mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-16 08:55:06 +03:00
The terms "shutter" and "shutter speed" are used through libcamera to mean "exposure time". This is confusing, both due to "speed" being used as "time" while it should be the inverse (i.e. a maximum speed should correspond to the minimum time), and due to "shutter speed" and "exposure time" being used in different places with the same meaning. To improve clarity of the code base and the documentation, use "exposure time" consistently to replace "shutter speed". This rename highlighted another vocabulary issue in libcamera. The ExposureModeHelper::splitExposure() function used to document that it splits "exposure time into shutter time and gain". It has been reworded to "split exposure into exposure time and gain". That is not entirely satisfactory, as "exposure" has a defined meaning in photography (see https://en.wikipedia.org/wiki/Exposure_(photography)) that is not expressed as a duration. This issue if left to be addressed separately. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Naushir Patuck <naush@raspberrypi.com> Acked-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
1031 lines
34 KiB
C++
1031 lines
34 KiB
C++
/* SPDX-License-Identifier: BSD-2-Clause */
|
|
/*
|
|
* Copyright (C) 2023, Raspberry Pi Ltd
|
|
*
|
|
* AGC/AEC control algorithm
|
|
*/
|
|
|
|
#include "agc_channel.h"
|
|
|
|
#include <algorithm>
|
|
#include <tuple>
|
|
|
|
#include <libcamera/base/log.h>
|
|
|
|
#include "libipa/colours.h"
|
|
|
|
#include "../awb_status.h"
|
|
#include "../device_status.h"
|
|
#include "../histogram.h"
|
|
#include "../lux_status.h"
|
|
#include "../metadata.h"
|
|
|
|
using namespace RPiController;
|
|
using namespace libcamera;
|
|
using libcamera::utils::Duration;
|
|
using namespace std::literals::chrono_literals;
|
|
|
|
LOG_DECLARE_CATEGORY(RPiAgc)
|
|
|
|
int AgcMeteringMode::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
const YamlObject &yamlWeights = params["weights"];
|
|
|
|
for (const auto &p : yamlWeights.asList()) {
|
|
auto value = p.get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
weights.push_back(*value);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static std::tuple<int, std::string>
|
|
readMeteringModes(std::map<std::string, AgcMeteringMode> &metering_modes,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string first;
|
|
int ret;
|
|
|
|
for (const auto &[key, value] : params.asDict()) {
|
|
AgcMeteringMode meteringMode;
|
|
ret = meteringMode.read(value);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
metering_modes[key] = std::move(meteringMode);
|
|
if (first.empty())
|
|
first = key;
|
|
}
|
|
|
|
return { 0, first };
|
|
}
|
|
|
|
int AgcExposureMode::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
auto value = params["shutter"].getList<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
std::transform(value->begin(), value->end(), std::back_inserter(exposureTime),
|
|
[](double v) { return v * 1us; });
|
|
|
|
value = params["gain"].getList<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
gain = std::move(*value);
|
|
|
|
if (exposureTime.size() < 2 || gain.size() < 2) {
|
|
LOG(RPiAgc, Error)
|
|
<< "AgcExposureMode: must have at least two entries in exposure profile";
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (exposureTime.size() != gain.size()) {
|
|
LOG(RPiAgc, Error)
|
|
<< "AgcExposureMode: expect same number of exposure and gain entries in exposure profile";
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static std::tuple<int, std::string>
|
|
readExposureModes(std::map<std::string, AgcExposureMode> &exposureModes,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string first;
|
|
int ret;
|
|
|
|
for (const auto &[key, value] : params.asDict()) {
|
|
AgcExposureMode exposureMode;
|
|
ret = exposureMode.read(value);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
exposureModes[key] = std::move(exposureMode);
|
|
if (first.empty())
|
|
first = key;
|
|
}
|
|
|
|
return { 0, first };
|
|
}
|
|
|
|
int AgcConstraint::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string boundString = params["bound"].get<std::string>("");
|
|
transform(boundString.begin(), boundString.end(),
|
|
boundString.begin(), ::toupper);
|
|
if (boundString != "UPPER" && boundString != "LOWER") {
|
|
LOG(RPiAgc, Error) << "AGC constraint type should be UPPER or LOWER";
|
|
return -EINVAL;
|
|
}
|
|
bound = boundString == "UPPER" ? Bound::UPPER : Bound::LOWER;
|
|
|
|
auto value = params["q_lo"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
qLo = *value;
|
|
|
|
value = params["q_hi"].get<double>();
|
|
if (!value)
|
|
return -EINVAL;
|
|
qHi = *value;
|
|
|
|
yTarget = params["y_target"].get<ipa::Pwl>(ipa::Pwl{});
|
|
return yTarget.empty() ? -EINVAL : 0;
|
|
}
|
|
|
|
static std::tuple<int, AgcConstraintMode>
|
|
readConstraintMode(const libcamera::YamlObject ¶ms)
|
|
{
|
|
AgcConstraintMode mode;
|
|
int ret;
|
|
|
|
for (const auto &p : params.asList()) {
|
|
AgcConstraint constraint;
|
|
ret = constraint.read(p);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
mode.push_back(std::move(constraint));
|
|
}
|
|
|
|
return { 0, mode };
|
|
}
|
|
|
|
static std::tuple<int, std::string>
|
|
readConstraintModes(std::map<std::string, AgcConstraintMode> &constraintModes,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
std::string first;
|
|
int ret;
|
|
|
|
for (const auto &[key, value] : params.asDict()) {
|
|
std::tie(ret, constraintModes[key]) = readConstraintMode(value);
