1
0
Fork 0
mirror of https://github.com/opentx/opentx.git synced 2025-07-21 15:25:17 +03:00
opentx/radio/src/simpgmspace.cpp
2014-06-18 22:22:15 +02:00

690 lines
18 KiB
C++

/*
* Authors (alphabetical order)
* - Andre Bernet <bernet.andre@gmail.com>
* - Andreas Weitl
* - Bertrand Songis <bsongis@gmail.com>
* - Bryan J. Rentoul (Gruvin) <gruvin@gmail.com>
* - Cameron Weeks <th9xer@gmail.com>
* - Erez Raviv
* - Gabriel Birkus
* - Jean-Pierre Parisy
* - Karl Szmutny
* - Michael Blandford
* - Michal Hlavinka
* - Pat Mackenzie
* - Philip Moss
* - Rob Thomson
* - Romolo Manfredini <romolo.manfredini@gmail.com>
* - Thomas Husterer
*
* opentx is based on code named
* gruvin9x by Bryan J. Rentoul: http://code.google.com/p/gruvin9x/,
* er9x by Erez Raviv: http://code.google.com/p/er9x/,
* and the original (and ongoing) project by
* Thomas Husterer, th9x: http://code.google.com/p/th9x/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "opentx.h"
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <sys/stat.h>
#if defined(RTCLOCK)
#include <time.h>
#endif
#if defined WIN32 || !defined __GNUC__
#include <direct.h>
#endif
volatile uint8_t pina=0xff, pinb=0xff, pinc=0xff, pind, pine=0xff, ping=0xff, pinh=0xff, pinj=0xff, pinl=0;
uint8_t portb, portc, porth=0, dummyport;
uint16_t dummyport16;
const char *eepromFile = NULL;
FILE *fp = NULL;
#if defined(PCBTARANIS)
uint32_t Peri1_frequency ;
uint32_t Peri2_frequency ;
GPIO_TypeDef gpioa;
GPIO_TypeDef gpiob;
GPIO_TypeDef gpioc;
GPIO_TypeDef gpiod;
GPIO_TypeDef gpioe;
TIM_TypeDef tim1;
TIM_TypeDef tim3;
TIM_TypeDef tim4;
TIM_TypeDef tim8;
TIM_TypeDef tim10;
RCC_TypeDef rcc;
DMA_Stream_TypeDef dma2_stream2;
DMA_Stream_TypeDef dma2_stream6;
DMA_TypeDef dma2;
#elif defined(PCBSKY9X)
Pio Pioa, Piob, Pioc;
Pwm pwm;
Twi Twio;
Usart Usart0;
Dacc dacc;
Adc Adc0;
#endif
#if defined(PCBSKY9X)
uint32_t eeprom_pointer;
char* eeprom_buffer_data;
volatile int32_t eeprom_buffer_size;
bool eeprom_read_operation;
#define EESIZE_SIMU (128*4096)
#else
extern uint16_t eeprom_pointer;
extern const char* eeprom_buffer_data;
#endif
#if !defined(EESIZE_SIMU)
#define EESIZE_SIMU EESIZE
#endif
#if defined(SDCARD)
char simuSdDirectory[1024] = "";
#endif
uint8_t eeprom[EESIZE_SIMU];
sem_t *eeprom_write_sem;
#if defined(CPUARM)
#if defined(PCBTARANIS)
#define SWITCH_CASE(swtch, pin, mask) \
case swtch: \
if ((int)state > 0) pin &= ~(mask); else pin |= (mask); \
break;
#else
#define SWITCH_CASE(swtch, pin, mask) \
case swtch: \
if ((int)state > 0) pin |= (mask); else pin &= ~(mask); \
break;
#endif
#define SWITCH_3_CASE(swtch, pin1, pin2, mask1, mask2) \
case swtch: \
if ((int)state < 0) pin1 &= ~(mask1); else pin1 |= (mask1); \
if ((int)state > 0) pin2 &= ~(mask2); else pin2 |= (mask2); \
break;
#define KEY_CASE(key, pin, mask) \
