mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-15 16:35:06 +03:00
We add a GetConvergenceFrames method to the AwbAlgorithm class which can be called when the AWB is started from scratch. It suggests how many frames should be dropped before displaying any (while the AWB converges). The Raspberry Pi specific implementation makes this customisable from the tuning file. Signed-off-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Naushir Patuck <naush@raspberrypi.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
633 lines
21 KiB
C++
633 lines
21 KiB
C++
/* SPDX-License-Identifier: BSD-2-Clause */
|
|
/*
|
|
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
|
|
*
|
|
* awb.cpp - AWB control algorithm
|
|
*/
|
|
|
|
#include "../logging.hpp"
|
|
#include "../lux_status.h"
|
|
|
|
#include "awb.hpp"
|
|
|
|
using namespace RPiController;
|
|
|
|
#define NAME "rpi.awb"
|
|
|
|
#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
|
|
#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y
|
|
|
|
const double Awb::RGB::INVALID = -1.0;
|
|
|
|
void AwbMode::Read(boost::property_tree::ptree const ¶ms)
|
|
{
|
|
ct_lo = params.get<double>("lo");
|
|
ct_hi = params.get<double>("hi");
|
|
}
|
|
|
|
void AwbPrior::Read(boost::property_tree::ptree const ¶ms)
|
|
{
|
|
lux = params.get<double>("lux");
|
|
prior.Read(params.get_child("prior"));
|
|
}
|
|
|
|
static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
|
|
boost::property_tree::ptree const ¶ms)
|
|
{
|
|
int num = 0;
|
|
for (auto it = params.begin(); it != params.end(); it++) {
|
|
double ct = it->second.get_value<double>();
|
|
assert(it == params.begin() || ct != ct_r.Domain().end);
|
|
if (++it == params.end())
|
|
throw std::runtime_error(
|
|
"AwbConfig: incomplete CT curve entry");
|
|
ct_r.Append(ct, it->second.get_value<double>());
|
|
if (++it == params.end())
|
|
throw std::runtime_error(
|
|
"AwbConfig: incomplete CT curve entry");
|
|
ct_b.Append(ct, it->second.get_value<double>());
|
|
num++;
|
|
}
|
|
if (num < 2)
|
|
throw std::runtime_error(
|
|
"AwbConfig: insufficient points in CT curve");
|
|
}
|
|
|
|
void AwbConfig::Read(boost::property_tree::ptree const ¶ms)
|
|
{
|
|
RPI_LOG("AwbConfig");
|
|
bayes = params.get<int>("bayes", 1);
|
|
frame_period = params.get<uint16_t>("frame_period", 10);
|
|
startup_frames = params.get<uint16_t>("startup_frames", 10);
|
|
convergence_frames = params.get<unsigned int>("convergence_frames", 3);
|
|
speed = params.get<double>("speed", 0.05);
|
|
if (params.get_child_optional("ct_curve"))
|
|
read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
|
|
if (params.get_child_optional("priors")) {
|
|
for (auto &p : params.get_child("priors")) {
|
|
AwbPrior prior;
|
|
prior.Read(p.second);
|
|
if (!priors.empty() && prior.lux <= priors.back().lux)
|
|
throw std::runtime_error(
|
|
"AwbConfig: Prior must be ordered in increasing lux value");
|
|
priors.push_back(prior);
|
|
}
|
|
if (priors.empty())
|
|
throw std::runtime_error(
|
|
"AwbConfig: no AWB priors configured");
|
|
}
|
|
if (params.get_child_optional("modes")) {
|
|
for (auto &p : params.get_child("modes")) {
|
|
modes[p.first].Read(p.second);
|
|
if (default_mode == nullptr)
|
|
default_mode = &modes[p.first];
|
|
}
|
|
if (default_mode == nullptr)
|
|
throw std::runtime_error(
|
|
"AwbConfig: no AWB modes configured");
|
|
}
|
|
min_pixels = params.get<double>("min_pixels", 16.0);
|
|