|
|
if (ret)
|
|
return { ret, {} };
|
|
|
|
if (first.empty())
|
|
first = key;
|
|
}
|
|
|
|
return { 0, first };
|
|
}
|
|
|
|
int AgcChannelConstraint::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
auto channelValue = params["channel"].get<unsigned int>();
|
|
if (!channelValue) {
|
|
LOG(RPiAgc, Error) << "AGC channel constraint must have a channel";
|
|
return -EINVAL;
|
|
}
|
|
channel = *channelValue;
|
|
|
|
std::string boundString = params["bound"].get<std::string>("");
|
|
transform(boundString.begin(), boundString.end(),
|
|
boundString.begin(), ::toupper);
|
|
if (boundString != "UPPER" && boundString != "LOWER") {
|
|
LOG(RPiAgc, Error) << "AGC channel constraint type should be UPPER or LOWER";
|
|
return -EINVAL;
|
|
}
|
|
bound = boundString == "UPPER" ? Bound::UPPER : Bound::LOWER;
|
|
|
|
auto factorValue = params["factor"].get<double>();
|
|
if (!factorValue) {
|
|
LOG(RPiAgc, Error) << "AGC channel constraint must have a factor";
|
|
return -EINVAL;
|
|
}
|
|
factor = *factorValue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int readChannelConstraints(std::vector<AgcChannelConstraint> &channelConstraints,
|
|
const libcamera::YamlObject ¶ms)
|
|
{
|
|
for (const auto &p : params.asList()) {
|
|
AgcChannelConstraint constraint;
|
|
int ret = constraint.read(p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
channelConstraints.push_back(constraint);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int AgcConfig::read(const libcamera::YamlObject ¶ms)
|
|
{
|
|
LOG(RPiAgc, Debug) << "AgcConfig";
|
|
int ret;
|
|
|
|
std::tie(ret, defaultMeteringMode) =
|
|
readMeteringModes(meteringModes, params["metering_modes"]);
|
|
if (ret)
|
|
return ret;
|
|
std::tie(ret, defaultExposureMode) =
|
|
readExposureModes(exposureModes, params["exposure_modes"]);
|
|
if (ret)
|
|
return ret;
|
|
std::tie(ret, defaultConstraintMode) =
|
|
readConstraintModes(constraintModes, params["constraint_modes"]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (params.contains("channel_constraints")) {
|
|
ret = readChannelConstraints(channelConstraints, params["channel_constraints"]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
yTarget = params["y_target"].get<ipa::Pwl>(ipa::Pwl{});
|
|
if (yTarget.empty())
|
|
return -EINVAL;
|
|
|
|
speed = params["speed"].get<double>(0.2);
|
|
startupFrames = params["startup_frames"].get<uint16_t>(10);
|
|
convergenceFrames = params["convergence_frames"].get<unsigned int>(6);
|
|
fastReduceThreshold = params["fast_reduce_threshold"].get<double>(0.4);
|
|
baseEv = params["base_ev"].get<double>(1.0);
|
|
|
|
/* Start with quite a low value as ramping up is easier than ramping down. */
|
|
defaultExposureTime = params["default_exposure_time"].get<double>(1000) * 1us;
|
|
defaultAnalogueGain = params["default_analogue_gain"].get<double>(1.0);
|
|
|
|
stableRegion = params["stable_region"].get<double>(0.02);
|
|
|
|
desaturate = params["desaturate"].get<int>(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
AgcChannel::ExposureValues::ExposureValues()
|
|
: exposureTime(0s), analogueGain(0),
|
|
totalExposure(0s), totalExposureNoDG(0s)
|
|
{
|
|
}
|
|
|
|
AgcChannel::AgcChannel()
|
|
: meteringMode_(nullptr), exposureMode_(nullptr), constraintMode_(nullptr),
|
|
frameCount_(0), lockCount_(0),
|
|
lastTargetExposure_(0s), ev_(1.0), flickerPeriod_(0s),
|
|
maxExposureTime_(0s), fixedExposureTime_(0s), fixedAnalogueGain_(0.0)
|
|
{
|
|
/* Set AWB default values in case early frames have no updates in metadata. */
|
|
awb_.gainR = 1.0;
|
|
awb_.gainG = 1.0;
|
|
awb_.gainB = 1.0;
|
|
|
|
/*
|
|
* Setting status_.totalExposureValue_ to zero initially tells us
|
|
* it's not been calculated yet (i.e. Process hasn't yet run).
|
|
*/
|
|
status_ = {};
|
|
status_.ev = ev_;
|
|
}
|
|
|
|
int AgcChannel::read(const libcamera::YamlObject ¶ms,
|
|
const Controller::HardwareConfig &hardwareConfig)
|
|
{
|
|
int ret = config_.read(params);
|
|
if (ret)
|
|
return ret;
|
|
|
|
const Size &size = hardwareConfig.agcZoneWeights;
|
|
for (auto const &modes : config_.meteringModes) {
|
|
if (modes.second.weights.size() != size.width * size.height) {
|
|
LOG(RPiAgc, Error) << "AgcMeteringMode: Incorrect number of weights";
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the config's defaults (which are the first ones it read) as our
|
|
* current modes, until someone changes them. (they're all known to
|
|
* exist at this point)
|
|
*/
|
|
meteringModeName_ = config_.defaultMeteringMode;
|
|
meteringMode_ = &config_.meteringModes[meteringModeName_];
|
|
exposureModeName_ = config_.defaultExposureMode;
|
|
exposureMode_ = &config_.exposureModes[exposureModeName_];
|
|
constraintModeName_ = config_.defaultConstraintMode;
|
|
constraintMode_ = &config_.constraintModes[constraintModeName_];
|
|
/* Set up the "last exposure time/gain" values, in case AGC starts "disabled". */
|
|
status_.exposureTime = config_.defaultExposureTime;
|
|
status_.analogueGain = config_.defaultAnalogueGain;
|
|
return 0;
|
|
}
|
|
|
|
void AgcChannel::disableAuto()
|
|
{
|
|
fixedExposureTime_ = status_.exposureTime;
|
|
fixedAnalogueGain_ = status_.analogueGain;
|
|
}
|
|
|
|
void AgcChannel::enableAuto()
|
|
{
|
|
fixedExposureTime_ = 0s;
|
|
fixedAnalogueGain_ = 0;
|
|
}
|
|
|
|
unsigned int AgcChannel::getConvergenceFrames() const
|
|
{
|
|
/*
|
|
* If exposure time and gain have been explicitly set, there is no
|
|
* convergence to happen, so no need to drop any frames - return zero.
