mirror of
https://git.libcamera.org/libcamera/libcamera.git
synced 2025-07-12 23:09:45 +03:00
s/Raspberry Pi (Trading) Limited/Raspberry Pi Ltd/ to reflect the new Raspberry Pi entity name. Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
618 lines
18 KiB
C++
618 lines
18 KiB
C++
/* SPDX-License-Identifier: LGPL-2.1-or-later */
|
|
/*
|
|
* Copyright (C) 2020, Raspberry Pi Ltd
|
|
*
|
|
* dng_writer.cpp - DNG writer
|
|
*/
|
|
|
|
#include "dng_writer.h"
|
|
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <map>
|
|
|
|
#include <tiffio.h>
|
|
|
|
#include <libcamera/control_ids.h>
|
|
#include <libcamera/formats.h>
|
|
#include <libcamera/property_ids.h>
|
|
|
|
using namespace libcamera;
|
|
|
|
enum CFAPatternColour : uint8_t {
|
|
CFAPatternRed = 0,
|
|
CFAPatternGreen = 1,
|
|
CFAPatternBlue = 2,
|
|
};
|
|
|
|
struct FormatInfo {
|
|
uint8_t bitsPerSample;
|
|
CFAPatternColour pattern[4];
|
|
void (*packScanline)(void *output, const void *input,
|
|
unsigned int width);
|
|
void (*thumbScanline)(const FormatInfo &info, void *output,
|
|
const void *input, unsigned int width,
|
|
unsigned int stride);
|
|
};
|
|
|
|
struct Matrix3d {
|
|
Matrix3d()
|
|
{
|
|
}
|
|
|
|
Matrix3d(float m0, float m1, float m2,
|
|
float m3, float m4, float m5,
|
|
float m6, float m7, float m8)
|
|
{
|
|
m[0] = m0, m[1] = m1, m[2] = m2;
|
|
m[3] = m3, m[4] = m4, m[5] = m5;
|
|
m[6] = m6, m[7] = m7, m[8] = m8;
|
|
}
|
|
|
|
Matrix3d(const Span<const float> &span)
|
|
: Matrix3d(span[0], span[1], span[2],
|
|
span[3], span[4], span[5],
|
|
span[6], span[7], span[8])
|
|
{
|
|
}
|
|
|
|
static Matrix3d diag(float diag0, float diag1, float diag2)
|
|
{
|
|
return Matrix3d(diag0, 0, 0, 0, diag1, 0, 0, 0, diag2);
|
|
}
|
|
|
|
static Matrix3d identity()
|
|
{
|
|
return Matrix3d(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
|
}
|
|
|
|
Matrix3d transpose() const
|
|
{
|
|
return { m[0], m[3], m[6], m[1], m[4], m[7], m[2], m[5], m[8] };
|
|
}
|
|
|
|
Matrix3d cofactors() const
|
|
{
|
|
return { m[4] * m[8] - m[5] * m[7],
|
|
-(m[3] * m[8] - m[5] * m[6]),
|
|
m[3] * m[7] - m[4] * m[6],
|
|
-(m[1] * m[8] - m[2] * m[7]),
|
|
m[0] * m[8] - m[2] * m[6],
|
|
-(m[0] * m[7] - m[1] * m[6]),
|
|
m[1] * m[5] - m[2] * m[4],
|
|
-(m[0] * m[5] - m[2] * m[3]),
|
|
m[0] * m[4] - m[1] * m[3] };
|
|
}
|
|
|
|
Matrix3d adjugate() const
|
|
{
|
|
return cofactors().transpose();
|
|
}
|
|
|
|
float determinant() const
|
|
{
|
|
return m[0] * (m[4] * m[8] - m[5] * m[7]) -
|
|
m[1] * (m[3] * m[8] - m[5] * m[6]) +
|
|
m[2] * (m[3] * m[7] - m[4] * m[6]);
|
|
}
|
|
|
|
Matrix3d inverse() const
|
|
{
|
|
return adjugate() * (1.0 / determinant());
|
|
}
|
|
|
|
Matrix3d operator*(const Matrix3d &other) const
|
|
{
|
|
Matrix3d result;
|
|
for (unsigned int i = 0; i < 3; i++) {
|
|
for (unsigned int j = 0; j < 3; j++) {
|
|
result.m[i * 3 + j] =
|
|
m[i * 3 + 0] * other.m[0 + j] +
|
|
m[i * 3 + 1] * other.m[3 + j] +
|
|
m[i * 3 + 2] * other.m[6 + j];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Matrix3d operator*(float f) const
|
|
{
|
|
Matrix3d result;
|
|
for (unsigned int i = 0; i < 9; i++)
|
|
result.m[i] = m[i] * f;
|
|
return result;
|
|
}
|
|
|
|
float m[9];
|
|
};
|
|
|
|