case key: \
if ((int)state > 0) pin &= ~mask; else pin |= mask;\
break;
#define TRIM_CASE KEY_CASE
#else
#define SWITCH_CASE(swtch, pin, mask) \
case swtch: \
if ((int)state > 0) pin &= ~(mask); else pin |= (mask); \
break;
#define SWITCH_3_CASE(swtch, pin1, pin2, mask1, mask2) \
case swtch: \
if ((int)state >= 0) pin1 &= ~(mask1); else pin1 |= (mask1); \
if ((int)state <= 0) pin2 &= ~(mask2); else pin2 |= (mask2); \
break;
#define KEY_CASE(key, pin, mask) \
case key: \
if ((int)state > 0) pin |= (mask); else pin &= ~(mask);\
break;
#define TRIM_CASE KEY_CASE
#endif
void simuSetKey(uint8_t key, bool state)
{
switch (key) {
KEY_CASE(KEY_MENU, GPIO_BUTTON_MENU, PIN_BUTTON_MENU)
KEY_CASE(KEY_EXIT, GPIO_BUTTON_EXIT, PIN_BUTTON_EXIT)
#if defined(PCBTARANIS)
KEY_CASE(KEY_ENTER, GPIO_BUTTON_ENTER, PIN_BUTTON_ENTER)
KEY_CASE(KEY_PAGE, GPIO_BUTTON_PAGE, PIN_BUTTON_PAGE)
KEY_CASE(KEY_MINUS, GPIO_BUTTON_MINUS, PIN_BUTTON_MINUS)
KEY_CASE(KEY_PLUS, GPIO_BUTTON_PLUS, PIN_BUTTON_PLUS)
#else
KEY_CASE(KEY_RIGHT, GPIO_BUTTON_RIGHT, PIN_BUTTON_RIGHT)
KEY_CASE(KEY_LEFT, GPIO_BUTTON_LEFT, PIN_BUTTON_LEFT)
KEY_CASE(KEY_UP, GPIO_BUTTON_UP, PIN_BUTTON_UP)
KEY_CASE(KEY_DOWN, GPIO_BUTTON_DOWN, PIN_BUTTON_DOWN)
#endif
#if defined(PCBSKY9X) && !defined(REVX)
KEY_CASE(BTN_REa, PIOB->PIO_PDSR, 0x40)
#elif defined(PCBGRUVIN9X)
KEY_CASE(BTN_REa, pind, 0x20)
#elif defined(ROTARY_ENCODER_NAVIGATION)
KEY_CASE(BTN_REa, RotEncoder, 0x20)
#endif
}
}
void simuSetTrim(uint8_t trim, bool state)
{
// printf("trim=%d state=%d\n", trim, state); fflush(stdout);
switch (trim) {
TRIM_CASE(0, GPIO_TRIM_LH_L, PIN_TRIM_LH_L)
TRIM_CASE(1, GPIO_TRIM_LH_R, PIN_TRIM_LH_R)
TRIM_CASE(2, GPIO_TRIM_LV_DN, PIN_TRIM_LV_DN)
TRIM_CASE(3, GPIO_TRIM_LV_UP, PIN_TRIM_LV_UP)
TRIM_CASE(4, GPIO_TRIM_RV_DN, PIN_TRIM_RV_DN)
TRIM_CASE(5, GPIO_TRIM_RV_UP, PIN_TRIM_RV_UP)
TRIM_CASE(6, GPIO_TRIM_RH_L, PIN_TRIM_RH_L)
TRIM_CASE(7, GPIO_TRIM_RH_R, PIN_TRIM_RH_R)
}
}
// TODO use a better numbering to allow google tests to work on Taranis
void simuSetSwitch(uint8_t swtch, int8_t state)
{
// printf("swtch=%d state=%d\n", swtch, state); fflush(stdout);
switch (swtch) {
#if defined(PCBTARANIS)
SWITCH_3_CASE(0, GPIO_PIN_SW_A_L, GPIO_PIN_SW_A_H, PIN_SW_A_L, PIN_SW_A_H)
SWITCH_3_CASE(1, GPIO_PIN_SW_B_L, GPIO_PIN_SW_B_H, PIN_SW_B_L, PIN_SW_B_H)
SWITCH_3_CASE(2, GPIO_PIN_SW_C_L, GPIO_PIN_SW_C_H, PIN_SW_C_L, PIN_SW_C_H)
SWITCH_3_CASE(3, GPIO_PIN_SW_D_L, GPIO_PIN_SW_D_H, PIN_SW_D_L, PIN_SW_D_H)
SWITCH_3_CASE(4, GPIO_PIN_SW_E_H, GPIO_PIN_SW_E_L, PIN_SW_E_H, PIN_SW_E_L)
SWITCH_CASE(5, GPIO_PIN_SW_F, PIN_SW_F)
SWITCH_3_CASE(6, GPIO_PIN_SW_G_L, GPIO_PIN_SW_G_H, PIN_SW_G_L, PIN_SW_G_H)
SWITCH_CASE(7, GPIO_PIN_SW_H, PIN_SW_H)
#elif defined(PCBSKY9X)
SWITCH_CASE(0, PIOC->PIO_PDSR, 1<<20)
