1
0
Fork 0
mirror of https://github.com/opentx/opentx.git synced 2025-07-16 04:45:17 +03:00

Bsongis/server compilation fix (#4763)

* Fix following automatic server emails

CMake options:
-DTHR_TRACE=YES -DVARIO=YES -DGAUGES=NO -DAUTOSWITCH=YES -DTRANSLATIONS=FR -DACCURAT_THROTTLE_STATS=NO -DSP22=NO -DPCB=9X -DARITHMETIC_OVERFLOW_CHECK=NO -DFONT=SQT5 -DHELI=NO -DEEPROM_PROGRESS_BAR=YES -DTEMPLATES=NO -DFRSKY_STICKS=NO -DVOICE=NO -DDBLKEYS=NO -DGRAPHICS=YES -DFAI=YES -DBATTGRAPH=YES -DTURNIGY_TRANSMITTER_FIX=NO -DPWM_BACKLIGHT=NO -DNAVIGATION=NO -DBOLD=YES -DDSM2=NO -DGVARS=NO -DAUTOSOURCE=YES -DCURVES=NO -DWS_HOW_HIGH=YES -DPPM_LIMITS_SYMETRICAL=NO -DHAPTIC=NO -DUNITS=METRIC -DPPM_UNIT=PERCENT_PREC1 -DAUDIO=YES -DGPS=NO -DPPM_CENTER_ADJUSTABLE=NO -DSPLASH=YES -DFAS_OFFSET=NO -DFLIGHT_MODES=NO -DOVERRIDE_CHANNEL_FUNCTION=YES

* Fix some missing translations for avr

* Compilation fixes
This commit is contained in:
Bertrand Songis 2017-04-08 12:39:30 +02:00 committed by GitHub
parent 76f3edb50d
commit 0359cb244e
9 changed files with 941 additions and 934 deletions

View file

@ -40,11 +40,17 @@ static const pm_uint8_t beepTab[] PROGMEM = {
void beep(uint8_t val)
{
#if defined(HAPTIC) && !defined(AUDIO)
haptic.event(val==0 ? AU_KEYPAD_UP : (val==4 ? AU_ERROR : AU_TIMER_LT10+beepAgain));
// completely untested
if (val == 0)
haptic.play(5, 0, PLAY_NOW);
else
haptic.event(AU_ERROR);
#endif
#if !defined(AUDIO)
if (g_eeGeneral.alarmsFlash && val>1) flashCounter = FLASH_DURATION;
if (g_eeGeneral.alarmsFlash && val>1) {
flashCounter = FLASH_DURATION;
}
#endif
if (g_eeGeneral.beepMode>0 || (g_eeGeneral.beepMode==0 && val!=0) || (g_eeGeneral.beepMode==-1 && val>=3)) {

View file

@ -104,9 +104,6 @@ inline void beep(uint8_t) { }
#define AUDIO_TIMER_MINUTE(t)
#define AUDIO_TIMER_30()
#define AUDIO_TIMER_20()
#define AUDIO_KEYPAD_UP()
#define AUDIO_KEYPAD_DOWN()
#define AUDIO_MENUS()
#define AUDIO_WARNING2()
#define AUDIO_WARNING1()
#define AUDIO_ERROR()