|
|
*/
|
|
if (fixedExposureTime_ && fixedAnalogueGain_)
|
|
return 0;
|
|
else
|
|
return config_.convergenceFrames;
|
|
}
|
|
|
|
std::vector<double> const &AgcChannel::getWeights() const
|
|
{
|
|
/*
|
|
* In case someone calls setMeteringMode and then this before the
|
|
* algorithm has run and updated the meteringMode_ pointer.
|
|
*/
|
|
auto it = config_.meteringModes.find(meteringModeName_);
|
|
if (it == config_.meteringModes.end())
|
|
return meteringMode_->weights;
|
|
return it->second.weights;
|
|
}
|
|
|
|
void AgcChannel::setEv(double ev)
|
|
{
|
|
ev_ = ev;
|
|
}
|
|
|
|
void AgcChannel::setFlickerPeriod(Duration flickerPeriod)
|
|
{
|
|
flickerPeriod_ = flickerPeriod;
|
|
}
|
|
|
|
void AgcChannel::setMaxExposureTime(Duration maxExposureTime)
|
|
{
|
|
maxExposureTime_ = maxExposureTime;
|
|
}
|
|
|
|
void AgcChannel::setFixedExposureTime(Duration fixedExposureTime)
|
|
{
|
|
fixedExposureTime_ = fixedExposureTime;
|
|
/* Set this in case someone calls disableAuto() straight after. */
|
|
status_.exposureTime = limitExposureTime(fixedExposureTime_);
|
|
}
|
|
|
|
void AgcChannel::setFixedAnalogueGain(double fixedAnalogueGain)
|
|
{
|
|
fixedAnalogueGain_ = fixedAnalogueGain;
|
|
/* Set this in case someone calls disableAuto() straight after. */
|
|
status_.analogueGain = limitGain(fixedAnalogueGain);
|
|
}
|
|
|
|
void AgcChannel::setMeteringMode(std::string const &meteringModeName)
|
|
{
|
|
meteringModeName_ = meteringModeName;
|
|
}
|
|
|
|
void AgcChannel::setExposureMode(std::string const &exposureModeName)
|
|
{
|
|
exposureModeName_ = exposureModeName;
|
|
}
|
|
|
|
void AgcChannel::setConstraintMode(std::string const &constraintModeName)
|
|
{
|
|
constraintModeName_ = constraintModeName;
|
|
}
|
|
|
|
void AgcChannel::switchMode(CameraMode const &cameraMode,
|
|
Metadata *metadata)
|
|
{
|
|
/* AGC expects the mode sensitivity always to be non-zero. */
|
|
ASSERT(cameraMode.sensitivity);
|
|
|
|
housekeepConfig();
|
|
|
|
/*
|
|
* Store the mode in the local state. We must cache the sensitivity of
|
|
* of the previous mode for the calculations below.
|
|
*/
|
|
double lastSensitivity = mode_.sensitivity;
|
|
mode_ = cameraMode;
|
|
|
|
Duration fixedExposureTime = limitExposureTime(fixedExposureTime_);
|
|
if (fixedExposureTime && fixedAnalogueGain_) {
|
|
/* We're going to reset the algorithm here with these fixed values. */
|
|
fetchAwbStatus(metadata);
|
|
double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
|
|
ASSERT(minColourGain != 0.0);
|
|
|
|
/* This is the equivalent of computeTargetExposure and applyDigitalGain. */
|
|
target_.totalExposureNoDG = fixedExposureTime_ * fixedAnalogueGain_;
|
|
target_.totalExposure = target_.totalExposureNoDG / minColourGain;
|
|
|
|
/* Equivalent of filterExposure. This resets any "history". */
|
|
filtered_ = target_;
|
|
|
|
/* Equivalent of divideUpExposure. */
|
|
filtered_.exposureTime = fixedExposureTime;
|
|
filtered_.analogueGain = fixedAnalogueGain_;
|
|
} else if (status_.totalExposureValue) {
|
|
/*
|
|
* On a mode switch, various things could happen:
|
|
* - the exposure profile might change
|
|
* - a fixed exposure or gain might be set
|
|
* - the new mode's sensitivity might be different
|
|
* We cope with the last of these by scaling the target values. After
|
|
* that we just need to re-divide the exposure/gain according to the
|
|
* current exposure profile, which takes care of everything else.
|
|
*/
|
|
|
|
double ratio = lastSensitivity / cameraMode.sensitivity;
|
|
target_.totalExposureNoDG *= ratio;
|
|
target_.totalExposure *= ratio;
|
|
filtered_.totalExposureNoDG *= ratio;
|
|
filtered_.totalExposure *= ratio;
|
|
|
|
divideUpExposure();
|
|
} else {
|
|
/*
|
|
* We come through here on startup, when at least one of the
|
|
* exposure time or gain has not been fixed. We must still
|
|
* write those values out so that they will be applied
|
|
* immediately. We supply some arbitrary defaults for any that
|
|
* weren't set.
