1
0
Fork 0
mirror of https://github.com/opentx/opentx.git synced 2025-07-15 12:25:12 +03:00
[X10] New radio supported!
This commit is contained in:
Bertrand Songis 2017-02-04 10:42:50 +01:00 committed by GitHub
parent ebee591990
commit 40ece81de2
79 changed files with 1947 additions and 1370 deletions

View file

@ -0,0 +1,206 @@
/*
* Copyright (C) OpenTX
*
* Based on code named
* th9x - http://code.google.com/p/th9x
* er9x - http://code.google.com/p/er9x
* gruvin9x - http://code.google.com/p/gruvin9x
*
* License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "opentx.h"
#if defined(SIMU)
// not needed
#elif defined(PCBX10)
const int8_t ana_direction[NUM_ANALOGS] = {1,-1,1,-1, -1,-1,-1, -1,1,1,1, -1};
#elif defined(PCBX9E) && defined(HORUS_STICKS)
const int8_t ana_direction[NUM_ANALOGS] = {1,-1,1,-1, -1,-1,-1,1, -1,1,1,1, -1};
#elif defined(PCBX9E)
const int8_t ana_direction[NUM_ANALOGS] = {1,1,-1,-1, -1,-1,-1,1, -1,1,1,1, -1};
const uint8_t ana_mapping[NUM_ANALOGS] = { 0 /*STICK1*/, 1 /*STICK2*/, 2 /*STICK3*/, 3 /*STICK4*/,
10 /*POT1*/, 4 /*POT2*/, 5 /*POT3*/, 6 /*POT4*/,
11 /*SLIDER1*/, 12 /*SLIDER2*/, 7 /*SLIDER3*/, 8 /*SLIDER4*/,
9 /*TX_VOLTAGE*/ };
#elif defined(PCBX9DP)
const int8_t ana_direction[NUM_ANALOGS] = {1,-1,1,-1, -1,1,-1, -1,1, 1};
#elif defined(PCBX7)
const int8_t ana_direction[NUM_ANALOGS] = {-1,1,-1,1, 1,1, 1};
#elif defined(REV4a)
const int8_t ana_direction[NUM_ANALOGS] = {1,-1,1,-1, -1,-1,0, -1,1, 1};
#else
const int8_t ana_direction[NUM_ANALOGS] = {1,-1,1,-1, -1,1,0, -1,1, 1};
#endif
#if defined(PCBX9E)
#define NUM_ANALOGS_ADC 10
#define NUM_ANALOGS_ADC_EXT (NUM_ANALOGS - 10)
#else
#define NUM_ANALOGS_ADC NUM_ANALOGS
#endif
uint16_t adcValues[NUM_ANALOGS] __DMA;
void adcInit()
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
#if defined(ADC_GPIOA_PINS)
GPIO_InitStructure.GPIO_Pin = ADC_GPIOA_PINS;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#endif
#if defined(ADC_GPIOB_PINS)
GPIO_InitStructure.GPIO_Pin = ADC_GPIOB_PINS;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif
#if defined(ADC_GPIOC_PINS)
GPIO_InitStructure.GPIO_Pin = ADC_GPIOC_PINS;
GPIO_Init(GPIOC, &GPIO_InitStructure);
#endif
#if defined(ADC_GPIOF_PINS)
GPIO_InitStructure.GPIO_Pin = ADC_GPIOF_PINS;
GPIO_Init(GPIOF, &GPIO_InitStructure);
#endif
ADC_MAIN->CR1 = ADC_CR1_SCAN;
ADC_MAIN->CR2 = ADC_CR2_ADON | ADC_CR2_DMA | ADC_CR2_DDS;
ADC_MAIN->SQR1 = (NUM_ANALOGS_ADC-1) << 20; // bits 23:20 = number of conversions