View file

@ -390,105 +390,6 @@ int applyCurve(int x, int8_t idx)
}
#endif
// #define EXTENDED_EXPO
// increases range of expo curve but costs about 82 bytes flash
// expo-funktion:
// ---------------
// kmplot
// f(x,k)=exp(ln(x)*k/10) ;P[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
// f(x,k)=x*x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// f(x,k)=x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// f(x,k)=1+(x-1)*(x-1)*(x-1)*k/10 + (x-1)*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// don't know what this above should be, just confusing in my opinion,
// here is the real explanation
// actually the real formula is
/*
f(x) = exp( ln(x) * 10^k)
if it is 10^k or e^k or 2^k etc. just defines the max distortion of the expo curve; I think 10 is useful
this gives values from 0 to 1 for x and output; k must be between -1 and +1
we do not like to calculate with floating point. Therefore we rescale for x from 0 to 1024 and for k from -100 to +100
f(x) = 1024 * ( e^( ln(x/1024) * 10^(k/100) ) )
This would be really hard to be calculated by such a microcontroller
Therefore Thomas Husterer compared a few usual function something like x^3, x^4*something, which look similar
Actually the formula
f(x) = k*x^3+x*(1-k)
gives a similar form and should have even advantages compared to a original exp curve.
This function again expect x from 0 to 1 and k only from 0 to 1
Therefore rescaling is needed like before:
f(x) = 1024* ((k/100)*(x/1024)^3 + (x/1024)*(100-k)/100)
some mathematical tricks
f(x) = (k*x*x*x/(1024*1024) + x*(100-k)) / 100
for better rounding results we add the 50
f(x) = (k*x*x*x/(1024*1024) + x*(100-k) + 50) / 100
because we now understand the formula, we can optimize it further
--> calc100to256(k) --> eliminates /100 by replacing with /256 which is just a simple shift right 8
k is now between 0 and 256
f(x) = (k*x*x*x/(1024*1024) + x*(256-k) + 128) / 256
*/
// input parameters;
// x 0 to 1024;
// k 0 to 100;
// output between 0 and 1024
unsigned int expou(unsigned int x, unsigned int k)
{
#if defined(EXTENDED_EXPO)
bool extended;
if (k>80) {
extended=true;
}
else {
k += (k>>2); // use bigger values before extend, because the effect is anyway very very low
extended=false;
}
#endif
k = calc100to256(k);
uint32_t value = (uint32_t) x*x;
value *= (uint32_t)k;
value >>= 8;
value *= (uint32_t)x;
#if defined(EXTENDED_EXPO)
if (extended) { // for higher values do more multiplications to get a stronger expo curve
value >>= 16;
value *= (uint32_t)x;
value >>= 4;
value *= (uint32_t)x;
}
#endif
value >>= 12;
value += (uint32_t)(256-k)*x+128;
return value>>8;
}
int expo(int x, int k)
{
if (k == 0) {
return x;
}
int y;
bool neg = (x < 0);
if (neg) {
x = -x;
}
if (k < 0) {
y = RESXu - expou(RESXu-x, -k);
}
else {
y = expou(x, k);
}
return neg ? -y : y;
}
point_t getPoint(uint8_t i)
{
point_t result = {0, 0};

View file

@ -307,7 +307,7 @@ void menuMainView(event_t event)
case EVT_KEY_BREAK(KEY_MENU):
if (view_base == VIEW_TIMER2) {
Timer2_running = !Timer2_running;
AUDIO_KEYPAD_UP();
AUDIO_KEY_PRESS();
}
break;
*/

