libcamera/src/ipa/raspberrypi/controller/rpi/alsc.cpp
David Plowman ff291b3c15 libcamera: ipa: raspberrypi: Allow SwitchMode method to return camera settings
This commit adds a Metadata parameter to the SwitchMode method
enabling it to return camera and other settings to the caller
(usually the configure method, just after the camera mode has been
selected).

In future this will allow the Raspberry Pi IPAs to take those settings
(such as exposure and analogue gain) and program them directly into
the camera or ISP before the camera is even started.

Signed-off-by: David Plowman <david.plowman@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
2020-06-22 07:03:25 +03:00

707 lines
23 KiB
C++

/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* alsc.cpp - ALSC (auto lens shading correction) control algorithm
*/
#include <math.h>
#include "../awb_status.h"
#include "alsc.hpp"
// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.
using namespace RPi;
#define NAME "rpi.alsc"
static const int X = ALSC_CELLS_X;
static const int Y = ALSC_CELLS_Y;
static const int XY = X * Y;
static const double INSUFFICIENT_DATA = -1.0;
Alsc::Alsc(Controller *controller)
: Algorithm(controller)
{
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
}
Alsc::~Alsc()
{
{
std::lock_guard<std::mutex> lock(mutex_);
async_abort_ = true;
async_signal_.notify_one();
}
async_thread_.join();
}
char const *Alsc::Name() const
{
return NAME;
}
static void generate_lut(double *lut, boost::property_tree::ptree const &params)
{
double cstrength = params.get<double>("corner_strength", 2.0);
if (cstrength <= 1.0)
throw std::runtime_error("Alsc: corner_strength must be > 1.0");
double asymmetry = params.get<double>("asymmetry", 1.0);
if (asymmetry < 0)
throw std::runtime_error("Alsc: asymmetry must be >= 0");
double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
int num = 0;
for (int y = 0; y < Y; y++) {
for (int x = 0; x < X; x++) {
double dy = y - Y / 2 + 0.5,
dx = (x - X / 2 + 0.5) * asymmetry;
double r2 = (dx * dx + dy * dy) / R2;
lut[num++] =
(f1 * r2 + f2) * (f1 * r2 + f2) /
(f2 * f2); // this reproduces the cos^4 rule
}
}
}
static void read_lut(double *lut, boost::property_tree::ptree const &params)
{
int num = 0;
const int max_num = XY;
for (auto &p : params) {
if (num == max_num)
throw std::runtime_error(
"Alsc: too many entries in LSC table");
lut[num++] = p.second.get_value<double>();
}
if (num < max_num)
throw std::runtime_error("Alsc: too few entries in LSC table");
}
static void read_calibrations(std::vector<AlscCalibration> &calibrations,
boost::property_tree::ptree const &params,
std::string const &name)
{
if (params.get_child_optional(name)) {
double last_ct = 0;
for (auto &p : params.get_child(name)) {
double ct = p.second.get<double>("ct");
if (ct <= last_ct)
throw std::runtime_error(
"Alsc: entries in " + name +
" must be in increasing ct order");
AlscCalibration calibration;
calibration.ct = last_ct = ct;
boost::property_tree::ptree const &table =
p.second.get_child("table");
int num = 0;
for (auto it = table.begin(); it != table.end(); it++) {
if (num == XY)
throw std::runtime_error(
"Alsc: too many values for ct " +
std::to_string(ct) + " in " +
name);
calibration.table[num++] =
it->second.get_value<double>();
}
if (num != XY)
throw std::runtime_error(
"Alsc: too few values for ct " +
std::to_string(ct) + " in " + name);
calibrations.push_back(calibration);
RPI_LOG("Read " << name << " calibration for ct "
<< ct);
}
}
}
void Alsc::Read(boost::property_tree::ptree const &params)
{
RPI_LOG("Alsc");
config_.frame_period = params.get<uint16_t>("frame_period", 12);
config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
config_.speed = params.get<double>("speed", 0.05);
double sigma = params.get<double>("sigma", 0.01);
config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
config_.min_count = params.get<double>("min_count", 10.0);
config_.min_G = params.get<uint16_t>("min_G", 50);
config_.omega = params.get<double>("omega", 1.3);
config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
config_.luminance_strength =
params.get<double>("luminance_strength", 1.0);
for (int i = 0; i < XY; i++)
config_.luminance_lut[i] = 1.0;
if (params.get_child_optional("corner_strength"))
generate_lut(config_.luminance_lut, params);
else if (params.get_child_optional("luminance_lut"))
read_lut(config_.luminance_lut,
params.get_child("luminance_lut"));
else
RPI_WARN("Alsc: no luminance table - assume unity everywhere");
read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
config_.default_ct = params.get<double>("default_ct", 4500.0);
config_.threshold = params.get<double>("threshold", 1e-3);
}
static void get_cal_table(double ct,
std::vector<AlscCalibration> const &calibrations,
double cal_table[XY]);
static void resample_cal_table(double const cal_table_in[XY],
CameraMode const &camera_mode,
double cal_table_out[XY]);
static void compensate_lambdas_for_cal(double const cal_table[XY],
double const old_lambdas[XY],
double new_lambdas[XY]);
static void add_luminance_to_tables(double results[3][Y][X],
double const lambda_r[XY], double lambda_g,
double const lambda_b[XY],
double const luminance_lut[XY],
double luminance_strength);
void Alsc::Initialise()
{
RPI_LOG("Alsc");
frame_count2_ = frame_count_ = frame_phase_ = 0;
first_time_ = true;
// Initialise the lambdas. Each call to Process then restarts from the
// previous results. Also initialise the previous frame tables to the
// same harmless values.