#if defined(PCBX10)
ADC_MAIN->SQR2 = (ADC_CHANNEL_POT3<<0) + (ADC_CHANNEL_SLIDER1<<5) + (ADC_CHANNEL_SLIDER2<<10) + (ADC_CHANNEL_BATT<<15) + (ADC_CHANNEL_EXT1<<20) + (ADC_CHANNEL_EXT2<<25); // conversions 7 and more
ADC_MAIN->SQR3 = (ADC_CHANNEL_STICK_LH<<0) + (ADC_CHANNEL_STICK_LV<<5) + (ADC_CHANNEL_STICK_RV<<10) + (ADC_CHANNEL_STICK_RH<<15) + (ADC_CHANNEL_POT1<<20) + (ADC_CHANNEL_POT2<<25); // conversions 1 to 6
#elif defined(PCBX9E)
ADC_MAIN->SQR2 = (ADC_CHANNEL_POT4<<0) + (ADC_CHANNEL_SLIDER3<<5) + (ADC_CHANNEL_SLIDER4<<10) + (ADC_CHANNEL_BATT<<15); // conversions 7 and more
ADC_MAIN->SQR3 = (ADC_CHANNEL_STICK_LH<<0) + (ADC_CHANNEL_STICK_LV<<5) + (ADC_CHANNEL_STICK_RV<<10) + (ADC_CHANNEL_STICK_RH<<15) + (ADC_CHANNEL_POT2<<20) + (ADC_CHANNEL_POT3<<25); // conversions 1 to 6
#elif defined(PCBX7)
ADC_MAIN->SQR2 = (ADC_CHANNEL_BATT<<0); // conversions 7 and more
ADC_MAIN->SQR3 = (ADC_CHANNEL_STICK_LH<<0) + (ADC_CHANNEL_STICK_LV<<5) + (ADC_CHANNEL_STICK_RV<<10) + (ADC_CHANNEL_STICK_RH<<15) + (ADC_CHANNEL_POT1<<25) + (ADC_CHANNEL_POT2<<20); // conversions 1 to 6
#else
ADC_MAIN->SQR2 = (ADC_CHANNEL_POT3<<0) + (ADC_CHANNEL_SLIDER1<<5) + (ADC_CHANNEL_SLIDER2<<10) + (ADC_CHANNEL_BATT<<15); // conversions 7 and more
ADC_MAIN->SQR3 = (ADC_CHANNEL_STICK_LH<<0) + (ADC_CHANNEL_STICK_LV<<5) + (ADC_CHANNEL_STICK_RV<<10) + (ADC_CHANNEL_STICK_RH<<15) + (ADC_CHANNEL_POT1<<20) + (ADC_CHANNEL_POT2<<25); // conversions 1 to 6
#endif
ADC_MAIN->SMPR1 = ADC_SAMPTIME + (ADC_SAMPTIME<<3) + (ADC_SAMPTIME<<6) + (ADC_SAMPTIME<<9) + (ADC_SAMPTIME<<12) + (ADC_SAMPTIME<<15) + (ADC_SAMPTIME<<18) + (ADC_SAMPTIME<<21) + (ADC_SAMPTIME<<24);
ADC_MAIN->SMPR2 = ADC_SAMPTIME + (ADC_SAMPTIME<<3) + (ADC_SAMPTIME<<6) + (ADC_SAMPTIME<<9) + (ADC_SAMPTIME<<12) + (ADC_SAMPTIME<<15) + (ADC_SAMPTIME<<18) + (ADC_SAMPTIME<<21) + (ADC_SAMPTIME<<24) + (ADC_SAMPTIME<<27);
ADC->CCR = 0;
ADC_DMA_Stream->CR = DMA_SxCR_PL | ADC_DMA_SxCR_CHSEL | DMA_SxCR_MSIZE_0 | DMA_SxCR_PSIZE_0 | DMA_SxCR_MINC;
ADC_DMA_Stream->PAR = CONVERT_PTR_UINT(&ADC_MAIN->DR);
ADC_DMA_Stream->M0AR = CONVERT_PTR_UINT(adcValues);
ADC_DMA_Stream->NDTR = NUM_ANALOGS_ADC;
ADC_DMA_Stream->FCR = DMA_SxFCR_DMDIS | DMA_SxFCR_FTH_0;
#if defined(PCBX9E)
ADC_EXT->CR1 = ADC_CR1_SCAN;
ADC_EXT->CR2 = ADC_CR2_ADON | ADC_CR2_DMA | ADC_CR2_DDS;
ADC_EXT->SQR1 = (NUM_ANALOGS_ADC_EXT-1) << 20;
ADC_EXT->SQR2 = 0;