SWITCH_CASE(1, PIOA->PIO_PDSR, 1<<15)
SWITCH_CASE(2, PIOC->PIO_PDSR, 1<<31)
SWITCH_3_CASE(3, PIOC->PIO_PDSR, PIOC->PIO_PDSR, 0x00004000, 0x00000800)
SWITCH_CASE(4, PIOA->PIO_PDSR, 1<<2)
SWITCH_CASE(5, PIOC->PIO_PDSR, 1<<16)
SWITCH_CASE(6, PIOC->PIO_PDSR, 1<<8)
#elif defined(PCBGRUVIN9X)
SWITCH_CASE(0, ping, 1<<INP_G_ThrCt)
SWITCH_CASE(1, ping, 1<<INP_G_RuddDR)
SWITCH_CASE(2, pinc, 1<<INP_C_ElevDR)
SWITCH_3_CASE(3, ping, pinb, (1<<INP_G_ID1), (1<<INP_B_ID2))
SWITCH_CASE(4, pinc, 1<<INP_C_AileDR)
SWITCH_CASE(5, ping, 1<<INP_G_Gear)
SWITCH_CASE(6, pinb, 1<<INP_B_Trainer)
#else // STOCK
#if defined(JETI) || defined(FRSKY) || defined(NMEA) || defined(ARDUPILOT)
SWITCH_CASE(0, pinc, 1<<INP_C_ThrCt)
SWITCH_CASE(4, pinc, 1<<INP_C_AileDR)
#else
SWITCH_CASE(0, pine, 1<<INP_E_ThrCt)
SWITCH_CASE(4, pine, 1<<INP_E_AileDR)
#endif
SWITCH_3_CASE(3, ping, pine, (1<<INP_G_ID1), (1<<INP_E_ID2))
SWITCH_CASE(1, ping, 1<<INP_G_RuddDR)
SWITCH_CASE(2, pine, 1<<INP_E_ElevDR)
SWITCH_CASE(5, pine, 1<<INP_E_Gear)
SWITCH_CASE(6, pine, 1<<INP_E_Trainer)
#endif
default:
break;
}
}
uint16_t getTmr16KHz()
{
return get_tmr10ms() * 160;
}
#if !defined(PCBTARANIS)
bool eeprom_thread_running = true;
void *eeprom_write_function(void *)
{
while (!sem_wait(eeprom_write_sem)) {
if (!eeprom_thread_running)
return NULL;
#if defined(CPUARM)
if (eeprom_read_operation) {
assert(eeprom_buffer_size);
eeprom_read_block(eeprom_buffer_data, (const void *)(int64_t)eeprom_pointer, eeprom_buffer_size);
}
else {
#endif
if (fp) {
if (fseek(fp, eeprom_pointer, SEEK_SET) == -1)
perror("error in fseek");
}
while (--eeprom_buffer_size) {
assert(eeprom_buffer_size > 0);
if (fp) {
if (fwrite(eeprom_buffer_data, 1, 1, fp) != 1)
perror("error in fwrite");
#if !defined(CPUARM)
sleep(5/*ms*/);
#endif
}
else {
memcpy(&eeprom[eeprom_pointer], eeprom_buffer_data, 1);
}
eeprom_pointer++;
eeprom_buffer_data++;
if (fp && eeprom_buffer_size == 1) {
fflush(fp);
}
}
#if defined(CPUARM)
}
Spi_complete = 1;
#endif
}
return 0;
}
#endif
uint8_t main_thread_running = 0;
char * main_thread_error = NULL;
extern void opentxStart();
void *main_thread(void *)
{
#ifdef SIMU_EXCEPTIONS
signal(SIGFPE, sig);
signal(SIGSEGV, sig);
try {
#endif
s_current_protocol[0] = 255;
g_menuStackPtr = 0;
g_menuStack[0] = menuMainView;
g_menuStack[1] = menuModelSelect;
eeReadAll(); // load general setup and selected model
#if defined(CPUARM) && defined(SDCARD)
referenceSystemAudioFiles();
#endif
if (g_eeGeneral.backlightMode != e_backlight_mode_off) backlightOn(); // on Tx start turn the light on
LUA_INIT();
if (main_thread_running == 1) {
opentxStart();
}
else {
#if defined(CPUARM)
eeLoadModel(g_eeGeneral.currModel);
#endif
}
s_current_protocol[0] = 0;
while (main_thread_running) {
perMain();
sleep(10/*ms*/);
}
#ifdef SIMU_EXCEPTIONS
}