void packScanlineSBGGR10P(void *output, const void *input, unsigned int width)
|
|
{
|
|
const uint8_t *in = static_cast<const uint8_t *>(input);
|
|
uint8_t *out = static_cast<uint8_t *>(output);
|
|
|
|
/* \todo Can this be made more efficient? */
|
|
for (unsigned int x = 0; x < width; x += 4) {
|
|
*out++ = in[0];
|
|
*out++ = (in[4] & 0x03) << 6 | in[1] >> 2;
|
|
*out++ = (in[1] & 0x03) << 6 | (in[4] & 0x0c) << 2 | in[2] >> 4;
|
|
*out++ = (in[2] & 0x0f) << 4 | (in[4] & 0x30) >> 2 | in[3] >> 6;
|
|
*out++ = (in[3] & 0x3f) << 2 | (in[4] & 0xc0) >> 6;
|
|
in += 5;
|
|
}
|
|
}
|
|
|
|
void packScanlineSBGGR12P(void *output, const void *input, unsigned int width)
|
|
{
|
|
const uint8_t *in = static_cast<const uint8_t *>(input);
|
|
uint8_t *out = static_cast<uint8_t *>(output);
|
|
|
|
/* \todo Can this be made more efficient? */
|
|
for (unsigned int i = 0; i < width; i += 2) {
|
|
*out++ = in[0];
|
|
*out++ = (in[2] & 0x0f) << 4 | in[1] >> 4;
|
|
*out++ = (in[1] & 0x0f) << 4 | in[2] >> 4;
|
|
in += 3;
|
|
}
|
|
}
|
|
|
|
void thumbScanlineSBGGRxxP(const FormatInfo &info, void *output,
|
|
const void *input, unsigned int width,
|
|
unsigned int stride)
|
|
{
|
|
const uint8_t *in = static_cast<const uint8_t *>(input);
|
|
uint8_t *out = static_cast<uint8_t *>(output);
|
|
|
|
/* Number of bytes corresponding to 16 pixels. */
|
|
unsigned int skip = info.bitsPerSample * 16 / 8;
|
|
|
|
for (unsigned int x = 0; x < width; x++) {
|
|
uint8_t value = (in[0] + in[1] + in[stride] + in[stride + 1]) >> 2;
|
|
*out++ = value;
|
|
*out++ = value;
|
|
*out++ = value;
|
|
in += skip;
|
|
}
|
|
}
|
|
|
|
void packScanlineIPU3(void *output, const void *input, unsigned int width)
|
|
{
|
|
const uint8_t *in = static_cast<const uint8_t *>(input);
|
|
uint16_t *out = static_cast<uint16_t *>(output);
|
|
|
|
/*
|
|
* Upscale the 10-bit format to 16-bit as it's not trivial to pack it
|
|
* as 10-bit without gaps.
|
|
*
|
|
* \todo Improve packing to keep the 10-bit sample size.
|
|
*/
|
|
unsigned int x = 0;
|
|
while (true) {
|
|
for (unsigned int i = 0; i < 6; i++) {
|
|
*out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
|
|
if (++x >= width)
|
|
return;
|
|
|
|
*out++ = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
|
|
if (++x >= width)
|
|
return;
|
|
|
|
*out++ = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
|
|
if (++x >= width)
|
|
return;
|
|
|
|
*out++ = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0;
|
|
if (++x >= width)
|
|
return;
|
|
|
|
in += 5;
|
|
}
|
|
|
|
*out++ = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
|
|
if (++x >= width)
|
|
return;
|
|
|
|
in += 2;
|
|
}
|
|
}
|
|
|
|
void thumbScanlineIPU3([[maybe_unused]] const FormatInfo &info, void *output,
|
|
const void *input, unsigned int width,
|
|
unsigned int stride)
|
|
{
|
|
uint8_t *out = static_cast<uint8_t *>(output);
|
|
|
|
for (unsigned int x = 0; x < width; x++) {
|
|
unsigned int pixel = x * 16;
|
|
unsigned int block = pixel / 25;
|
|
unsigned int pixelInBlock = pixel - block * 25;
|
|
|
|
/*
|
|
* If the pixel is the last in the block cheat a little and
|
|
* move one pixel backward to avoid reading between two blocks
|
|
* and having to deal with the padding bits.
