1
0
Fork 0
mirror of https://github.com/opentx/opentx.git synced 2025-07-25 09:15:38 +03:00

[Horus] SD Storage started. UI continued.

+ Some boyscout work on LCD functions
This commit is contained in:
Bertrand Songis 2015-10-22 07:09:53 +02:00
parent d353f3c388
commit c8f77fceec
270 changed files with 2403 additions and 2474 deletions

View file

@ -0,0 +1,648 @@
/*
* Authors (alphabetical order)
* - Andre Bernet <bernet.andre@gmail.com>
* - Andreas Weitl
* - Bertrand Songis <bsongis@gmail.com>
* - Bryan J. Rentoul (Gruvin) <gruvin@gmail.com>
* - Cameron Weeks <th9xer@gmail.com>
* - Erez Raviv
* - Gabriel Birkus
* - Jean-Pierre Parisy
* - Karl Szmutny
* - Michael Blandford
* - Michal Hlavinka
* - Pat Mackenzie
* - Philip Moss
* - Rob Thomson
* - Romolo Manfredini <romolo.manfredini@gmail.com>
* - Thomas Husterer
*
* opentx is based on code named
* gruvin9x by Bryan J. Rentoul: http://code.google.com/p/gruvin9x/,
* er9x by Erez Raviv: http://code.google.com/p/er9x/,
* and the original (and ongoing) project by
* Thomas Husterer, th9x: http://code.google.com/p/th9x/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include "opentx.h"
#include "timers.h"
#define EEPROM_SIZE (4*1024*1024/8)
#define EEPROM_BLOCK_SIZE (4*1024)
#define EEPROM_MARK 0x84697771 /* thanks ;) */
#define EEPROM_ZONE_SIZE (8*1024)
#define EEPROM_BUFFER_SIZE 256
#define EEPROM_FAT_SIZE 128
#define EEPROM_MAX_ZONES (EEPROM_SIZE / EEPROM_ZONE_SIZE)
#define EEPROM_MAX_FILES (EEPROM_MAX_ZONES - 1)
#define FIRST_FILE_AVAILABLE (1+MAX_MODELS)
PACK(struct EepromHeaderFile
{
uint8_t zoneIndex:7;
uint8_t exists:1;
});
PACK(struct EepromHeader
{
uint32_t mark;
uint32_t index;
EepromHeaderFile files[EEPROM_MAX_FILES];
});
PACK(struct EepromFileHeader
{
uint16_t fileIndex;
uint16_t size;
});
EepromHeader eepromHeader __DMA;
volatile EepromWriteState eepromWriteState = EEPROM_IDLE;
uint8_t eepromWriteZoneIndex = FIRST_FILE_AVAILABLE;
uint8_t eepromWriteFileIndex;
uint16_t eepromWriteSize;
uint8_t * eepromWriteSourceAddr;
uint32_t eepromWriteDestinationAddr;
uint16_t eepromFatAddr = 0;
uint8_t eepromWriteBuffer[EEPROM_BUFFER_SIZE] __DMA;
void eepromWaitSpiComplete()
{
while (!Spi_complete) {
SIMU_SLEEP(5/*ms*/);
}
Spi_complete = false;
}
void eepromWaitReadStatus()
{
while ((eepromReadStatus() & 1) != 0) {
SIMU_SLEEP(5/*ms*/);
}
}
void eepromEraseBlock(uint32_t address, bool blocking=true)
{
// TRACE("eepromEraseBlock(%d)", address);
#if defined(SIMU)
static uint8_t erasedBlock[EEPROM_BLOCK_SIZE]; // can't be on the stack!