View file

@ -46,9 +46,108 @@ int16_t channelOutputs[MAX_OUTPUT_CHANNELS] = {0};
int16_t ex_chans[MAX_OUTPUT_CHANNELS] = {0}; // Outputs (before LIMITS) of the last perMain;
#if defined(HELI)
int16_t cyc_anas[3] = {0};
int16_t cyc_anas[3] = {0};
#endif
// #define EXTENDED_EXPO
// increases range of expo curve but costs about 82 bytes flash
// expo-funktion:
// ---------------
// kmplot
// f(x,k)=exp(ln(x)*k/10) ;P[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
// f(x,k)=x*x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// f(x,k)=x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// f(x,k)=1+(x-1)*(x-1)*(x-1)*k/10 + (x-1)*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// don't know what this above should be, just confusing in my opinion,
// here is the real explanation
// actually the real formula is
/*
f(x) = exp( ln(x) * 10^k)
if it is 10^k or e^k or 2^k etc. just defines the max distortion of the expo curve; I think 10 is useful
this gives values from 0 to 1 for x and output; k must be between -1 and +1
we do not like to calculate with floating point. Therefore we rescale for x from 0 to 1024 and for k from -100 to +100
f(x) = 1024 * ( e^( ln(x/1024) * 10^(k/100) ) )
This would be really hard to be calculated by such a microcontroller
Therefore Thomas Husterer compared a few usual function something like x^3, x^4*something, which look similar
Actually the formula
f(x) = k*x^3+x*(1-k)
gives a similar form and should have even advantages compared to a original exp curve.
This function again expect x from 0 to 1 and k only from 0 to 1
Therefore rescaling is needed like before:
f(x) = 1024* ((k/100)*(x/1024)^3 + (x/1024)*(100-k)/100)
some mathematical tricks
f(x) = (k*x*x*x/(1024*1024) + x*(100-k)) / 100
for better rounding results we add the 50
f(x) = (k*x*x*x/(1024*1024) + x*(100-k) + 50) / 100
because we now understand the formula, we can optimize it further
--> calc100to256(k) --> eliminates /100 by replacing with /256 which is just a simple shift right 8
k is now between 0 and 256
f(x) = (k*x*x*x/(1024*1024) + x*(256-k) + 128) / 256
*/
// input parameters;
// x 0 to 1024;
// k 0 to 100;
// output between 0 and 1024
unsigned int expou(unsigned int x, unsigned int k)
{
#if defined(EXTENDED_EXPO)
bool extended;
if (k>80) {
extended=true;
}
else {
k += (k>>2); // use bigger values before extend, because the effect is anyway very very low
extended=false;
}
#endif
k = calc100to256(k);
uint32_t value = (uint32_t) x*x;
value *= (uint32_t)k;
value >>= 8;
value *= (uint32_t)x;
#if defined(EXTENDED_EXPO)
if (extended) { // for higher values do more multiplications to get a stronger expo curve
value >>= 16;
value *= (uint32_t)x;
value >>= 4;
value *= (uint32_t)x;
}
#endif
value >>= 12;
value += (uint32_t)(256-k)*x+128;
return value>>8;
}
int expo(int x, int k)
{
if (k == 0) {
return x;
}
int y;
bool neg = (x < 0);
if (neg) {
x = -x;
}
if (k < 0) {
y = RESXu - expou(RESXu-x, -k);
}
else {
y = expou(x, k);
}
return neg ? -y : y;
}
void applyExpos(int16_t * anas, uint8_t mode APPLY_EXPOS_EXTRA_PARAMS)
{
#if !defined(VIRTUAL_INPUTS)
@ -168,7 +267,6 @@ int16_t applyLimits(uint8_t channel, int32_t value)
}
#endif
int16_t ofs = LIMIT_OFS_RESX(lim);
int16_t lim_p = LIMIT_MAX_RESX(lim);
int16_t lim_n = LIMIT_MIN_RESX(lim);
@ -1060,7 +1158,9 @@ void evalMixes(uint8_t tick10ms)
if (flightModeTransitionTime && get_tmr10ms() > flightModeTransitionTime+SWITCHES_DELAY()) {
flightModeTransitionTime = 0;
if (fm != flightModeTransitionLast) {
if (flightModeTransitionLast != 255) PLAY_PHASE_OFF(flightModeTransitionLast);
if (flightModeTransitionLast != 255) {
PLAY_PHASE_OFF(flightModeTransitionLast);
}
PLAY_PHASE_ON(fm);
flightModeTransitionLast = fm;
}