|
|
*/
|
|
if (pixelInBlock == 24)
|
|
pixelInBlock--;
|
|
|
|
const uint8_t *in = static_cast<const uint8_t *>(input)
|
|
+ block * 32 + (pixelInBlock / 4) * 5;
|
|
|
|
uint16_t val1, val2, val3, val4;
|
|
switch (pixelInBlock % 4) {
|
|
case 0:
|
|
val1 = (in[1] & 0x03) << 14 | (in[0] & 0xff) << 6;
|
|
val2 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
|
|
val3 = (in[stride + 1] & 0x03) << 14 | (in[stride + 0] & 0xff) << 6;
|
|
val4 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4;
|
|
break;
|
|
case 1:
|
|
val1 = (in[2] & 0x0f) << 12 | (in[1] & 0xfc) << 4;
|
|
val2 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
|
|
val3 = (in[stride + 2] & 0x0f) << 12 | (in[stride + 1] & 0xfc) << 4;
|
|
val4 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2;
|
|
break;
|
|
case 2:
|
|
val1 = (in[3] & 0x3f) << 10 | (in[2] & 0xf0) << 2;
|
|
val2 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0;
|
|
val3 = (in[stride + 3] & 0x3f) << 10 | (in[stride + 2] & 0xf0) << 2;
|
|
val4 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0;
|
|
break;
|
|
case 3:
|
|
val1 = (in[4] & 0xff) << 8 | (in[3] & 0xc0) << 0;
|
|
val2 = (in[6] & 0x03) << 14 | (in[5] & 0xff) << 6;
|
|
val3 = (in[stride + 4] & 0xff) << 8 | (in[stride + 3] & 0xc0) << 0;
|
|
val4 = (in[stride + 6] & 0x03) << 14 | (in[stride + 5] & 0xff) << 6;
|
|
break;
|
|
}
|
|
|
|
uint8_t value = (val1 + val2 + val3 + val4) >> 10;
|
|
*out++ = value;
|
|
*out++ = value;
|
|
*out++ = value;
|
|
}
|
|
}
|
|
|
|
static const std::map<PixelFormat, FormatInfo> formatInfo = {
|
|
{ formats::SBGGR10_CSI2P, {
|
|
.bitsPerSample = 10,
|
|
.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
|
|
.packScanline = packScanlineSBGGR10P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SGBRG10_CSI2P, {
|
|
.bitsPerSample = 10,
|
|
.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
|
|
.packScanline = packScanlineSBGGR10P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SGRBG10_CSI2P, {
|
|
.bitsPerSample = 10,
|
|
.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
|
|
.packScanline = packScanlineSBGGR10P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SRGGB10_CSI2P, {
|
|
.bitsPerSample = 10,
|
|
.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
|
|
.packScanline = packScanlineSBGGR10P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SBGGR12_CSI2P, {
|
|
.bitsPerSample = 12,
|
|
.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
|
|
.packScanline = packScanlineSBGGR12P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SGBRG12_CSI2P, {
|
|
.bitsPerSample = 12,
|
|
.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
|
|
.packScanline = packScanlineSBGGR12P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SGRBG12_CSI2P, {
|
|
.bitsPerSample = 12,
|
|
.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
|
|
.packScanline = packScanlineSBGGR12P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SRGGB12_CSI2P, {
|
|
.bitsPerSample = 12,
|
|
.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
|
|
.packScanline = packScanlineSBGGR12P,
|
|
.thumbScanline = thumbScanlineSBGGRxxP,
|
|
} },
|
|
{ formats::SBGGR10_IPU3, {
|
|
.bitsPerSample = 16,
|
|
.pattern = { CFAPatternBlue, CFAPatternGreen, CFAPatternGreen, CFAPatternRed },
|
|
.packScanline = packScanlineIPU3,
|
|
.thumbScanline = thumbScanlineIPU3,
|
|
} },
|
|
{ formats::SGBRG10_IPU3, {
|
|
.bitsPerSample = 16,
|
|
.pattern = { CFAPatternGreen, CFAPatternBlue, CFAPatternRed, CFAPatternGreen },
|
|