min_G = params.get<uint16_t>("min_G", 32);
|
|
min_regions = params.get<uint32_t>("min_regions", 10);
|
|
delta_limit = params.get<double>("delta_limit", 0.2);
|
|
coarse_step = params.get<double>("coarse_step", 0.2);
|
|
transverse_pos = params.get<double>("transverse_pos", 0.01);
|
|
transverse_neg = params.get<double>("transverse_neg", 0.01);
|
|
if (transverse_pos <= 0 || transverse_neg <= 0)
|
|
throw std::runtime_error(
|
|
"AwbConfig: transverse_pos/neg must be > 0");
|
|
sensitivity_r = params.get<double>("sensitivity_r", 1.0);
|
|
sensitivity_b = params.get<double>("sensitivity_b", 1.0);
|
|
if (bayes) {
|
|
if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
|
|
default_mode == nullptr) {
|
|
RPI_WARN(
|
|
"Bayesian AWB mis-configured - switch to Grey method");
|
|
bayes = false;
|
|
}
|
|
}
|
|
fast = params.get<int>(
|
|
"fast", bayes); // default to fast for Bayesian, otherwise slow
|
|
whitepoint_r = params.get<double>("whitepoint_r", 0.0);
|
|
whitepoint_b = params.get<double>("whitepoint_b", 0.0);
|
|
if (bayes == false)
|
|
sensitivity_r = sensitivity_b =
|
|
1.0; // nor do sensitivities make any sense
|
|
}
|
|
|
|
Awb::Awb(Controller *controller)
|
|
: AwbAlgorithm(controller)
|
|
{
|
|
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
|
|
mode_ = nullptr;
|
|
manual_r_ = manual_b_ = 0.0;
|
|
async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
|
|
}
|
|
|
|
Awb::~Awb()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
async_abort_ = true;
|
|
async_signal_.notify_one();
|
|
}
|
|
async_thread_.join();
|
|
}
|
|
|
|
char const *Awb::Name() const
|
|
{
|
|
return NAME;
|
|
}
|
|
|
|
void Awb::Read(boost::property_tree::ptree const ¶ms)
|
|
{
|
|
config_.Read(params);
|
|
}
|
|
|
|
void Awb::Initialise()
|
|
{
|
|
frame_count2_ = frame_count_ = frame_phase_ = 0;
|
|
// Put something sane into the status that we are filtering towards,
|
|
// just in case the first few frames don't have anything meaningful in
|
|
// them.
|
|
if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
|
|
sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
|
|
sync_results_.gain_r =
|
|
1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
|
|
sync_results_.gain_g = 1.0;
|
|
sync_results_.gain_b =
|
|
1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
|
|
} else {
|
|
// random values just to stop the world blowing up
|
|
sync_results_.temperature_K = 4500;
|
|
sync_results_.gain_r = sync_results_.gain_g =
|
|
sync_results_.gain_b = 1.0;
|
|
}
|
|
prev_sync_results_ = sync_results_;
|
|
}
|
|
|
|
unsigned int Awb::GetConvergenceFrames() const
|
|
{
|
|
// If colour gains have been explicitly set, there is no convergence
|
|
// to happen, so no need to drop any frames - return zero.
|
|
if (manual_r_ && manual_b_)
|
|
return 0;
|
|
else
|
|
return config_.convergence_frames;
|
|
}
|
|
|
|
void Awb::SetMode(std::string const &mode_name)
|
|
{
|
|
std::unique_lock<std::mutex> lock(settings_mutex_);
|
|
mode_name_ = mode_name;
|
|
}
|
|
|
|
void Awb::SetManualGains(double manual_r, double manual_b)
|
|
{
|
|
std::unique_lock<std::mutex> lock(settings_mutex_);
|
|
// If any of these are 0.0, we swich back to auto.
|
|
manual_r_ = manual_r;
|
|
manual_b_ = manual_b;
|
|
}
|
|
|
|
void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
|
|
Metadata *metadata)
|
|
{
|
|
// If fixed colour gains have been set, we should let other algorithms
|
|
// know by writing it into the image metadata.