View file

@ -444,7 +444,7 @@ void menuViewTelemetryNMEA1(event_t event)
title ('1');
lcd_puts ( 2*FW, 1*FH, PSTR("UTC-Time Sat"));
lcdDrawText ( 2*FW, 1*FH, PSTR("UTC-Time Sat"));
if (rbuf[0][0]) { // show always if data have been received
lcdDrawChar ( 19*FW, 1*FH, sbuf[2], 0); // satellites in view
@ -459,12 +459,12 @@ void menuViewTelemetryNMEA1(event_t event)
if ((show_timer == 1) && rbuf[0][0]) { // show the Timer when data have been received
lcd_puts ( 2*FW, 4*FH, PSTR("Timer")); // display "Timer"
lcdDrawText ( 2*FW, 4*FH, PSTR("Timer")); // display "Timer"
drawTimer ( 5*FW, 5*FH, (gpstime-gpstimer), DBLSIZE, DBLSIZE); // display difference as mm:ss
}
else
{
lcd_puts ( 2*FW, 4*FH, PSTR("Date")); // show the UTC Date
lcdDrawText ( 2*FW, 4*FH, PSTR("Date")); // show the UTC Date
if (rbuf[1][0]) {
lcdDrawSizedText( 2*FW, 5*FH, &rbuf[1][0], 2, APSIZE); // year
@ -513,12 +513,12 @@ void menuViewTelemetryNMEA2(event_t event)
case EVT_KEY_LONG(KEY_LEFT):
ignore_break = 1;
beep_on=0;
AUDIO_MENUS(); // short blip
AUDIO_KEY_PRESS();
break;
case EVT_KEY_LONG(KEY_RIGHT):
ignore_break = 1;
beep_on=1;
AUDIO_MENUS(); // short blip
AUDIO_KEY_PRESS();
break;
//Altitude setting
@ -546,35 +546,35 @@ void menuViewTelemetryNMEA2(event_t event)
if (save_alt==0) // wenn noch keine Home H<>he gesetzt war, wird sie es jetzt, weil sonst
// das Umschalten keine Wirkung zeigt
save_alt = home_alt = abs_alt; // absolute altitude
AUDIO_MENUS(); // short blip for non negative lift
AUDIO_KEY_PRESS();
break;
case EVT_KEY_LONG(KEY_MENU):
ignore_break = 1;
save_alt = home_alt = abs_alt; // Home altitude auf aktuelle absolute H<>he setzen
AUDIO_MENUS(); // short blip for non negative lift
AUDIO_KEY_PRESS();
break;
case EVT_KEY_LONG(KEY_EXIT): // Max Altitude auf 0 zur<75>cksetzen
max_alt=0;
AUDIO_MENUS(); // short blip for non negative lift
AUDIO_KEY_PRESS();
break;
}
title ('2');
lcd_puts ( 1*FW, 1*FH, PSTR("Altitude Sat Max"));
lcdDrawText ( 1*FW, 1*FH, PSTR("Altitude Sat Max"));
lcd_puts ( 16*FW, 3*FH, PSTR("Home"));
lcd_puts ( 2*FW, 4*FH, PSTR("Lift") );
lcdDrawText ( 16*FW, 3*FH, PSTR("Home"));
lcdDrawText ( 2*FW, 4*FH, PSTR("Lift") );
lcd_puts ( 16*FW, 5*FH, PSTR("Beep") );
lcdDrawText ( 16*FW, 5*FH, PSTR("Beep") );
if (beep_on==1)
lcd_puts ( 18*FW, 6*FH, PSTR("ON") );
lcdDrawText ( 18*FW, 6*FH, PSTR("ON") );
else
lcd_puts ( 17*FW, 6*FH, PSTR("OFF") );
lcdDrawText ( 17*FW, 6*FH, PSTR("OFF") );
lcdDrawNumber( 20*FW, 4*FH, home_alt, PREC1, 6); // display home_alt, small characters
@ -609,7 +609,7 @@ void menuViewTelemetryNMEA2(event_t event)
prev_alt = rel_alt;