memset(erasedBlock, 0xff, sizeof(erasedBlock));
eeprom_pointer = address;
eeprom_buffer_data = erasedBlock;
eeprom_buffer_size = EEPROM_BLOCK_SIZE;
eeprom_read_operation = false;
Spi_complete = false;
sem_post(eeprom_write_sem);
#else
eepromWriteEnable();
eepromBlockErase(address);
#endif
if (blocking) {
eepromWaitSpiComplete();
eepromWaitReadStatus();
}
}
void eepromRead(uint32_t address, uint8_t * buffer, uint32_t size, bool blocking=true)
{
// TRACE("eepromRead(%d, %p, %d)", address, buffer, size);
#if defined(SIMU)
assert(size);
eeprom_pointer = address;
eeprom_buffer_data = buffer;
eeprom_buffer_size = size;
eeprom_read_operation = true;
Spi_complete = false;
sem_post(eeprom_write_sem);
#else
eepromReadArray(address, buffer, size);
#endif
if (blocking) {
eepromWaitSpiComplete();
}
}
void eepromWrite(uint32_t address, uint8_t * buffer, uint32_t size, bool blocking=true)
{
// TRACE("eepromWrite(%d, %p, %d)", address, buffer, size);
#if defined(SIMU)
assert(size);
eeprom_pointer = address;
eeprom_buffer_data = buffer;
eeprom_buffer_size = size+1;
eeprom_read_operation = false;
Spi_complete = false;
sem_post(eeprom_write_sem);
#else
eepromWriteEnable();
eepromByteProgram(address, buffer, size);
#endif
if (blocking) {
eepromWaitSpiComplete();
eepromWaitReadStatus();
}
}
bool eepromOpen()
{
int32_t bestFatAddr = -1;
uint32_t bestFatIndex = 0;
eepromFatAddr = 0;
while (eepromFatAddr < EEPROM_ZONE_SIZE) {
eepromRead(eepromFatAddr, (uint8_t *)&eepromHeader, sizeof(eepromHeader.mark) + sizeof(eepromHeader.index));
if (eepromHeader.mark == EEPROM_MARK && eepromHeader.index >= bestFatIndex) {
bestFatAddr = eepromFatAddr;
bestFatIndex = eepromHeader.index;
}
eepromFatAddr += EEPROM_FAT_SIZE;
}
if (bestFatAddr >= 0) {
eepromFatAddr = bestFatAddr;
eepromRead(eepromFatAddr, (uint8_t *)&eepromHeader, sizeof(eepromHeader));
return true;
}
else {
return false;
}
}
uint32_t readFile(int index, uint8_t * data, uint32_t size)
{
if (eepromHeader.files[index].exists) {
EepromFileHeader header;
uint32_t address = eepromHeader.files[index].zoneIndex * EEPROM_ZONE_SIZE;
eepromRead(address, (uint8_t *)&header, sizeof(header));
if (size < header.size) {
header.size = size;
}
if (header.size > 0) {
eepromRead(address + sizeof(header), data, header.size);
size -= header.size;
}
if (size > 0) {
memset(data + header.size, 0, size);
}
return header.size;
}
else {
return 0;
}
}
void eepromIncFatAddr()
{
eepromHeader.index += 1;
eepromFatAddr += EEPROM_FAT_SIZE;
if (eepromFatAddr >= EEPROM_ZONE_SIZE) {
eepromFatAddr = 0;
}
}
void writeFile(int index, uint8_t * data, uint32_t size)
{
uint32_t zoneIndex = eepromHeader.files[eepromWriteZoneIndex].zoneIndex;
eepromHeader.files[eepromWriteZoneIndex].exists = 0;
eepromHeader.files[eepromWriteZoneIndex].zoneIndex = eepromHeader.files[index].zoneIndex;
eepromHeader.files[index].exists = (size > 0);
eepromHeader.files[index].zoneIndex = zoneIndex;
eepromWriteFileIndex = index;
eepromWriteSourceAddr = data;
eepromWriteSize = size;
eepromWriteDestinationAddr = zoneIndex * EEPROM_ZONE_SIZE;
eepromWriteState = EEPROM_START_WRITE;
eepromWriteZoneIndex += 1;
if (eepromWriteZoneIndex >= EEPROM_MAX_FILES) {
eepromWriteZoneIndex = FIRST_FILE_AVAILABLE;