ADC_EXT->SQR3 = (ADC_CHANNEL_POT1<<0) + (ADC_CHANNEL_SLIDER1<<5) + (ADC_CHANNEL_SLIDER2<<10); // conversions 1 to 3
ADC_EXT->SMPR1 = 0;
ADC_EXT->SMPR2 = (ADC_EXT_SAMPTIME<<(3*ADC_CHANNEL_POT1)) + (ADC_EXT_SAMPTIME<<(3*ADC_CHANNEL_SLIDER1)) + (ADC_EXT_SAMPTIME<<(3*ADC_CHANNEL_SLIDER2));
ADC_EXT_DMA_Stream->CR = DMA_SxCR_PL | DMA_SxCR_CHSEL_1 | DMA_SxCR_MSIZE_0 | DMA_SxCR_PSIZE_0 | DMA_SxCR_MINC;
ADC_EXT_DMA_Stream->PAR = CONVERT_PTR_UINT(&ADC_EXT->DR);
ADC_EXT_DMA_Stream->M0AR = CONVERT_PTR_UINT(adcValues + NUM_ANALOGS_ADC);
ADC_EXT_DMA_Stream->NDTR = NUM_ANALOGS_ADC_EXT;
ADC_EXT_DMA_Stream->FCR = DMA_SxFCR_DMDIS | DMA_SxFCR_FTH_0;
#endif
}
void adcSingleRead()
{
ADC_DMA_Stream->CR &= ~DMA_SxCR_EN; // Disable DMA
ADC_MAIN->SR &= ~(uint32_t)(ADC_SR_EOC | ADC_SR_STRT | ADC_SR_OVR);
ADC_SET_DMA_FLAGS();
ADC_DMA_Stream->CR |= DMA_SxCR_EN; // Enable DMA
ADC_MAIN->CR2 |= (uint32_t) ADC_CR2_SWSTART;
#if defined(PCBX9E)
ADC_EXT_DMA_Stream->CR &= ~DMA_SxCR_EN; // Disable DMA
ADC_EXT->SR &= ~(uint32_t) ( ADC_SR_EOC | ADC_SR_STRT | ADC_SR_OVR );
ADC_EXT_SET_DMA_FLAGS();
ADC_EXT_DMA_Stream->CR |= DMA_SxCR_EN; // Enable DMA
ADC_EXT->CR2 |= (uint32_t)ADC_CR2_SWSTART;
#endif
#if defined(PCBX9E)
for (unsigned int i=0; i<10000; i++) {
if (ADC_TRANSFER_COMPLETE() && ADC_EXT_TRANSFER_COMPLETE()) {
break;
}
}
ADC_DMA_Stream->CR &= ~DMA_SxCR_EN; // Disable DMA
ADC_EXT_DMA_Stream->CR &= ~DMA_SxCR_EN; // Disable DMA
#else
for (unsigned int i = 0; i < 10000; i++) {
if (ADC_TRANSFER_COMPLETE()) {
break;
}
}
ADC_DMA_Stream->CR &= ~DMA_SxCR_EN; // Disable DMA
#endif
}
void adcRead()
{
uint16_t temp[NUM_ANALOGS] = { 0 };
for (int i=0; i<4; i++) {
adcSingleRead();
for (uint8_t x=0; x<NUM_ANALOGS; x++) {
uint16_t val = adcValues[x];
#if defined(JITTER_MEASURE)
if (JITTER_MEASURE_ACTIVE()) {
rawJitter[x].measure(val);
}
#endif
temp[x] += val;
}
}
for (uint8_t x=0; x<NUM_ANALOGS; x++) {
adcValues[x] = temp[x] >> 2;
}
}
// TODO
void adcStop()
{
}
#if !defined(SIMU)
uint16_t getAnalogValue(uint8_t index)
{
if (IS_POT(index) && !IS_POT_SLIDER_AVAILABLE(index)) {
// Use fixed analog value for non-existing and/or non-connected pots.
// Non-connected analog inputs will slightly follow the adjacent connected analog inputs,
// which produces ghost readings on these inputs.
return 0;
}
#if defined(PCBX9E)
index = ana_mapping[index];
#endif
if (ana_direction[index] < 0)
return 4095 - adcValues[index];
else
return adcValues[index];
}
#endif // #if !defined(SIMU)