|
|
if (manual_r_ != 0.0 && manual_b_ != 0.0) {
|
|
prev_sync_results_.gain_r = manual_r_;
|
|
prev_sync_results_.gain_g = 1.0;
|
|
prev_sync_results_.gain_b = manual_b_;
|
|
sync_results_ = prev_sync_results_;
|
|
}
|
|
metadata->Set("awb.status", prev_sync_results_);
|
|
}
|
|
|
|
void Awb::fetchAsyncResults()
|
|
{
|
|
RPI_LOG("Fetch AWB results");
|
|
async_finished_ = false;
|
|
async_started_ = false;
|
|
sync_results_ = async_results_;
|
|
}
|
|
|
|
void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name,
|
|
double lux)
|
|
{
|
|
RPI_LOG("Starting AWB thread");
|
|
// this makes a new reference which belongs to the asynchronous thread
|
|
statistics_ = stats;
|
|
// store the mode as it could technically change
|
|
auto m = config_.modes.find(mode_name);
|
|
mode_ = m != config_.modes.end()
|
|
? &m->second
|
|
: (mode_ == nullptr ? config_.default_mode : mode_);
|
|
lux_ = lux;
|
|
frame_phase_ = 0;
|
|
async_start_ = true;
|
|
async_started_ = true;
|
|
size_t len = mode_name.copy(async_results_.mode,
|
|
sizeof(async_results_.mode) - 1);
|
|
async_results_.mode[len] = '\0';
|
|
async_signal_.notify_one();
|
|
}
|
|
|
|
void Awb::Prepare(Metadata *image_metadata)
|
|
{
|
|
if (frame_count_ < (int)config_.startup_frames)
|
|
frame_count_++;
|
|
double speed = frame_count_ < (int)config_.startup_frames
|
|
? 1.0
|
|
: config_.speed;
|
|
RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed);
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
if (async_started_ && async_finished_) {
|
|
RPI_LOG("AWB thread finished");
|
|
fetchAsyncResults();
|
|
}
|
|
}
|
|
// Finally apply IIR filter to results and put into metadata.
|
|
memcpy(prev_sync_results_.mode, sync_results_.mode,
|
|
sizeof(prev_sync_results_.mode));
|
|
prev_sync_results_.temperature_K =
|
|
speed * sync_results_.temperature_K +
|
|
(1.0 - speed) * prev_sync_results_.temperature_K;
|
|
prev_sync_results_.gain_r = speed * sync_results_.gain_r +
|
|
(1.0 - speed) * prev_sync_results_.gain_r;
|
|
prev_sync_results_.gain_g = speed * sync_results_.gain_g +
|
|
(1.0 - speed) * prev_sync_results_.gain_g;
|
|
prev_sync_results_.gain_b = speed * sync_results_.gain_b +
|
|
(1.0 - speed) * prev_sync_results_.gain_b;
|
|
image_metadata->Set("awb.status", prev_sync_results_);
|
|
RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g "
|
|
<< prev_sync_results_.gain_g << " b "
|
|
<< prev_sync_results_.gain_b);
|
|
}
|
|
|
|
void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
|
|
{
|
|
// Count frames since we last poked the async thread.
|
|
if (frame_phase_ < (int)config_.frame_period)
|
|
frame_phase_++;
|
|
if (frame_count2_ < (int)config_.startup_frames)
|
|
frame_count2_++;
|
|
RPI_LOG("Awb: frame_phase " << frame_phase_);
|
|
if (frame_phase_ >= (int)config_.frame_period ||
|
|
frame_count2_ < (int)config_.startup_frames) {
|
|
// Update any settings and any image metadata that we need.
|
|
std::string mode_name;
|
|
{
|
|
std::unique_lock<std::mutex> lock(settings_mutex_);
|
|
mode_name = mode_name_;
|
|
}
|
|
struct LuxStatus lux_status = {};
|
|
lux_status.lux = 400; // in case no metadata
|
|
if (image_metadata->Get("lux.status", lux_status) != 0)
|
|
RPI_LOG("No lux metadata found");
|
|
RPI_LOG("Awb lux value is " << lux_status.lux);
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
if (async_started_ == false) {
|
|
RPI_LOG("AWB thread starting");
|
|
restartAsync(stats, mode_name, lux_status.lux);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Awb::asyncFunc()
|
|
{
|
|
while (true) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
async_signal_.wait(lock, [&] {
|
|
return async_start_ || async_abort_;
|
|
});
|
|
async_start_ = false;
|
|
if (async_abort_)
|
|
break;
|
|
}
|
|
doAwb();
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
async_finished_ = true;
|
|
sync_signal_.notify_one();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void generate_stats(std::vector<Awb::RGB> &zones,
|
|
bcm2835_isp_stats_region *stats, double min_pixels,
|
|
double min_G)
|
|
{
|
|
for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
|
|
Awb::RGB zone; // this is "invalid", unless R gets overwritten later
|
|
double counted = stats[i].counted;
|
|
if (counted >= min_pixels) {
|
|
zone.G = stats[i].g_sum / counted;
|
|
if (zone.G >= min_G) {
|
|
zone.R = stats[i].r_sum / counted;
|
|
zone.B = stats[i].b_sum / counted;
|
|
}
|
|
}
|
|
zones.push_back(zone);
|
|
}
|
|
}
|
|
|
|
void Awb::prepareStats()
|
|
{
|
|
zones_.clear();
|
|
// LSC has already been applied to the stats in this pipeline, so stop
|
|
// any LSC compensation. We also ignore config_.fast in this version.