|
|
*/
|
|
|
|
/* Equivalent of divideUpExposure. */
|
|
filtered_.exposureTime = fixedExposureTime ? fixedExposureTime : config_.defaultExposureTime;
|
|
filtered_.analogueGain = fixedAnalogueGain_ ? fixedAnalogueGain_ : config_.defaultAnalogueGain;
|
|
}
|
|
|
|
writeAndFinish(metadata, false);
|
|
}
|
|
|
|
void AgcChannel::prepare(Metadata *imageMetadata)
|
|
{
|
|
Duration totalExposureValue = status_.totalExposureValue;
|
|
AgcStatus delayedStatus;
|
|
AgcPrepareStatus prepareStatus;
|
|
|
|
/* Fetch the AWB status now because AWB also sets it in the prepare method. */
|
|
fetchAwbStatus(imageMetadata);
|
|
|
|
if (!imageMetadata->get("agc.delayed_status", delayedStatus))
|
|
totalExposureValue = delayedStatus.totalExposureValue;
|
|
|
|
prepareStatus.digitalGain = 1.0;
|
|
prepareStatus.locked = false;
|
|
|
|
if (status_.totalExposureValue) {
|
|
/* Process has run, so we have meaningful values. */
|
|
DeviceStatus deviceStatus;
|
|
if (imageMetadata->get("device.status", deviceStatus) == 0) {
|
|
Duration actualExposure = deviceStatus.exposureTime *
|
|
deviceStatus.analogueGain;
|
|
if (actualExposure) {
|
|
double digitalGain = totalExposureValue / actualExposure;
|
|
LOG(RPiAgc, Debug) << "Want total exposure " << totalExposureValue;
|
|
/*
|
|
* Never ask for a gain < 1.0, and also impose
|
|
* some upper limit. Make it customisable?
|
|
*/
|
|
prepareStatus.digitalGain = std::max(1.0, std::min(digitalGain, 4.0));
|
|
LOG(RPiAgc, Debug) << "Actual exposure " << actualExposure;
|
|
LOG(RPiAgc, Debug) << "Use digitalGain " << prepareStatus.digitalGain;
|
|
LOG(RPiAgc, Debug) << "Effective exposure "
|
|
<< actualExposure * prepareStatus.digitalGain;
|
|
/* Decide whether AEC/AGC has converged. */
|
|
prepareStatus.locked = updateLockStatus(deviceStatus);
|
|
}
|
|
} else
|
|
LOG(RPiAgc, Warning) << "AgcChannel: no device metadata";
|
|
imageMetadata->set("agc.prepare_status", prepareStatus);
|
|
}
|
|
}
|
|
|
|
void AgcChannel::process(StatisticsPtr &stats, DeviceStatus const &deviceStatus,
|
|
Metadata *imageMetadata,
|
|
const AgcChannelTotalExposures &channelTotalExposures)
|
|
{
|
|
frameCount_++;
|
|
/*
|
|
* First a little bit of housekeeping, fetching up-to-date settings and
|
|
* configuration, that kind of thing.
|
|
*/
|
|
housekeepConfig();
|
|
/* Get the current exposure values for the frame that's just arrived. */
|
|
fetchCurrentExposure(deviceStatus);
|
|
/* Compute the total gain we require relative to the current exposure. */
|
|
double gain, targetY;
|
|
computeGain(stats, imageMetadata, gain, targetY);
|
|
/* Now compute the target (final) exposure which we think we want. */
|
|
computeTargetExposure(gain);
|
|
/* The results have to be filtered so as not to change too rapidly. */
|
|
filterExposure();
|
|
/*
|
|
* We may be asked to limit the exposure using other channels. If another channel
|
|
* determines our upper bound we may want to know this later.
|
|
*/
|
|
bool channelBound = applyChannelConstraints(channelTotalExposures);
|
|
/*
|
|
* Some of the exposure has to be applied as digital gain, so work out
|
|
* what that is. It also tells us whether it's trying to desaturate the image
|
|
* more quickly, which can only happen when another channel is not limiting us.
|
|
*/
|
|
bool desaturate = applyDigitalGain(gain, targetY, channelBound);
|
|
/*
|
|
* The last thing is to divide up the exposure value into a exposure time
|
|
* and analogue gain, according to the current exposure mode.
|
|
*/
|
|
divideUpExposure();
|
|
/* Finally advertise what we've done. */
|
|
writeAndFinish(imageMetadata, desaturate);
|
|
}
|
|
|
|
bool AgcChannel::updateLockStatus(DeviceStatus const &deviceStatus)
|
|
{
|
|
const double errorFactor = 0.10; /* make these customisable? */
|
|
const int maxLockCount = 5;
|
|
/* Reset "lock count" when we exceed this multiple of errorFactor */
|
|
const double resetMargin = 1.5;
|
|
|
|
/* Add 200us to the exposure time error to allow for line quantisation. */
|
|
Duration exposureError = lastDeviceStatus_.exposureTime * errorFactor + 200us;
|
|
double gainError = lastDeviceStatus_.analogueGain * errorFactor;
|
|
Duration targetError = lastTargetExposure_ * errorFactor;
|
|
|
|
/*
|
|
* Note that we don't know the exposure/gain limits of the sensor, so
|
|
* the values we keep requesting may be unachievable. For this reason
|
|
* we only insist that we're close to values in the past few frames.