.packScanline = packScanlineIPU3,
|
|
.thumbScanline = thumbScanlineIPU3,
|
|
} },
|
|
{ formats::SGRBG10_IPU3, {
|
|
.bitsPerSample = 16,
|
|
.pattern = { CFAPatternGreen, CFAPatternRed, CFAPatternBlue, CFAPatternGreen },
|
|
.packScanline = packScanlineIPU3,
|
|
.thumbScanline = thumbScanlineIPU3,
|
|
} },
|
|
{ formats::SRGGB10_IPU3, {
|
|
.bitsPerSample = 16,
|
|
.pattern = { CFAPatternRed, CFAPatternGreen, CFAPatternGreen, CFAPatternBlue },
|
|
.packScanline = packScanlineIPU3,
|
|
.thumbScanline = thumbScanlineIPU3,
|
|
} },
|
|
};
|
|
|
|
int DNGWriter::write(const char *filename, const Camera *camera,
|
|
const StreamConfiguration &config,
|
|
const ControlList &metadata,
|
|
[[maybe_unused]] const FrameBuffer *buffer,
|
|
const void *data)
|
|
{
|
|
const ControlList &cameraProperties = camera->properties();
|
|
|
|
const auto it = formatInfo.find(config.pixelFormat);
|
|
if (it == formatInfo.cend()) {
|
|
std::cerr << "Unsupported pixel format" << std::endl;
|
|
return -EINVAL;
|
|
}
|
|
const FormatInfo *info = &it->second;
|
|
|
|
TIFF *tif = TIFFOpen(filename, "w");
|
|
if (!tif) {
|
|
std::cerr << "Failed to open tiff file" << std::endl;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Scanline buffer, has to be large enough to store both a RAW scanline
|
|
* or a thumbnail scanline. The latter will always be much smaller than
|
|
* the former as we downscale by 16 in both directions.
|
|
*/
|
|
uint8_t scanline[(config.size.width * info->bitsPerSample + 7) / 8];
|
|
|
|
toff_t rawIFDOffset = 0;
|
|
toff_t exifIFDOffset = 0;
|
|
|
|
/*
|
|
* Start with a thumbnail in IFD 0 for compatibility with TIFF baseline
|
|
* readers, as required by the TIFF/EP specification. Tags that apply to
|
|
* the whole file are stored here.
|
|
*/
|
|
const uint8_t version[] = { 1, 2, 0, 0 };
|
|
|
|
TIFFSetField(tif, TIFFTAG_DNGVERSION, version);
|
|
TIFFSetField(tif, TIFFTAG_DNGBACKWARDVERSION, version);
|
|
TIFFSetField(tif, TIFFTAG_FILLORDER, FILLORDER_MSB2LSB);
|
|
TIFFSetField(tif, TIFFTAG_MAKE, "libcamera");
|
|
|
|
const auto &model = cameraProperties.get(properties::Model);
|
|
if (model) {
|
|
TIFFSetField(tif, TIFFTAG_MODEL, model->c_str());
|
|
/* \todo set TIFFTAG_UNIQUECAMERAMODEL. */
|
|
}
|
|
|
|
TIFFSetField(tif, TIFFTAG_SOFTWARE, "qcam");
|
|
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
|
|
|
|
/*
|
|
* Thumbnail-specific tags. The thumbnail is stored as an RGB image
|
|
* with 1/16 of the raw image resolution. Greyscale would save space,
|
|
* but doesn't seem well supported by RawTherapee.
|
|
*/
|
|
TIFFSetField(tif, TIFFTAG_SUBFILETYPE, FILETYPE_REDUCEDIMAGE);
|
|
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width / 16);
|
|
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height / 16);
|
|
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
|
|
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
|
|
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
|
|
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 3);
|
|
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
|
|
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
|
|
|
|
/*
|
|
* Fill in some reasonable colour information in the DNG. We supply
|
|
* the "neutral" colour values which determine the white balance, and the
|
|
* "ColorMatrix1" which converts XYZ to (un-white-balanced) camera RGB.
|
|
* Note that this is not a "proper" colour calibration for the DNG,
|
|
* nonetheless, many tools should be able to render the colours better.