|
|
generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
|
|
config_.min_G);
|
|
// we're done with these; we may as well relinquish our hold on the
|
|
// pointer.
|
|
statistics_.reset();
|
|
// apply sensitivities, so values appear to come from our "canonical"
|
|
// sensor.
|
|
for (auto &zone : zones_)
|
|
zone.R *= config_.sensitivity_r,
|
|
zone.B *= config_.sensitivity_b;
|
|
}
|
|
|
|
double Awb::computeDelta2Sum(double gain_r, double gain_b)
|
|
{
|
|
// Compute the sum of the squared colour error (non-greyness) as it
|
|
// appears in the log likelihood equation.
|
|
double delta2_sum = 0;
|
|
for (auto &z : zones_) {
|
|
double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
|
|
double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
|
|
double delta2 = delta_r * delta_r + delta_b * delta_b;
|
|
//RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2);
|
|
delta2 = std::min(delta2, config_.delta_limit);
|
|
delta2_sum += delta2;
|
|
}
|
|
return delta2_sum;
|
|
}
|
|
|
|
Pwl Awb::interpolatePrior()
|
|
{
|
|
// Interpolate the prior log likelihood function for our current lux
|
|
// value.
|
|
if (lux_ <= config_.priors.front().lux)
|
|
return config_.priors.front().prior;
|
|
else if (lux_ >= config_.priors.back().lux)
|
|
return config_.priors.back().prior;
|
|
else {
|
|
int idx = 0;
|
|
// find which two we lie between
|
|
while (config_.priors[idx + 1].lux < lux_)
|
|
idx++;
|
|
double lux0 = config_.priors[idx].lux,
|
|
lux1 = config_.priors[idx + 1].lux;
|
|
return Pwl::Combine(config_.priors[idx].prior,
|
|
config_.priors[idx + 1].prior,
|
|
[&](double /*x*/, double y0, double y1) {
|
|
return y0 + (y1 - y0) *
|
|
(lux_ - lux0) / (lux1 - lux0);
|
|
});
|
|
}
|
|
}
|
|
|
|
static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
|
|
Pwl::Point const &C)
|
|
{
|
|
// Given 3 points on a curve, find the extremum of the function in that
|
|
// interval by fitting a quadratic.
|
|
const double eps = 1e-3;
|
|
Pwl::Point CA = C - A, BA = B - A;
|
|
double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
|
|
if (abs(denominator) > eps) {
|
|
double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
|
|
double result = numerator / denominator + A.x;
|
|
return std::max(A.x, std::min(C.x, result));
|
|
}
|
|
// has degenerated to straight line segment
|
|
return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
|
|
}
|
|
|
|
double Awb::coarseSearch(Pwl const &prior)
|
|
{
|
|
points_.clear(); // assume doesn't deallocate memory
|
|
size_t best_point = 0;
|
|
double t = mode_->ct_lo;
|
|
int span_r = 0, span_b = 0;
|
|
// Step down the CT curve evaluating log likelihood.
|
|
while (true) {
|
|
double r = config_.ct_r.Eval(t, &span_r);
|
|
double b = config_.ct_b.Eval(t, &span_b);
|
|
double gain_r = 1 / r, gain_b = 1 / b;
|
|
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
|
|
double prior_log_likelihood =
|
|
prior.Eval(prior.Domain().Clip(t));
|
|
double final_log_likelihood = delta2_sum - prior_log_likelihood;
|
|
RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b "
|
|
<< gain_b << " delta2_sum " << delta2_sum
|
|
<< " prior " << prior_log_likelihood << " final "
|
|
<< final_log_likelihood);
|
|
points_.push_back(Pwl::Point(t, final_log_likelihood));
|
|
if (points_.back().y < points_[best_point].y)
|
|
best_point = points_.size() - 1;
|
|
if (t == mode_->ct_hi)
|
|
break;
|
|
// for even steps along the r/b curve scale them by the current t
|
|
t = std::min(t + t / 10 * config_.coarse_step,
|
|
mode_->ct_hi);
|
|
}
|
|
t = points_[best_point].x;
|
|
RPI_LOG("Coarse search found CT " << t);
|
|
// We have the best point of the search, but refine it with a quadratic
|
|
// interpolation around its neighbours.