|
|
*/
|
|
if (deviceStatus.exposureTime > lastDeviceStatus_.exposureTime - exposureError &&
|
|
deviceStatus.exposureTime < lastDeviceStatus_.exposureTime + exposureError &&
|
|
deviceStatus.analogueGain > lastDeviceStatus_.analogueGain - gainError &&
|
|
deviceStatus.analogueGain < lastDeviceStatus_.analogueGain + gainError &&
|
|
status_.targetExposureValue > lastTargetExposure_ - targetError &&
|
|
status_.targetExposureValue < lastTargetExposure_ + targetError)
|
|
lockCount_ = std::min(lockCount_ + 1, maxLockCount);
|
|
else if (deviceStatus.exposureTime < lastDeviceStatus_.exposureTime - resetMargin * exposureError ||
|
|
deviceStatus.exposureTime > lastDeviceStatus_.exposureTime + resetMargin * exposureError ||
|
|
deviceStatus.analogueGain < lastDeviceStatus_.analogueGain - resetMargin * gainError ||
|
|
deviceStatus.analogueGain > lastDeviceStatus_.analogueGain + resetMargin * gainError ||
|
|
status_.targetExposureValue < lastTargetExposure_ - resetMargin * targetError ||
|
|
status_.targetExposureValue > lastTargetExposure_ + resetMargin * targetError)
|
|
lockCount_ = 0;
|
|
|
|
lastDeviceStatus_ = deviceStatus;
|
|
lastTargetExposure_ = status_.targetExposureValue;
|
|
|
|
LOG(RPiAgc, Debug) << "Lock count updated to " << lockCount_;
|
|
return lockCount_ == maxLockCount;
|
|
}
|
|
|
|
void AgcChannel::housekeepConfig()
|
|
{
|
|
/* First fetch all the up-to-date settings, so no one else has to do it. */
|
|
status_.ev = ev_;
|
|
status_.fixedExposureTime = limitExposureTime(fixedExposureTime_);
|
|
status_.fixedAnalogueGain = fixedAnalogueGain_;
|
|
status_.flickerPeriod = flickerPeriod_;
|
|
LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixedExposureTime "
|
|
<< status_.fixedExposureTime << " fixedAnalogueGain "
|
|
<< status_.fixedAnalogueGain;
|
|
/*
|
|
* Make sure the "mode" pointers point to the up-to-date things, if
|
|
* they've changed.
|
|
*/
|
|
if (meteringModeName_ != status_.meteringMode) {
|
|
auto it = config_.meteringModes.find(meteringModeName_);
|
|
if (it == config_.meteringModes.end()) {
|
|
LOG(RPiAgc, Warning) << "No metering mode " << meteringModeName_;
|
|
meteringModeName_ = status_.meteringMode;
|
|
} else {
|
|
meteringMode_ = &it->second;
|
|
status_.meteringMode = meteringModeName_;
|
|
}
|
|
}
|
|
if (exposureModeName_ != status_.exposureMode) {
|
|
auto it = config_.exposureModes.find(exposureModeName_);
|
|
if (it == config_.exposureModes.end()) {
|
|
LOG(RPiAgc, Warning) << "No exposure profile " << exposureModeName_;
|
|
exposureModeName_ = status_.exposureMode;
|
|
} else {
|
|
exposureMode_ = &it->second;
|
|
status_.exposureMode = exposureModeName_;
|
|
}
|
|
}
|
|
if (constraintModeName_ != status_.constraintMode) {
|
|
auto it = config_.constraintModes.find(constraintModeName_);
|
|
if (it == config_.constraintModes.end()) {
|
|
LOG(RPiAgc, Warning) << "No constraint list " << constraintModeName_;
|
|
constraintModeName_ = status_.constraintMode;
|
|
} else {
|
|
constraintMode_ = &it->second;
|
|
status_.constraintMode = constraintModeName_;
|
|
}
|
|
}
|
|
LOG(RPiAgc, Debug) << "exposureMode "
|
|
<< exposureModeName_ << " constraintMode "
|
|
<< constraintModeName_ << " meteringMode "
|
|
<< meteringModeName_;
|
|
}
|
|
|
|
void AgcChannel::fetchCurrentExposure(DeviceStatus const &deviceStatus)
|
|
{
|
|
current_.exposureTime = deviceStatus.exposureTime;
|
|
current_.analogueGain = deviceStatus.analogueGain;
|
|
current_.totalExposure = 0s; /* this value is unused */
|
|
current_.totalExposureNoDG = current_.exposureTime * current_.analogueGain;
|
|
}
|
|
|
|
void AgcChannel::fetchAwbStatus(Metadata *imageMetadata)
|
|
{
|
|
if (imageMetadata->get("awb.status", awb_) != 0)
|
|
LOG(RPiAgc, Debug) << "No AWB status found";
|
|
}
|
|
|
|
static double computeInitialY(StatisticsPtr &stats, AwbStatus const &awb,
|
|
std::vector<double> &weights, double gain)
|
|
{
|
|
constexpr uint64_t maxVal = 1 << Statistics::NormalisationFactorPow2;
|
|
|
|
/*
|
|
* If we have no AGC region stats, but do have a a Y histogram, use that
|
|
* directly to caluclate the mean Y value of the image.
|
|
*/
|
|
if (!stats->agcRegions.numRegions() && stats->yHist.bins()) {
|
|
/*
|
|
* When the gain is applied to the histogram, anything below minBin
|
|
* will scale up directly with the gain, but anything above that
|
|
* will saturate into the top bin.
|
|
*/
|
|
auto &hist = stats->yHist;
|
|
double minBin = std::min(1.0, 1.0 / gain) * hist.bins();
|
|
double binMean = hist.interBinMean(0.0, minBin);
|
|
double numUnsaturated = hist.cumulativeFreq(minBin);
|
|
/* This term is from all the pixels that won't saturate. */
|
|
double ySum = binMean * gain * numUnsaturated;
|
|
/* And add the ones that will saturate. */
|
|
ySum += (hist.total() - numUnsaturated) * hist.bins();
|
|
return ySum / hist.total() / hist.bins();
|
|
}
|
|
|
|
ASSERT(weights.size() == stats->agcRegions.numRegions());
|
|
|
|
/*
|
|
* Note that the weights are applied by the IPA to the statistics directly,
|
|
* before they are given to us here.