for (int i = 0; i < XY; i++)
lambda_r_[i] = lambda_b_[i] = 1.0;
}
void Alsc::SwitchMode(CameraMode const &camera_mode, Metadata *metadata)
{
(void)metadata;
// There's a bit of a question what we should do if the "crop" of the
// camera mode has changed. Any calculation currently in flight would
// not be useful to the new mode, so arguably we should abort it, and
// generate a new table (like the "first_time" code already here). When
// the crop doesn't change, we can presumably just leave things
// alone. For now, I think we'll just wait and see. When the crop does
// change, any effects should be transient, and if they're not transient
// enough, we'll revisit the question then.
camera_mode_ = camera_mode;
if (first_time_) {
// On the first time, arrange for something sensible in the
// initial tables. Construct the tables for some default colour
// temperature. This echoes the code in doAlsc, without the
// adaptive algorithm.
double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
get_cal_table(4000, config_.calibrations_Cr, cal_table_tmp);
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
get_cal_table(4000, config_.calibrations_Cb, cal_table_tmp);
resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
compensate_lambdas_for_cal(cal_table_r, lambda_r_,
async_lambda_r_);
compensate_lambdas_for_cal(cal_table_b, lambda_b_,
async_lambda_b_);
add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
async_lambda_b_, config_.luminance_lut,
config_.luminance_strength);
memcpy(prev_sync_results_, sync_results_,
sizeof(prev_sync_results_));
first_time_ = false;
}
}
void Alsc::fetchAsyncResults()
{
RPI_LOG("Fetch ALSC results");
async_finished_ = false;
async_started_ = false;
memcpy(sync_results_, async_results_, sizeof(sync_results_));
}
static double get_ct(Metadata *metadata, double default_ct)
{
AwbStatus awb_status;
awb_status.temperature_K = default_ct; // in case nothing found
if (metadata->Get("awb.status", awb_status) != 0)
RPI_WARN("Alsc: no AWB results found, using "
<< awb_status.temperature_K);
else
RPI_LOG("Alsc: AWB results found, using "
<< awb_status.temperature_K);
return awb_status.temperature_K;
}
static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
AlscStatus const &status)
{
bcm2835_isp_stats_region *input_regions = stats->awb_stats;
double *r_table = (double *)status.r;
double *g_table = (double *)status.g;
double *b_table = (double *)status.b;
for (int i = 0; i < XY; i++) {
regions[i].r_sum = input_regions[i].r_sum / r_table[i];
regions[i].g_sum = input_regions[i].g_sum / g_table[i];
regions[i].b_sum = input_regions[i].b_sum / b_table[i];
regions[i].counted = input_regions[i].counted;
// (don't care about the uncounted value)
}
}
void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
{
RPI_LOG("Starting ALSC thread");
// Get the current colour temperature. It's all we need from the
// metadata.
ct_ = get_ct(image_metadata, config_.default_ct);
// We have to copy the statistics here, dividing out our best guess of
// the LSC table that the pipeline applied to them.