if ((lift_alt >= 0) && (sbuf[1]>0x30) && beep_on) // GGA record must have Fix> 0
AUDIO_MENUS(); // short blip for non negative lift
AUDIO_KEY_PRESS(); // short blip for non negative lift
}
@ -631,7 +631,7 @@ void menuViewTelemetryNMEA2(event_t event)
lcdDrawNumber( 10*FW, 5*FH, lift_alt, DBLSIZE|PREC1, 6); // lift
lcdDrawChar ( 11*FW, 6*FH, sbuf[0], 0); // dimension [m/S]
lcd_puts ( 12*FW, 6*FH, PSTR("/S") );
lcdDrawText ( 12*FW, 6*FH, PSTR("/S") );
}
}
else {
@ -665,7 +665,7 @@ void menuViewTelemetryNMEA3(event_t event)
initval (LONG_BUF(1), PACK_RMC, COG);
initval (SHORT_BUF(2), PACK_GGA, SAT); // -> sbuf[2]
title ('3');
lcd_puts ( 0*FW, 1*FH, PSTR("GrndSpeed[knt] Sat"));
lcdDrawText ( 0*FW, 1*FH, PSTR("GrndSpeed[knt] Sat"));
if (rbuf[0][0]) // if first position is 00, buffer is empty, taken as false
{ // any other value is true
uint8_t i = 0;
@ -685,7 +685,7 @@ void menuViewTelemetryNMEA3(event_t event)
lcdDrawChar ( 19*FW, 1*FH, sbuf[2], 0); // satellites in view
lcd_puts ( 1*FW, 4*FH, PSTR("Course over ground") );
lcdDrawText ( 1*FW, 4*FH, PSTR("Course over ground") );
lcdDrawText ( 2*FW, 5*FH, VALSTR(1), APSIZE); // course over ground
}
@ -719,7 +719,7 @@ void menuViewTelemetryNMEA4(event_t event)
initval (SHORT_BUF(2), PACK_GGA, SAT); // -> sbuf[2]
// title of the screen
title ('4');
lcd_puts ( 3*FW, 1*FH, PSTR("Latitude Sat")); // line 1 column 3
lcdDrawText ( 3*FW, 1*FH, PSTR("Latitude Sat")); // line 1 column 3
// first buffer into line 2 column 2
if (rbuf[0][0])
{
@ -731,7 +731,7 @@ void menuViewTelemetryNMEA4(event_t event)
}
else
lcdDrawText ( 2*FW, 2*FH, val_unknown, APSIZE);
lcd_puts ( 3*FW, 4*FH, PSTR("Longitude")); // line 4 column 5
lcdDrawText ( 3*FW, 4*FH, PSTR("Longitude")); // line 4 column 5
// second buffer into line 5 column 2
if (rbuf[0][0])
{

View file

@ -836,6 +836,7 @@
#define TR_RECEIVER INDENT "Přijímač"
#else
#define TR_RECEIVER_NUM "RX číslo"
#define TR_RECEIVER "RxNum"
#endif
#define TR_MULTI_RFTUNE TR(INDENT "Freq tune",INDENT "RF Freq. fine tune")
#define TR_MULTI_TELEMETRY "Telemetry"

View file

@ -844,6 +844,7 @@
#define TR_RECEIVER INDENT "Receiver"
#else
#define TR_RECEIVER_NUM "RxNum"
#define TR_RECEIVER "RxNum"
#endif
#define TR_MULTI_RFTUNE TR(INDENT "Freq tune",INDENT "RF Freq. fine tune")
#define TR_MULTI_TELEMETRY "Telemetry"

View file

@ -857,6 +857,7 @@
#define TR_RECEIVER INDENT "Receiver"
#else
#define TR_RECEIVER_NUM "RxNum"
#define TR_RECEIVER "RxNum"
#endif
#define TR_SYNCMENU "Synk [MENU]"
#define TR_MULTI_RFTUNE TR(INDENT "Freq tune",INDENT "RF Freq. fine tune")