|
|
*/
|
|
float neutral[3] = { 1, 1, 1 };
|
|
Matrix3d wbGain = Matrix3d::identity();
|
|
/* From http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html */
|
|
const Matrix3d rgb2xyz(0.4124564, 0.3575761, 0.1804375,
|
|
0.2126729, 0.7151522, 0.0721750,
|
|
0.0193339, 0.1191920, 0.9503041);
|
|
Matrix3d ccm = Matrix3d::identity();
|
|
/*
|
|
* Pick a reasonable number eps to protect against singularities. It
|
|
* should be comfortably larger than the point at which we run into
|
|
* numerical trouble, yet smaller than any plausible gain that we might
|
|
* apply to a colour, either explicitly or as part of the colour matrix.
|
|
*/
|
|
const double eps = 1e-2;
|
|
|
|
const auto &colourGains = metadata.get(controls::ColourGains);
|
|
if (colourGains) {
|
|
if ((*colourGains)[0] > eps && (*colourGains)[1] > eps) {
|
|
wbGain = Matrix3d::diag((*colourGains)[0], 1, (*colourGains)[1]);
|
|
neutral[0] = 1.0 / (*colourGains)[0]; /* red */
|
|
neutral[2] = 1.0 / (*colourGains)[1]; /* blue */
|
|
}
|
|
}
|
|
|
|
const auto &ccmControl = metadata.get(controls::ColourCorrectionMatrix);
|
|
if (ccmControl) {
|
|
Matrix3d ccmSupplied(*ccmControl);
|
|
if (ccmSupplied.determinant() > eps)
|
|
ccm = ccmSupplied;
|
|
}
|
|
|
|
/*
|
|
* rgb2xyz is known to be invertible, and we've ensured above that both
|
|
* the ccm and wbGain matrices are non-singular, so the product of all
|
|
* three is guaranteed to be invertible too.
|
|
*/
|
|
Matrix3d colorMatrix1 = (rgb2xyz * ccm * wbGain).inverse();
|
|
|
|
TIFFSetField(tif, TIFFTAG_COLORMATRIX1, 9, colorMatrix1.m);
|
|
TIFFSetField(tif, TIFFTAG_ASSHOTNEUTRAL, 3, neutral);
|
|
|
|
/*
|
|
* Reserve space for the SubIFD and ExifIFD tags, pointing to the IFD
|
|
* for the raw image and EXIF data respectively. The real offsets will
|
|
* be set later.
|
|
*/
|
|
TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset);
|
|
TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset);
|
|
|
|
/* Write the thumbnail. */
|
|
const uint8_t *row = static_cast<const uint8_t *>(data);
|
|
for (unsigned int y = 0; y < config.size.height / 16; y++) {
|
|
info->thumbScanline(*info, &scanline, row,
|
|
config.size.width / 16, config.stride);
|
|
|
|
if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) {
|
|
std::cerr << "Failed to write thumbnail scanline"
|
|
<< std::endl;
|
|
TIFFClose(tif);
|
|
return -EINVAL;
|
|
}
|
|
|
|
row += config.stride * 16;
|
|
}
|
|
|
|
TIFFWriteDirectory(tif);
|
|
|
|
/* Create a new IFD for the RAW image. */
|
|
const uint16_t cfaRepeatPatternDim[] = { 2, 2 };
|
|
const uint8_t cfaPlaneColor[] = {
|
|
CFAPatternRed,
|
|
CFAPatternGreen,
|
|
CFAPatternBlue
|
|
};
|
|
|
|
TIFFSetField(tif, TIFFTAG_SUBFILETYPE, 0);
|
|
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, config.size.width);
|
|
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, config.size.height);
|
|
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, info->bitsPerSample);
|
|
TIFFSetField(tif, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
|
|
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_CFA);
|
|
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
|
|
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
|
|
TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
|
|
TIFFSetField(tif, TIFFTAG_CFAREPEATPATTERNDIM, cfaRepeatPatternDim);
|
|
TIFFSetField(tif, TIFFTAG_CFAPATTERN, info->pattern);
|
|
TIFFSetField(tif, TIFFTAG_CFAPLANECOLOR, 3, cfaPlaneColor);
|
|
TIFFSetField(tif, TIFFTAG_CFALAYOUT, 1);
|
|
|
|
const uint16_t blackLevelRepeatDim[] = { 2, 2 };
|
|
float blackLevel[] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
uint32_t whiteLevel = (1 << info->bitsPerSample) - 1;
|
|
|
|
const auto &blackLevels = metadata.get(controls::SensorBlackLevels);
|
|
if (blackLevels) {
|
|
Span<const int32_t> levels = *blackLevels;
|
|
|
|
/*
|
|
* The black levels control is specified in R, Gr, Gb, B order.