}
eepromIncFatAddr();
}
void eeDeleteModel(uint8_t index)
{
storageCheck(true);
memclear(&modelHeaders[index], sizeof(ModelHeader));
writeFile(index+1, (uint8_t *)&g_model, 0);
eepromWriteWait();
}
bool eeCopyModel(uint8_t dst, uint8_t src)
{
storageCheck(true);
uint32_t eepromWriteSourceAddr = eepromHeader.files[src+1].zoneIndex * EEPROM_ZONE_SIZE;
uint32_t eepromWriteDestinationAddr = eepromHeader.files[dst+1].zoneIndex * EEPROM_ZONE_SIZE;
// erase blocks
eepromEraseBlock(eepromWriteDestinationAddr);
eepromEraseBlock(eepromWriteDestinationAddr+EEPROM_BLOCK_SIZE);
// write model
for (int pos=0; pos<EEPROM_ZONE_SIZE; pos+=EEPROM_BUFFER_SIZE) {
eepromRead(eepromWriteSourceAddr+pos, eepromWriteBuffer, EEPROM_BUFFER_SIZE);
eepromWrite(eepromWriteDestinationAddr+pos, eepromWriteBuffer, EEPROM_BUFFER_SIZE);
}
// write FAT
eepromHeader.files[dst+1].exists = 1;
eepromIncFatAddr();
eepromWriteState = EEPROM_WRITE_NEW_FAT;
eepromWriteWait();
modelHeaders[dst] = modelHeaders[src];
return true;
}
void eeSwapModels(uint8_t id1, uint8_t id2)
{
storageCheck(true);
{
EepromHeaderFile tmp = eepromHeader.files[id1+1];
eepromHeader.files[id1+1] = eepromHeader.files[id2+1];
eepromHeader.files[id2+1] = tmp;
}
eepromIncFatAddr();
eepromWriteState = EEPROM_WRITE_NEW_FAT;
eepromWriteWait();
{
ModelHeader tmp = modelHeaders[id1];
modelHeaders[id1] = modelHeaders[id2];
modelHeaders[id2] = tmp;
}
}
// For conversions ...
uint16_t eeLoadGeneralSettingsData()
{
return readFile(0, (uint8_t *)&g_eeGeneral, sizeof(g_eeGeneral));
}
uint16_t eeLoadModelData(uint8_t index)
{
return readFile(index+1, (uint8_t *)&g_model, sizeof(g_model));
}
void writeGeneralSettings()
{
writeFile(0, (uint8_t *)&g_eeGeneral, sizeof(g_eeGeneral));
}
void writeModel(int index)
{
writeFile(index+1, (uint8_t *)&g_model, sizeof(g_model));
}
bool eeLoadGeneral()
{
eeLoadGeneralSettingsData();
if (g_eeGeneral.version != EEPROM_VER) {
TRACE("EEPROM version %d instead of %d", g_eeGeneral.version, EEPROM_VER);
#if defined(PCBSKY9X)
if (!eeConvert()) {
return false;
}
#else
return false;
#endif
}
return true;
}
bool eeModelExists(uint8_t id)
{
return (eepromHeader.files[id+1].exists);
}
void eeLoadModelHeader(uint8_t id, ModelHeader * header)
{
readFile(id+1, (uint8_t *)header, sizeof(ModelHeader));
}
void storageFormat()
{
eepromFatAddr = 0;
eepromHeader.mark = EEPROM_MARK;
eepromHeader.index = 0;
for (int i=0; i<EEPROM_MAX_FILES; i++) {
eepromHeader.files[i].exists = 0;
eepromHeader.files[i].zoneIndex = i+1;
}
eepromEraseBlock(0);
eepromEraseBlock(EEPROM_BLOCK_SIZE);
eepromWrite(0, (uint8_t *)&eepromHeader, sizeof(eepromHeader));
}
void eepromWriteWait(EepromWriteState state/* = EEPROM_IDLE*/)
{
while (eepromWriteState != state) {
#if defined(CPUSTM32)
// Waits a little bit for CS transitions
CoTickDelay(1/*2ms*/);
#endif
eepromWriteProcess();
#ifdef SIMU
sleep(5/*ms*/);
#endif
}
}
void storageCheck(bool immediately)
{
if (immediately) {
eepromWriteWait();
}
assert(eepromWriteState == EEPROM_IDLE);
if (s_storageDirtyMsk & EE_GENERAL) {
TRACE("eeprom write general");
s_storageDirtyMsk -= EE_GENERAL;
writeGeneralSettings();
if (immediately)
eepromWriteWait();
else
return;
}
if (s_storageDirtyMsk & EE_MODEL) {