AlscStatus alsc_status;
if (image_metadata->Get("alsc.status", alsc_status) != 0) {
RPI_WARN("No ALSC status found for applied gains!");
for (int y = 0; y < Y; y++)
for (int x = 0; x < X; x++) {
alsc_status.r[y][x] = 1.0;
alsc_status.g[y][x] = 1.0;
alsc_status.b[y][x] = 1.0;
}
}
copy_stats(statistics_, stats, alsc_status);
frame_phase_ = 0;
// copy the camera mode so it won't change during the calculations
async_camera_mode_ = camera_mode_;
async_start_ = true;
async_started_ = true;
async_signal_.notify_one();
}
void Alsc::Prepare(Metadata *image_metadata)
{
// Count frames since we started, and since we last poked the async
// thread.
if (frame_count_ < (int)config_.startup_frames)
frame_count_++;
double speed = frame_count_ < (int)config_.startup_frames
? 1.0
: config_.speed;
RPI_LOG("Alsc: frame_count " << frame_count_ << " speed " << speed);
{
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ && async_finished_) {
RPI_LOG("ALSC thread finished");
fetchAsyncResults();
}
}
// Apply IIR filter to results and program into the pipeline.
double *ptr = (double *)sync_results_,
*pptr = (double *)prev_sync_results_;
for (unsigned int i = 0;
i < sizeof(sync_results_) / sizeof(double); i++)
pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
// Put output values into status metadata.
AlscStatus status;
memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
image_metadata->Set("alsc.status", status);
}
void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
// Count frames since we started, and since we last poked the async
// thread.
if (frame_phase_ < (int)config_.frame_period)
frame_phase_++;
if (frame_count2_ < (int)config_.startup_frames)
frame_count2_++;
RPI_LOG("Alsc: frame_phase " << frame_phase_);
if (frame_phase_ >= (int)config_.frame_period ||
frame_count2_ < (int)config_.startup_frames) {
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ == false) {
RPI_LOG("ALSC thread starting");
restartAsync(stats, image_metadata);
}
}
}
void Alsc::asyncFunc()
{
while (true) {
{
std::unique_lock<std::mutex> lock(mutex_);
async_signal_.wait(lock, [&] {
return async_start_ || async_abort_;
});
async_start_ = false;
if (async_abort_)
break;
}
doAlsc();
{
std::lock_guard<std::mutex> lock(mutex_);
async_finished_ = true;
sync_signal_.notify_one();
}
}
}
void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations,
double cal_table[XY])
{
if (calibrations.empty()) {
for (int i = 0; i < XY; i++)
cal_table[i] = 1.0;
RPI_LOG("Alsc: no calibrations found");
} else if (ct <= calibrations.front().ct) {
memcpy(cal_table, calibrations.front().table,
XY * sizeof(double));
RPI_LOG("Alsc: using calibration for "
<< calibrations.front().ct);
} else if (ct >= calibrations.back().ct) {
memcpy(cal_table, calibrations.back().table,
XY * sizeof(double));
RPI_LOG("Alsc: using calibration for "
<< calibrations.front().ct);
} else {
int idx = 0;
while (ct > calibrations[idx + 1].ct)
idx++;
double ct0 = calibrations[idx].ct,
ct1 = calibrations[idx + 1].ct;
RPI_LOG("Alsc: ct is " << ct << ", interpolating between "
<< ct0 << " and " << ct1);
for (int i = 0; i < XY; i++)
cal_table[i] =
(calibrations[idx].table[i] * (ct1 - ct) +
calibrations[idx + 1].table[i] * (ct - ct0)) /
(ct1 - ct0);
}
}
void resample_cal_table(double const cal_table_in[XY],
CameraMode const &camera_mode, double cal_table_out[XY])
{
// Precalculate and cache the x sampling locations and phases to save
// recomputing them on every row.
int x_lo[X], x_hi[X];
double xf[X];
double scale_x = camera_mode.sensor_width /
(camera_mode.width * camera_mode.scale_x);
double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width;
double x = .5 / scale_x + x_off * X - .5;
double x_inc = 1 / scale_x;
for (int i = 0; i < X; i++, x += x_inc) {
x_lo[i] = floor(x);
xf[i] = x - x_lo[i];
x_hi[i] = std::min(x_lo[i] + 1, X - 1);
x_lo[i] = std::max(x_lo[i], 0);
}
// Now march over the output table generating the new values.