|
|
if (points_.size() > 2) {
|
|
unsigned long bp = std::min(best_point, points_.size() - 2);
|
|
best_point = std::max(1UL, bp);
|
|
t = interpolate_quadatric(points_[best_point - 1],
|
|
points_[best_point],
|
|
points_[best_point + 1]);
|
|
RPI_LOG("After quadratic refinement, coarse search has CT "
|
|
<< t);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
|
|
{
|
|
int span_r = -1, span_b = -1;
|
|
config_.ct_r.Eval(t, &span_r);
|
|
config_.ct_b.Eval(t, &span_b);
|
|
double step = t / 10 * config_.coarse_step * 0.1;
|
|
int nsteps = 5;
|
|
double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
|
|
config_.ct_r.Eval(t - nsteps * step, &span_r);
|
|
double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
|
|
config_.ct_b.Eval(t - nsteps * step, &span_b);
|
|
Pwl::Point transverse(b_diff, -r_diff);
|
|
if (transverse.Len2() < 1e-6)
|
|
return;
|
|
// unit vector orthogonal to the b vs. r function (pointing outwards
|
|
// with r and b increasing)
|
|
transverse = transverse / transverse.Len();
|
|
double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
|
|
double transverse_range =
|
|
config_.transverse_neg + config_.transverse_pos;
|
|
const int MAX_NUM_DELTAS = 12;
|
|
// a transverse step approximately every 0.01 r/b units
|
|
int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
|
|
num_deltas = num_deltas < 3 ? 3 :
|
|
(num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
|
|
// Step down CT curve. March a bit further if the transverse range is
|
|
// large.
|
|
nsteps += num_deltas;
|
|
for (int i = -nsteps; i <= nsteps; i++) {
|
|
double t_test = t + i * step;
|
|
double prior_log_likelihood =
|
|
prior.Eval(prior.Domain().Clip(t_test));
|
|
double r_curve = config_.ct_r.Eval(t_test, &span_r);
|
|
double b_curve = config_.ct_b.Eval(t_test, &span_b);
|
|
// x will be distance off the curve, y the log likelihood there
|
|
Pwl::Point points[MAX_NUM_DELTAS];
|
|
int best_point = 0;
|
|
// Take some measurements transversely *off* the CT curve.
|
|
for (int j = 0; j < num_deltas; j++) {
|
|
points[j].x = -config_.transverse_neg +
|
|
(transverse_range * j) / (num_deltas - 1);
|
|
Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
|
|
transverse * points[j].x;
|
|
double r_test = rb_test.x, b_test = rb_test.y;
|
|
double gain_r = 1 / r_test, gain_b = 1 / b_test;
|
|
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
|
|
points[j].y = delta2_sum - prior_log_likelihood;
|
|
RPI_LOG("At t " << t_test << " r " << r_test << " b "
|
|
<< b_test << ": " << points[j].y);
|
|
if (points[j].y < points[best_point].y)
|
|
best_point = j;
|
|
}
|
|
// We have NUM_DELTAS points transversely across the CT curve,
|
|
// now let's do a quadratic interpolation for the best result.
|
|
best_point = std::max(1, std::min(best_point, num_deltas - 2));
|
|
Pwl::Point rb_test =
|
|
Pwl::Point(r_curve, b_curve) +
|
|
transverse *
|
|
interpolate_quadatric(points[best_point - 1],
|
|
points[best_point],
|
|
points[best_point + 1]);
|
|
double r_test = rb_test.x, b_test = rb_test.y;
|
|
double gain_r = 1 / r_test, gain_b = 1 / b_test;
|
|
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
|
|
double final_log_likelihood = delta2_sum - prior_log_likelihood;
|
|
RPI_LOG("Finally "
|
|
<< t_test << " r " << r_test << " b " << b_test << ": "
|
|
<< final_log_likelihood
|
|
<< (final_log_likelihood < best_log_likelihood ? " BEST"
|
|
: ""));
|
|
if (best_t == 0 || final_log_likelihood < best_log_likelihood)
|
|
best_log_likelihood = final_log_likelihood,
|
|
best_t = t_test, best_r = r_test, best_b = b_test;
|
|
}
|
|
t = best_t, r = best_r, b = best_b;
|
|
RPI_LOG("Fine search found t " << t << " r " << r << " b " << b);
|
|
}
|
|
|
|
void Awb::awbBayes()
|
|
{
|
|
// May as well divide out G to save computeDelta2Sum from doing it over
|
|
// and over.