TRACE("eeprom write model");
s_storageDirtyMsk -= EE_MODEL;
writeModel(g_eeGeneral.currModel);
if (immediately)
eepromWriteWait();
}
}
void eepromWriteProcess()
{
// TRACE("eepromWriteProcess(state=%d)", eepromWriteState);
switch (eepromWriteState) {
case EEPROM_ERASING_FILE_BLOCK1:
case EEPROM_ERASING_FILE_BLOCK2:
case EEPROM_WRITING_BUFFER:
case EEPROM_ERASING_FAT_BLOCK:
case EEPROM_WRITING_NEW_FAT:
if (Spi_complete) {
eepromWriteState = EepromWriteState(eepromWriteState + 1);
}
break;
case EEPROM_ERASING_FILE_BLOCK1_WAIT:
case EEPROM_ERASING_FILE_BLOCK2_WAIT:
case EEPROM_WRITING_BUFFER_WAIT:
case EEPROM_ERASING_FAT_BLOCK_WAIT:
case EEPROM_WRITING_NEW_FAT_WAIT:
if ((eepromReadStatus() & 1) == 0) {
eepromWriteState = EepromWriteState(eepromWriteState + 1);
}
break;
case EEPROM_START_WRITE:
eepromWriteState = EEPROM_ERASING_FILE_BLOCK1;
eepromEraseBlock(eepromWriteDestinationAddr, false);
break;
case EEPROM_ERASE_FILE_BLOCK2:
eepromWriteState = EEPROM_ERASING_FILE_BLOCK2;
eepromEraseBlock(eepromWriteDestinationAddr + EEPROM_BLOCK_SIZE, false);
break;
case EEPROM_WRITE_BUFFER:
{
EepromFileHeader * header = (EepromFileHeader *)eepromWriteBuffer;
header->fileIndex = eepromWriteFileIndex;
header->size = eepromWriteSize;
uint32_t size = min<uint32_t>(EEPROM_BUFFER_SIZE-sizeof(EepromFileHeader), eepromWriteSize);
memcpy(eepromWriteBuffer+sizeof(EepromFileHeader), eepromWriteSourceAddr, size);
eepromWriteState = EEPROM_WRITING_BUFFER;
eepromWrite(eepromWriteDestinationAddr, eepromWriteBuffer, sizeof(EepromFileHeader)+size, false);
eepromWriteSourceAddr += size;
eepromWriteDestinationAddr += sizeof(EepromFileHeader)+size;
eepromWriteSize -= size;
break;
}
case EEPROM_WRITE_NEXT_BUFFER:
{
uint32_t size = min<uint32_t>(EEPROM_BUFFER_SIZE, eepromWriteSize);
if (size > 0) {
memcpy(eepromWriteBuffer, eepromWriteSourceAddr, size);
eepromWriteState = EEPROM_WRITING_BUFFER;
eepromWrite(eepromWriteDestinationAddr, eepromWriteBuffer, size, false);
eepromWriteSourceAddr += size;
eepromWriteDestinationAddr += size;
eepromWriteSize -= size;
break;
}
else if (eepromFatAddr == 0 || eepromFatAddr == EEPROM_BLOCK_SIZE) {
eepromWriteState = EEPROM_ERASING_FAT_BLOCK;
eepromEraseBlock(eepromFatAddr, false);
break;
}
}
/* no break */
case EEPROM_WRITE_NEW_FAT:
eepromWriteState = EEPROM_WRITING_NEW_FAT;
eepromWrite(eepromFatAddr, (uint8_t *)&eepromHeader, sizeof(eepromHeader), false);
break;
case EEPROM_END_WRITE:
eepromWriteState = EEPROM_IDLE;
break;
default:
break;
}
}
uint16_t eeModelSize(uint8_t index)
{
uint16_t result = 0;
if (eepromHeader.files[index+1].exists) {
uint32_t address = eepromHeader.files[index+1].zoneIndex * EEPROM_ZONE_SIZE;
EepromFileHeader header;
eepromRead(address, (uint8_t *)&header, sizeof(header));
result = header.size;
}
return result;
}
#if defined(SDCARD)
const pm_char * eeBackupModel(uint8_t i_fileSrc)
{
char * buf = reusableBuffer.modelsel.mainname;
FIL archiveFile;
UINT written;
storageCheck(true);
if (!sdMounted()) {
return STR_NO_SDCARD;
}
// check and create folder here
strcpy(buf, STR_MODELS_PATH);
const char * error = sdCheckAndCreateDirectory(buf);
if (error) {
return error;
}
buf[sizeof(MODELS_PATH)-1] = '/';