double scale_y = camera_mode.sensor_height /
(camera_mode.height * camera_mode.scale_y);
double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height;
double y = .5 / scale_y + y_off * Y - .5;
double y_inc = 1 / scale_y;
for (int j = 0; j < Y; j++, y += y_inc) {
int y_lo = floor(y);
double yf = y - y_lo;
int y_hi = std::min(y_lo + 1, Y - 1);
y_lo = std::max(y_lo, 0);
double const *row_above = cal_table_in + X * y_lo;
double const *row_below = cal_table_in + X * y_hi;
for (int i = 0; i < X; i++) {
double above = row_above[x_lo[i]] * (1 - xf[i]) +
row_above[x_hi[i]] * xf[i];
double below = row_below[x_lo[i]] * (1 - xf[i]) +
row_below[x_hi[i]] * xf[i];
*(cal_table_out++) = above * (1 - yf) + below * yf;
}
}
}
// Calculate chrominance statistics (R/G and B/G) for each region.
static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY],
double Cb[XY], uint32_t min_count, uint16_t min_G)
{
for (int i = 0; i < XY; i++) {
bcm2835_isp_stats_region &zone = awb_region[i];
if (zone.counted <= min_count ||
zone.g_sum / zone.counted <= min_G) {
Cr[i] = Cb[i] = INSUFFICIENT_DATA;
continue;
}
Cr[i] = zone.r_sum / (double)zone.g_sum;
Cb[i] = zone.b_sum / (double)zone.g_sum;
}
}
static void apply_cal_table(double const cal_table[XY], double C[XY])
{
for (int i = 0; i < XY; i++)
if (C[i] != INSUFFICIENT_DATA)
C[i] *= cal_table[i];
}
void compensate_lambdas_for_cal(double const cal_table[XY],
double const old_lambdas[XY],
double new_lambdas[XY])
{
double min_new_lambda = std::numeric_limits<double>::max();
for (int i = 0; i < XY; i++) {
new_lambdas[i] = old_lambdas[i] * cal_table[i];
min_new_lambda = std::min(min_new_lambda, new_lambdas[i]);
}
for (int i = 0; i < XY; i++)
new_lambdas[i] /= min_new_lambda;
}
static void print_cal_table(double const C[XY])
{
printf("table: [\n");
for (int j = 0; j < Y; j++) {
for (int i = 0; i < X; i++) {
printf("%5.3f", 1.0 / C[j * X + i]);
if (i != X - 1 || j != Y - 1)
printf(",");
}
printf("\n");
}
printf("]\n");
}
// Compute weight out of 1.0 which reflects how similar we wish to make the
// colours of these two regions.
static double compute_weight(double C_i, double C_j, double sigma)
{
if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA)
return 0;
double diff = (C_i - C_j) / sigma;
return exp(-diff * diff / 2);
}
// Compute all weights.
static void compute_W(double const C[XY], double sigma, double W[XY][4])
{
for (int i = 0; i < XY; i++) {
// Start with neighbour above and go clockwise.
W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0;
W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma)
: 0;
W[i][2] =
i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0;
W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0;
}
}
// Compute M, the large but sparse matrix such that M * lambdas = 0.
static void construct_M(double const C[XY], double const W[XY][4],
double M[XY][4])
{
double epsilon = 0.001;
for (int i = 0; i < XY; i++) {
// Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
// be zero so the equation is still set up correctly.
int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
!!(i % X); // total number of neighbours
// we'll divide the diagonal out straight away
double diagonal =
(epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) *
C[i];
M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) /
diagonal
: 0;
M[i][1] = i % X < X - 1
? (W[i][1] * C[i + 1] + epsilon / m * C[i]) /
diagonal
: 0;
M[i][2] = i < XY - X
? (W[i][2] * C[i + X] + epsilon / m * C[i]) /
diagonal
: 0;
M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) /
diagonal
: 0;
}
}
// In the compute_lambda_ functions, note that the matrix coefficients for the
// left/right neighbours are zero down the left/right edges, so we don't need
// need to test the i value to exclude them.
static double compute_lambda_bottom(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
M[i][3] * lambda[i - 1];
}
static double compute_lambda_bottom_start(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
}
static double compute_lambda_interior(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
}
static double compute_lambda_top(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
M[i][3] * lambda[i - 1];
}
static double compute_lambda_top_end(int i, double const M[XY][4],
double lambda[XY])
{
return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
}
// Gauss-Seidel iteration with over-relaxation.
static double gauss_seidel2_SOR(double const M[XY][4], double omega,
double lambda[XY])
{
double old_lambda[XY];
for (int i = 0; i < XY; i++)
old_lambda[i] = lambda[i];
int i;
lambda[0] = compute_lambda_bottom_start(0, M, lambda);
for (i = 1; i < X; i++)
lambda[i] = compute_lambda_bottom(i, M, lambda);
for (; i < XY - X; i++)
lambda[i] = compute_lambda_interior(i, M, lambda);
for (; i < XY - 1; i++)
lambda[i] = compute_lambda_top(i, M, lambda);
lambda[i] = compute_lambda_top_end(i, M, lambda);
// Also solve the system from bottom to top, to help spread the updates
// better.