|
|
* Map it to the TIFF tag that is specified in CFA pattern
|
|
* order.
|
|
*/
|
|
unsigned int green = (info->pattern[0] == CFAPatternRed ||
|
|
info->pattern[1] == CFAPatternRed)
|
|
? 0 : 1;
|
|
|
|
for (unsigned int i = 0; i < 4; ++i) {
|
|
unsigned int level;
|
|
|
|
switch (info->pattern[i]) {
|
|
case CFAPatternRed:
|
|
level = levels[0];
|
|
break;
|
|
case CFAPatternGreen:
|
|
level = levels[green + 1];
|
|
green = (green + 1) % 2;
|
|
break;
|
|
case CFAPatternBlue:
|
|
default:
|
|
level = levels[3];
|
|
break;
|
|
}
|
|
|
|
/* Map the 16-bit value to the bits per sample range. */
|
|
blackLevel[i] = level >> (16 - info->bitsPerSample);
|
|
}
|
|
}
|
|
|
|
TIFFSetField(tif, TIFFTAG_BLACKLEVELREPEATDIM, &blackLevelRepeatDim);
|
|
TIFFSetField(tif, TIFFTAG_BLACKLEVEL, 4, &blackLevel);
|
|
TIFFSetField(tif, TIFFTAG_WHITELEVEL, 1, &whiteLevel);
|
|
|
|
/* Write RAW content. */
|
|
row = static_cast<const uint8_t *>(data);
|
|
for (unsigned int y = 0; y < config.size.height; y++) {
|
|
info->packScanline(&scanline, row, config.size.width);
|
|
|
|
if (TIFFWriteScanline(tif, &scanline, y, 0) != 1) {
|
|
std::cerr << "Failed to write RAW scanline"
|
|
<< std::endl;
|
|
TIFFClose(tif);
|
|
return -EINVAL;
|
|
}
|
|
|
|
row += config.stride;
|
|
}
|
|
|
|
/* Checkpoint the IFD to retrieve its offset, and write it out. */
|
|
TIFFCheckpointDirectory(tif);
|
|
rawIFDOffset = TIFFCurrentDirOffset(tif);
|
|
TIFFWriteDirectory(tif);
|
|
|
|
/* Create a new IFD for the EXIF data and fill it. */
|
|
TIFFCreateEXIFDirectory(tif);
|
|
|
|
/* Store creation time. */
|
|
time_t rawtime;
|
|
struct tm *timeinfo;
|
|
char strTime[20];
|
|
|
|
time(&rawtime);
|
|
timeinfo = localtime(&rawtime);
|
|
strftime(strTime, 20, "%Y:%m:%d %H:%M:%S", timeinfo);
|
|
|
|
/*
|
|
* \todo Handle timezone information by setting OffsetTimeOriginal and
|
|
* OffsetTimeDigitized once libtiff catches up to the specification and
|
|
* has EXIFTAG_ defines to handle them.
|
|
*/
|
|
TIFFSetField(tif, EXIFTAG_DATETIMEORIGINAL, strTime);
|
|
TIFFSetField(tif, EXIFTAG_DATETIMEDIGITIZED, strTime);
|
|
|
|
const auto &analogGain = metadata.get(controls::AnalogueGain);
|
|
if (analogGain) {
|
|
uint16_t iso = std::min(std::max(*analogGain * 100, 0.0f), 65535.0f);
|
|
TIFFSetField(tif, EXIFTAG_ISOSPEEDRATINGS, 1, &iso);
|
|
}
|
|
|
|
const auto &exposureTime = metadata.get(controls::ExposureTime);
|
|
if (exposureTime)
|
|
TIFFSetField(tif, EXIFTAG_EXPOSURETIME, *exposureTime / 1e6);
|
|
|
|
TIFFWriteCustomDirectory(tif, &exifIFDOffset);
|
|
|
|
/* Update the IFD offsets and close the file. */
|
|
TIFFSetDirectory(tif, 0);
|
|
TIFFSetField(tif, TIFFTAG_SUBIFD, 1, &rawIFDOffset);
|
|
TIFFSetField(tif, TIFFTAG_EXIFIFD, exifIFDOffset);
|
|
TIFFWriteDirectory(tif);
|
|
|
|
TIFFClose(tif);
|
|
|
|
return 0;
|
|
}
|