|
|
for (auto &z : zones_)
|
|
z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
|
|
// Get the current prior, and scale according to how many zones are
|
|
// valid... not entirely sure about this.
|
|
Pwl prior = interpolatePrior();
|
|
prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
|
|
prior.Map([](double x, double y) {
|
|
RPI_LOG("(" << x << "," << y << ")");
|
|
});
|
|
double t = coarseSearch(prior);
|
|
double r = config_.ct_r.Eval(t);
|
|
double b = config_.ct_b.Eval(t);
|
|
RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r "
|
|
<< 1 / r << " b " << 1 / b << ")");
|
|
// Not entirely sure how to handle the fine search yet. Mostly the
|
|
// estimated CT is already good enough, but the fine search allows us to
|
|
// wander transverely off the CT curve. Under some illuminants, where
|
|
// there may be more or less green light, this may prove beneficial,
|
|
// though I probably need more real datasets before deciding exactly how
|
|
// this should be controlled and tuned.
|
|
fineSearch(t, r, b, prior);
|
|
RPI_LOG("After fine search: r " << r << " b " << b << " (gains r "
|
|
<< 1 / r << " b " << 1 / b << ")");
|
|
// Write results out for the main thread to pick up. Remember to adjust
|
|
// the gains from the ones that the "canonical sensor" would require to
|
|
// the ones needed by *this* sensor.
|
|
async_results_.temperature_K = t;
|
|
async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
|
|
async_results_.gain_g = 1.0;
|
|
async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
|
|
}
|
|
|
|
void Awb::awbGrey()
|
|
{
|
|
RPI_LOG("Grey world AWB");
|
|
// Make a separate list of the derivatives for each of red and blue, so
|
|
// that we can sort them to exclude the extreme gains. We could
|
|
// consider some variations, such as normalising all the zones first, or
|
|
// doing an L2 average etc.
|
|
std::vector<RGB> &derivs_R(zones_);
|
|
std::vector<RGB> derivs_B(derivs_R);
|
|
std::sort(derivs_R.begin(), derivs_R.end(),
|
|
[](RGB const &a, RGB const &b) {
|
|
return a.G * b.R < b.G * a.R;
|
|
});
|
|
std::sort(derivs_B.begin(), derivs_B.end(),
|
|
[](RGB const &a, RGB const &b) {
|
|
return a.G * b.B < b.G * a.B;
|
|
});
|
|
// Average the middle half of the values.
|
|
int discard = derivs_R.size() / 4;
|
|
RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
|
|
for (auto ri = derivs_R.begin() + discard,
|
|
bi = derivs_B.begin() + discard;
|
|
ri != derivs_R.end() - discard; ri++, bi++)
|
|
sum_R += *ri, sum_B += *bi;
|
|
double gain_r = sum_R.G / (sum_R.R + 1),
|
|
gain_b = sum_B.G / (sum_B.B + 1);
|
|
async_results_.temperature_K = 4500; // don't know what it is
|
|
async_results_.gain_r = gain_r;
|
|
async_results_.gain_g = 1.0;
|
|
async_results_.gain_b = gain_b;
|
|
}
|
|
|
|
void Awb::doAwb()
|
|
{
|
|
if (manual_r_ != 0.0 && manual_b_ != 0.0) {
|
|
async_results_.temperature_K = 4500; // don't know what it is
|
|
async_results_.gain_r = manual_r_;
|
|
async_results_.gain_g = 1.0;
|
|
async_results_.gain_b = manual_b_;
|
|
RPI_LOG("Using manual white balance: gain_r "
|
|
<< async_results_.gain_r << " gain_b "
|
|
<< async_results_.gain_b);
|
|
} else {
|
|
prepareStats();
|
|
RPI_LOG("Valid zones: " << zones_.size());
|
|
if (zones_.size() > config_.min_regions) {
|
|
if (config_.bayes)
|
|
awbBayes();
|
|
else
|
|
awbGrey();
|
|
RPI_LOG("CT found is "
|
|
<< async_results_.temperature_K
|
|
<< " with gains r " << async_results_.gain_r
|
|
<< " and b " << async_results_.gain_b);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Register algorithm with the system.
|
|
static Algorithm *Create(Controller *controller)
|
|
{
|
|
return (Algorithm *)new Awb(controller);
|
|
}
|
|
static RegisterAlgorithm reg(NAME, &Create);
|