strcpy(strcat_modelname(&buf[sizeof(MODELS_PATH)], i_fileSrc), STR_MODELS_EXT);
FRESULT result = f_open(&archiveFile, buf, FA_CREATE_ALWAYS | FA_WRITE);
if (result != FR_OK) {
return SDCARD_ERROR(result);
}
#if defined(PCBSKY9X)
strcpy(statusLineMsg, PSTR("File "));
strcpy(statusLineMsg+5, &buf[sizeof(MODELS_PATH)]);
#endif
uint16_t size = eeModelSize(i_fileSrc);
*(uint32_t*)&buf[0] = O9X_FOURCC;
buf[4] = g_eeGeneral.version;
buf[5] = 'M';
*(uint16_t*)&buf[6] = size;
result = f_write(&archiveFile, buf, 8, &written);
if (result != FR_OK || written != 8) {
f_close(&archiveFile);
return SDCARD_ERROR(result);
}
uint32_t address = eepromHeader.files[i_fileSrc+1].zoneIndex * EEPROM_ZONE_SIZE + sizeof(EepromFileHeader);
while (size > 0) {
uint16_t blockSize = min<uint16_t>(size, EEPROM_BUFFER_SIZE);
eepromRead(address, eepromWriteBuffer, blockSize);
result = f_write(&archiveFile, eepromWriteBuffer, blockSize, &written);
if (result != FR_OK || written != blockSize) {
f_close(&archiveFile);
return SDCARD_ERROR(result);
}
size -= blockSize;
address += blockSize;
}
f_close(&archiveFile);
#if defined(PCBSKY9X)
showStatusLine();
#endif
return NULL;
}
const pm_char * eeRestoreModel(uint8_t i_fileDst, char *model_name)
{
char *buf = reusableBuffer.modelsel.mainname;
FIL restoreFile;
UINT read;
storageCheck(true);
if (!sdMounted()) {
return STR_NO_SDCARD;
}
strcpy(buf, STR_MODELS_PATH);
buf[sizeof(MODELS_PATH)-1] = '/';
strcpy(&buf[sizeof(MODELS_PATH)], model_name);
strcpy(&buf[strlen(buf)], STR_MODELS_EXT);
FRESULT result = f_open(&restoreFile, buf, FA_OPEN_EXISTING | FA_READ);
if (result != FR_OK) {
return SDCARD_ERROR(result);
}
if (f_size(&restoreFile) < 8) {
f_close(&restoreFile);
return STR_INCOMPATIBLE;
}
result = f_read(&restoreFile, (uint8_t *)buf, 8, &read);
if (result != FR_OK || read != 8) {
f_close(&restoreFile);
return SDCARD_ERROR(result);
}
uint8_t version = (uint8_t)buf[4];
if (*(uint32_t*)&buf[0] != O9X_FOURCC || version < FIRST_CONV_EEPROM_VER || version > EEPROM_VER || buf[5] != 'M') {
f_close(&restoreFile);
return STR_INCOMPATIBLE;
}
if (eeModelExists(i_fileDst)) {
eeDeleteModel(i_fileDst);
}
uint16_t size = min<uint16_t>(sizeof(g_model), *(uint16_t*)&buf[6]);
uint32_t address = eepromHeader.files[i_fileDst+1].zoneIndex * EEPROM_ZONE_SIZE;
// erase blocks
eepromEraseBlock(address);
eepromEraseBlock(address+EEPROM_BLOCK_SIZE);
// write header
EepromFileHeader header = { uint16_t(i_fileDst+1), size };
eepromWrite(address, (uint8_t *)&header, sizeof(header));
address += sizeof(header);
// write model
while (size > 0) {
uint16_t blockSize = min<uint16_t>(size, EEPROM_BUFFER_SIZE);
result = f_read(&restoreFile, eepromWriteBuffer, blockSize, &read);
if (result != FR_OK || read != blockSize) {
f_close(&g_oLogFile);
return SDCARD_ERROR(result);
}
eepromWrite(address, eepromWriteBuffer, blockSize);
size -= blockSize;
address += blockSize;
}
// write FAT
eepromHeader.files[i_fileDst+1].exists = 1;
eepromIncFatAddr();
eepromWriteState = EEPROM_WRITE_NEW_FAT;
eepromWriteWait();
eeLoadModelHeader(i_fileDst, &modelHeaders[i_fileDst]);
#if defined(PCBSKY9X)
if (version < EEPROM_VER) {
ConvertModel(i_fileDst, version);
eeLoadModel(g_eeGeneral.currModel);
}
#endif
return NULL;
}
#endif