|
|
*/
|
|
double rSum = 0, gSum = 0, bSum = 0, pixelSum = 0;
|
|
for (unsigned int i = 0; i < stats->agcRegions.numRegions(); i++) {
|
|
auto ®ion = stats->agcRegions.get(i);
|
|
rSum += std::min<double>(region.val.rSum * gain, (maxVal - 1) * region.counted);
|
|
gSum += std::min<double>(region.val.gSum * gain, (maxVal - 1) * region.counted);
|
|
bSum += std::min<double>(region.val.bSum * gain, (maxVal - 1) * region.counted);
|
|
pixelSum += region.counted;
|
|
}
|
|
if (pixelSum == 0.0) {
|
|
LOG(RPiAgc, Warning) << "computeInitialY: pixelSum is zero";
|
|
return 0;
|
|
}
|
|
|
|
double ySum;
|
|
/* Factor in the AWB correction if needed. */
|
|
if (stats->agcStatsPos == Statistics::AgcStatsPos::PreWb) {
|
|
ySum = ipa::rec601LuminanceFromRGB(rSum * awb.gainR,
|
|
gSum * awb.gainG,
|
|
bSum * awb.gainB);
|
|
} else
|
|
ySum = ipa::rec601LuminanceFromRGB(rSum, gSum, bSum);
|
|
|
|
return ySum / pixelSum / (1 << 16);
|
|
}
|
|
|
|
/*
|
|
* We handle extra gain through EV by adjusting our Y targets. However, you
|
|
* simply can't monitor histograms once they get very close to (or beyond!)
|
|
* saturation, so we clamp the Y targets to this value. It does mean that EV
|
|
* increases don't necessarily do quite what you might expect in certain
|
|
* (contrived) cases.
|
|
*/
|
|
|
|
static constexpr double EvGainYTargetLimit = 0.9;
|
|
|
|
static double constraintComputeGain(AgcConstraint &c, const Histogram &h, double lux,
|
|
double evGain, double &targetY)
|
|
{
|
|
targetY = c.yTarget.eval(c.yTarget.domain().clamp(lux));
|
|
targetY = std::min(EvGainYTargetLimit, targetY * evGain);
|
|
double iqm = h.interQuantileMean(c.qLo, c.qHi);
|
|
return (targetY * h.bins()) / iqm;
|
|
}
|
|
|
|
void AgcChannel::computeGain(StatisticsPtr &statistics, Metadata *imageMetadata,
|
|
double &gain, double &targetY)
|
|
{
|
|
struct LuxStatus lux = {};
|
|
lux.lux = 400; /* default lux level to 400 in case no metadata found */
|
|
if (imageMetadata->get("lux.status", lux) != 0)
|
|
LOG(RPiAgc, Warning) << "No lux level found";
|
|
const Histogram &h = statistics->yHist;
|
|
double evGain = status_.ev * config_.baseEv;
|
|
/*
|
|
* The initial gain and target_Y come from some of the regions. After
|
|
* that we consider the histogram constraints.
|
|
*/
|
|
targetY = config_.yTarget.eval(config_.yTarget.domain().clamp(lux.lux));
|
|
targetY = std::min(EvGainYTargetLimit, targetY * evGain);
|
|
|
|
/*
|
|
* Do this calculation a few times as brightness increase can be
|
|
* non-linear when there are saturated regions.
|
|
*/
|
|
gain = 1.0;
|
|
for (int i = 0; i < 8; i++) {
|
|
double initialY = computeInitialY(statistics, awb_, meteringMode_->weights, gain);
|
|
double extraGain = std::min(10.0, targetY / (initialY + .001));
|
|
gain *= extraGain;
|
|
LOG(RPiAgc, Debug) << "Initial Y " << initialY << " target " << targetY
|
|
<< " gives gain " << gain;
|
|
if (extraGain < 1.01) /* close enough */
|
|
break;
|
|
}
|
|
|
|
for (auto &c : *constraintMode_) {
|
|
double newTargetY;
|
|
double newGain = constraintComputeGain(c, h, lux.lux, evGain, newTargetY);
|
|
LOG(RPiAgc, Debug) << "Constraint has target_Y "
|
|
<< newTargetY << " giving gain " << newGain;
|
|
if (c.bound == AgcConstraint::Bound::LOWER && newGain > gain) {
|
|
LOG(RPiAgc, Debug) << "Lower bound constraint adopted";
|
|
gain = newGain;
|
|
targetY = newTargetY;
|
|
} else if (c.bound == AgcConstraint::Bound::UPPER && newGain < gain) {
|
|
LOG(RPiAgc, Debug) << "Upper bound constraint adopted";
|
|
gain = newGain;
|
|
targetY = newTargetY;
|
|
}
|
|
}
|
|
LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << targetY << " ev "
|
|
<< status_.ev << " base_ev " << config_.baseEv
|
|
<< ")";
|
|
}
|
|
|
|
void AgcChannel::computeTargetExposure(double gain)
|
|
{
|
|
if (status_.fixedExposureTime && status_.fixedAnalogueGain) {
|
|
/*
|
|
* When analogue gain and exposure time are both fixed, we need
|
|
* to drive the total exposure so that we end up with a digital
|
|
* gain of at least 1/minColourGain. Otherwise we'd desaturate
|
|
* channels causing white to go cyan or magenta.