lambda[i] = compute_lambda_top_end(i, M, lambda);
for (i = XY - 2; i >= XY - X; i--)
lambda[i] = compute_lambda_top(i, M, lambda);
for (; i >= X; i--)
lambda[i] = compute_lambda_interior(i, M, lambda);
for (; i >= 1; i--)
lambda[i] = compute_lambda_bottom(i, M, lambda);
lambda[0] = compute_lambda_bottom_start(0, M, lambda);
double max_diff = 0;
for (int i = 0; i < XY; i++) {
lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff))
max_diff = lambda[i] - old_lambda[i];
}
return max_diff;
}
// Normalise the values so that the smallest value is 1.
static void normalise(double *ptr, size_t n)
{
double minval = ptr[0];
for (size_t i = 1; i < n; i++)
minval = std::min(minval, ptr[i]);
for (size_t i = 0; i < n; i++)
ptr[i] /= minval;
}
static void run_matrix_iterations(double const C[XY], double lambda[XY],
double const W[XY][4], double omega,
int n_iter, double threshold)
{
double M[XY][4];
construct_M(C, W, M);
double last_max_diff = std::numeric_limits<double>::max();
for (int i = 0; i < n_iter; i++) {
double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda));
if (max_diff < threshold) {
RPI_LOG("Stop after " << i + 1 << " iterations");
break;
}
// this happens very occasionally (so make a note), though
// doesn't seem to matter
if (max_diff > last_max_diff)
RPI_LOG("Iteration " << i << ": max_diff gone up "
<< last_max_diff << " to "
<< max_diff);
last_max_diff = max_diff;
}
// We're going to normalise the lambdas so the smallest is 1. Not sure
// this is really necessary as they get renormalised later, but I
// suppose it does stop these quantities from wandering off...
normalise(lambda, XY);
}
static void add_luminance_rb(double result[XY], double const lambda[XY],
double const luminance_lut[XY],
double luminance_strength)
{
for (int i = 0; i < XY; i++)
result[i] = lambda[i] *
((luminance_lut[i] - 1) * luminance_strength + 1);
}
static void add_luminance_g(double result[XY], double lambda,
double const luminance_lut[XY],
double luminance_strength)
{
for (int i = 0; i < XY; i++)
result[i] = lambda *
((luminance_lut[i] - 1) * luminance_strength + 1);
}
void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY],
double lambda_g, double const lambda_b[XY],
double const luminance_lut[XY],
double luminance_strength)
{
add_luminance_rb((double *)results[0], lambda_r, luminance_lut,
luminance_strength);
add_luminance_g((double *)results[1], lambda_g, luminance_lut,
luminance_strength);
add_luminance_rb((double *)results[2], lambda_b, luminance_lut,
luminance_strength);
normalise((double *)results, 3 * XY);
}
void Alsc::doAlsc()
{
double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY],
cal_table_b[XY], cal_table_tmp[XY];
// Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
// usable.
calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G);
// Fetch the new calibrations (if any) for this CT. Resample them in
// case the camera mode is not full-frame.
get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
resample_cal_table(cal_table_tmp, async_camera_mode_, cal_table_r);
get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
resample_cal_table(cal_table_tmp, async_camera_mode_, cal_table_b);
// You could print out the cal tables for this image here, if you're
// tuning the algorithm...
(void)print_cal_table;
// Apply any calibration to the statistics, so the adaptive algorithm
// makes only the extra adjustments.
apply_cal_table(cal_table_r, Cr);
apply_cal_table(cal_table_b, Cb);
// Compute weights between zones.
compute_W(Cr, config_.sigma_Cr, Wr);
compute_W(Cb, config_.sigma_Cb, Wb);
// Run Gauss-Seidel iterations over the resulting matrix, for R and B.
run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
config_.threshold);
run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
config_.threshold);
// Fold the calibrated gains into our final lambda values. (Note that on
// the next run, we re-start with the lambda values that don't have the
// calibration gains included.)
compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_);
compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_);
// Fold in the luminance table at the appropriate strength.
add_luminance_to_tables(async_results_, async_lambda_r_, 1.0,
async_lambda_b_, config_.luminance_lut,
config_.luminance_strength);
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Alsc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);