
|
|
int n_iter, double threshold)
|
|
{
|
|
double M[XY][4];
|
|
construct_M(C, W, M);
|
|
double last_max_diff = std::numeric_limits<double>::max();
|
|
for (int i = 0; i < n_iter; i++) {
|
|
double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda));
|
|
if (max_diff < threshold) {
|
|
RPI_LOG("Stop after " << i + 1 << " iterations");
|
|
break;
|
|
}
|
|
// this happens very occasionally (so make a note), though
|
|
// doesn't seem to matter
|
|
if (max_diff > last_max_diff)
|
|
RPI_LOG("Iteration " << i << ": max_diff gone up "
|
|
<< last_max_diff << " to "
|
|
<< max_diff);
|
|
last_max_diff = max_diff;
|
|
}
|
|
// We're going to normalise the lambdas so the smallest is 1. Not sure
|
|
// this is really necessary as they get renormalised later, but I
|
|
// suppose it does stop these quantities from wandering off...
|
|
normalise(lambda, XY);
|
|
}
|
|
|
|
static void add_luminance_rb(double result[XY], double const lambda[XY],
|
|
double const luminance_lut[XY],
|
|
double luminance_strength)
|
|
{
|
|
for (int i = 0; i < XY; i++)
|
|
result[i] = lambda[i] *
|
|
((luminance_lut[i] - 1) * luminance_strength + 1);
|
|
}
|
|
|
|
static void add_luminance_g(double result[XY], double lambda,
|
|
double const luminance_lut[XY],
|
|
double luminance_strength)
|
|
{
|
|
for (int i = 0; i < XY; i++)
|
|
result[i] = lambda *
|
|
((luminance_lut[i] - 1) * luminance_strength + 1);
|
|
}
|
|
|
|
void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY],
|
|
double lambda_g, double const lambda_b[XY],
|
|
double const luminance_lut[XY],
|
|
double luminance_strength)
|
|
{
|
|
add_luminance_rb((double *)results[0], lambda_r, luminance_lut,
|
|
luminance_strength);
|
|
add_luminance_g((double *)results[1], lambda_g, luminance_lut,
|
|
luminance_strength);
|
|
add_luminance_rb((double *)results[2], lambda_b, luminance_lut,
|
|
luminance_strength);
|
|
normalise((double *)results, 3 * XY);
|
|
}
|
|
|
|
void Alsc::doAlsc()
|
|
{
|
|
double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY],
|
|
cal_table_b[XY], cal_table_tmp[XY];
|
|
// Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
|
|
// usable.
|
|
calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G);
|
|
// Fetch the new calibrations (if any) for this CT. Resample them in
|
|
// case the camera mode is not full-frame.
|
|
get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
|
|
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
|
|
get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
|
|
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
|
|
// You could print out the cal tables for this image here, if you're
|
|
// tuning the algorithm...
|
|
(void)print_cal_table;
|
|
// Apply any calibration to the statistics, so the adaptive algorithm
|
|
// makes only the extra adjustments.
|
|
apply_cal_table(cal_table_r, Cr);
|
|
apply_cal_table(cal_table_b, Cb);
|
|
// Compute weights between zones.
|
|
compute_W(Cr, config_.sigma_Cr, Wr);
|
|
compute_W(Cb, config_.sigma_Cb, Wb);
|
|
// Run Gauss-Seidel iterations over the resulting matrix, for R and B.
|
|
run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
|
|
config_.threshold);
|
|
run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
|
|
config_.threshold);
|
|
// Fold the calibrated gains into our final lambda values. (Note that on
|
|
// the next run, we re-start with the lambda values that don't have the
|
|
// calibration gains included.)
|
|
compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_);
|
|
compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_);
|
|
// Fold in the luminance table at the appropriate strength.
|
|
add_luminance_to_tables(async_results_, async_lambda_r_, 1.0,
|
|
async_lambda_b_, luminance_table_,
|
|
config_.luminance_strength);
|
|
}
|
|
|
|
// Register algorithm with the system.
|
|
static Algorithm *Create(Controller *controller)
|
|
{
|
|
return (Algorithm *)new Alsc(controller);
|
|
}
|
|
static RegisterAlgorithm reg(NAME, &Create);
|