|
|
*/
|
|
double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
|
|
ASSERT(minColourGain != 0.0);
|
|
target_.totalExposure =
|
|
status_.fixedExposureTime * status_.fixedAnalogueGain / minColourGain;
|
|
} else {
|
|
/*
|
|
* The statistics reflect the image without digital gain, so the final
|
|
* total exposure we're aiming for is:
|
|
*/
|
|
target_.totalExposure = current_.totalExposureNoDG * gain;
|
|
/* The final target exposure is also limited to what the exposure mode allows. */
|
|
Duration maxExposureTime = status_.fixedExposureTime
|
|
? status_.fixedExposureTime
|
|
: exposureMode_->exposureTime.back();
|
|
maxExposureTime = limitExposureTime(maxExposureTime);
|
|
Duration maxTotalExposure =
|
|
maxExposureTime *
|
|
(status_.fixedAnalogueGain != 0.0
|
|
? status_.fixedAnalogueGain
|
|
: exposureMode_->gain.back());
|
|
target_.totalExposure = std::min(target_.totalExposure, maxTotalExposure);
|
|
}
|
|
LOG(RPiAgc, Debug) << "Target totalExposure " << target_.totalExposure;
|
|
}
|
|
|
|
bool AgcChannel::applyChannelConstraints(const AgcChannelTotalExposures &channelTotalExposures)
|
|
{
|
|
bool channelBound = false;
|
|
LOG(RPiAgc, Debug)
|
|
<< "Total exposure before channel constraints " << filtered_.totalExposure;
|
|
|
|
for (const auto &constraint : config_.channelConstraints) {
|
|
LOG(RPiAgc, Debug)
|
|
<< "Check constraint: channel " << constraint.channel << " bound "
|
|
<< (constraint.bound == AgcChannelConstraint::Bound::UPPER ? "UPPER" : "LOWER")
|
|
<< " factor " << constraint.factor;
|
|
if (constraint.channel >= channelTotalExposures.size() ||
|
|
!channelTotalExposures[constraint.channel]) {
|
|
LOG(RPiAgc, Debug) << "no such channel or no exposure available- skipped";
|
|
continue;
|
|
}
|
|
|
|
libcamera::utils::Duration limitExposure =
|
|
channelTotalExposures[constraint.channel] * constraint.factor;
|
|
LOG(RPiAgc, Debug) << "Limit exposure " << limitExposure;
|
|
if ((constraint.bound == AgcChannelConstraint::Bound::UPPER &&
|
|
filtered_.totalExposure > limitExposure) ||
|
|
(constraint.bound == AgcChannelConstraint::Bound::LOWER &&
|
|
filtered_.totalExposure < limitExposure)) {
|
|
filtered_.totalExposure = limitExposure;
|
|
LOG(RPiAgc, Debug) << "Constraint applies";
|
|
channelBound = true;
|
|
} else
|
|
LOG(RPiAgc, Debug) << "Constraint does not apply";
|
|
}
|
|
|
|
LOG(RPiAgc, Debug)
|
|
<< "Total exposure after channel constraints " << filtered_.totalExposure;
|
|
|
|
return channelBound;
|
|
}
|
|
|
|
bool AgcChannel::applyDigitalGain(double gain, double targetY, bool channelBound)
|
|
{
|
|
double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 });
|
|
ASSERT(minColourGain != 0.0);
|
|
double dg = 1.0 / minColourGain;
|
|
/*
|
|
* I think this pipeline subtracts black level and rescales before we
|
|
* get the stats, so no need to worry about it.
|
|
*/
|
|
LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain
|
|
<< " target_Y " << targetY;
|
|
/*
|
|
* Finally, if we're trying to reduce exposure but the target_Y is
|
|
* "close" to 1.0, then the gain computed for that constraint will be
|
|
* only slightly less than one, because the measured Y can never be
|
|
* larger than 1.0. When this happens, demand a large digital gain so
|
|
* that the exposure can be reduced, de-saturating the image much more
|
|
* quickly (and we then approach the correct value more quickly from
|
|
* below).
|
|
*/
|
|
bool desaturate = false;
|
|
if (config_.desaturate)
|
|
desaturate = !channelBound &&
|
|
targetY > config_.fastReduceThreshold && gain < sqrt(targetY);
|
|
if (desaturate)
|
|
dg /= config_.fastReduceThreshold;
|
|
LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate;
|
|
filtered_.totalExposureNoDG = filtered_.totalExposure / dg;
|
|
LOG(RPiAgc, Debug) << "Target totalExposureNoDG " << filtered_.totalExposureNoDG;
|
|
return desaturate;
|
|
}
|
|
|
|
void AgcChannel::filterExposure()
|
|
{
|
|
double speed = config_.speed;
|
|
double stableRegion = config_.stableRegion;
|
|
|
|
/*
|
|
* AGC adapts instantly if both exposure time and gain are directly
|
|
* specified or we're in the startup phase. Also disable the stable
|
|
* region, because we want to reflect any user exposure/gain updates,
|
|
* however small.
|
|
*/
|
|
if ((status_.fixedExposureTime && status_.fixedAnalogueGain) ||
|
|
frameCount_ <= config_.startupFrames) {
|
|
speed = 1.0;
|
|
stableRegion = 0.0;
|
|
}
|
|
if (!filtered_.totalExposure) {
|
|
filtered_.totalExposure = target_.totalExposure;
|
|
} else if (filtered_.totalExposure * (1.0 - stableRegion) < target_.totalExposure &&
|
|
filtered_.totalExposure * (1.0 + stableRegion) > target_.totalExposure) {
|
|
/* Total exposure must change by more than this or we leave it alone. */
|
|
} else {
|
|
/*
|
|
* If close to the result go faster, to save making so many
|
|
* micro-adjustments on the way. (Make this customisable?)
|
|
*/
|
|
if (filtered_.totalExposure < 1.2 * target_.totalExposure &&
|
|
filtered_.totalExposure > 0.8 * target_.totalExposure)
|
|
speed = sqrt(speed);
|
|
filtered_.totalExposure = speed * target_.totalExposure +
|
|
filtered_.totalExposure * (1.0 - speed);
|
|
}
|
|
LOG(RPiAgc, Debug) << "After filtering, totalExposure " << filtered_.totalExposure
|
|
<< " no dg " << filtered_.totalExposureNoDG;
|
|
}
|
|
|
|
void AgcChannel::divideUpExposure()
|
|
{
|
|
/*
|
|
* Sending the fixed exposure time/gain cases through the same code may
|
|
* seem unnecessary, but it will make more sense when extend this to
|
|
* cover variable aperture.
|
|
*/
|
|
Duration exposureValue = filtered_.totalExposureNoDG;
|
|
Duration exposureTime;
|
|
double analogueGain;
|
|
exposureTime = status_.fixedExposureTime ? status_.fixedExposureTime
|
|
: exposureMode_->exposureTime[0];
|
|
exposureTime = limitExposureTime(exposureTime);
|
|
analogueGain = status_.fixedAnalogueGain != 0.0 ? status_.fixedAnalogueGain
|
|
: exposureMode_->gain[0];
|
|
analogueGain = limitGain(analogueGain);
|
|
if (exposureTime * analogueGain < exposureValue) {
|
|
for (unsigned int stage = 1;
|
|
stage < exposureMode_->gain.size(); stage++) {
|
|
if (!status_.fixedExposureTime) {
|
|
Duration stageExposureTime =
|
|
limitExposureTime(exposureMode_->exposureTime[stage]);
|
|
if (stageExposureTime * analogueGain >= exposureValue) {
|
|
exposureTime = exposureValue / analogueGain;
|
|
break;
|
|
}
|
|
exposureTime = stageExposureTime;
|
|
}
|
|
if (status_.fixedAnalogueGain == 0.0) {
|
|
if (exposureMode_->gain[stage] * exposureTime >= exposureValue) {
|
|
analogueGain = exposureValue / exposureTime;
|
|
break;
|
|
}
|
|
analogueGain = exposureMode_->gain[stage];
|
|
analogueGain = limitGain(analogueGain);
|
|
}
|
|
}
|
|
}
|
|
LOG(RPiAgc, Debug)
|
|
<< "Divided up exposure time and gain are " << exposureTime
|
|
<< " and " << analogueGain;
|
|
/*
|
|
* Finally adjust exposure time for flicker avoidance (require both
|
|
* exposure time and gain not to be fixed).
|
|
*/
|
|
if (!status_.fixedExposureTime && !status_.fixedAnalogueGain &&
|
|
status_.flickerPeriod) {
|
|
int flickerPeriods = exposureTime / status_.flickerPeriod;
|
|
if (flickerPeriods) {
|
|
Duration newExposureTime = flickerPeriods * status_.flickerPeriod;
|
|
analogueGain *= exposureTime / newExposureTime;
|
|
/*
|
|
* We should still not allow the ag to go over the
|
|
* largest value in the exposure mode. Note that this
|
|
* may force more of the total exposure into the digital
|
|
* gain as a side-effect.
|
|
*/
|
|
analogueGain = std::min(analogueGain, exposureMode_->gain.back());
|
|
analogueGain = limitGain(analogueGain);
|
|
exposureTime = newExposureTime;
|
|
}
|
|
LOG(RPiAgc, Debug) << "After flicker avoidance, exposure time "
|
|
<< exposureTime << " gain " << analogueGain;
|
|
}
|
|
filtered_.exposureTime = exposureTime;
|
|
filtered_.analogueGain = analogueGain;
|
|
}
|
|
|
|
void AgcChannel::writeAndFinish(Metadata *imageMetadata, bool desaturate)
|
|
{
|
|
status_.totalExposureValue = filtered_.totalExposure;
|
|
status_.targetExposureValue = desaturate ? 0s : target_.totalExposure;
|
|
status_.exposureTime = filtered_.exposureTime;
|
|
status_.analogueGain = filtered_.analogueGain;
|
|
/*
|
|
* Write to metadata as well, in case anyone wants to update the camera
|
|
* immediately.
|
|
*/
|
|
imageMetadata->set("agc.status", status_);
|
|
LOG(RPiAgc, Debug) << "Output written, total exposure requested is "
|
|
<< filtered_.totalExposure;
|
|
LOG(RPiAgc, Debug) << "Camera exposure update: exposure time " << filtered_.exposureTime
|
|
<< " analogue gain " << filtered_.analogueGain;
|
|
}
|
|
|
|
Duration AgcChannel::limitExposureTime(Duration exposureTime)
|
|
{
|
|
/*
|
|
* exposureTime == 0 is a special case for fixed exposure time values,
|
|
* and must pass through unchanged.
|
|
*/
|
|
if (!exposureTime)
|
|
return exposureTime;
|
|
|
|
exposureTime = std::clamp(exposureTime, mode_.minExposureTime, maxExposureTime_);
|
|
return exposureTime;
|
|
}
|
|
|
|
double AgcChannel::limitGain(double gain) const
|
|
{
|
|
/*
|
|
* Only limit the lower bounds of the gain value to what the sensor
|
|
* limits. The upper bound on analogue gain will be made up with
|
|
* additional digital gain applied by the ISP.
|
|
*
|
|
* gain == 0.0 is a special case for fixed exposure time values, and
|
|
* must pass through unchanged.
|
|
*/
|
|
if (!gain)
|
|
return gain;
|
|
|
|
gain = std::max(gain, mode_.minAnalogueGain);
|
|
return gain;
|
|
}
|