catch (...) {
main_thread_running = 0;
}
#endif
return NULL;
}
#if defined WIN32 || !defined __GNUC__
#define chdir _chdir
#define getcwd _getcwd
#endif
pthread_t main_thread_pid;
void StartMainThread(bool tests)
{
#if defined(SDCARD)
if (strlen(simuSdDirectory) == 0)
getcwd(simuSdDirectory, 1024);
#endif
#if defined(CPUARM)
pthread_mutex_init(&mixerMutex, NULL);
pthread_mutex_init(&audioMutex, NULL);
#endif
g_tmr10ms = 0;
#if defined(RTCLOCK)
g_rtcTime = time(0);
#endif
main_thread_running = (tests ? 1 : 2);
pthread_create(&main_thread_pid, NULL, &main_thread, NULL);
}
void StopMainThread()
{
main_thread_running = 0;
pthread_join(main_thread_pid, NULL);
}
pthread_t eeprom_thread_pid;
void StartEepromThread(const char *filename)
{
eepromFile = filename;
if (eepromFile) {
fp = fopen(eepromFile, "rb+");
if (!fp)
fp = fopen(eepromFile, "wb+");
if (!fp) perror("error in fopen");
}
#ifdef __APPLE__
eeprom_write_sem = sem_open("eepromsem", O_CREAT, S_IRUSR | S_IWUSR, 0);
#else
eeprom_write_sem = (sem_t *)malloc(sizeof(sem_t));
sem_init(eeprom_write_sem, 0, 0);
#endif
#if !defined(PCBTARANIS)
eeprom_thread_running = true;
assert(!pthread_create(&eeprom_thread_pid, NULL, &eeprom_write_function, NULL));
#endif
}
void StopEepromThread()
{
#if !defined(PCBTARANIS)
eeprom_thread_running = false;
sem_post(eeprom_write_sem);
pthread_join(eeprom_thread_pid, NULL);
#endif
}
#if defined(PCBTARANIS)
void eeprom_read_block (void *pointer_ram, uint16_t pointer_eeprom, size_t size)
#else
void eeprom_read_block (void *pointer_ram, const void *pointer_eeprom, size_t size)
#endif
{
assert(size);
if (fp) {
// printf("EEPROM read (pos=%d, size=%d)\n", pointer_eeprom, size); fflush(stdout);
if (fseek(fp, (long)pointer_eeprom, SEEK_SET)==-1) perror("error in fseek");
if (fread(pointer_ram, size, 1, fp) <= 0) perror("error in fread");
}
else {
memcpy(pointer_ram, &eeprom[(uint64_t)pointer_eeprom], size);
}
}
#if defined(PCBTARANIS)
void eeWriteBlockCmp(const void *pointer_ram, uint16_t pointer_eeprom, size_t size)
{
assert(size);
if (fp) {
// printf("EEPROM write (pos=%d, size=%d)\n", pointer_eeprom, size); fflush(stdout);
if (fseek(fp, (long)pointer_eeprom, SEEK_SET)==-1) perror("error in fseek");
if (fwrite(pointer_ram, size, 1, fp) <= 0) perror("error in fwrite");
}
else {
memcpy(&eeprom[(uint64_t)pointer_eeprom], pointer_ram, size);
}
}
#endif
#if defined(CPUARM)
uint16_t stack_free(uint8_t)
#else
uint16_t stack_free()
#endif
{
return 500;
}
#if 0
static void EeFsDump(){
for(int i=0; i<EESIZE; i++)
{
printf("%02x ",eeprom[i]);
if(i%16 == 15) puts("");
}
puts("");
}
#endif
#if defined(SDCARD)
namespace simu {
#include <dirent.h>
}
#include "FatFs/ff.h"
#if defined WIN32 || !defined __GNUC__
#include <direct.h>
#endif
#if defined(CPUARM)
FATFS g_FATFS_Obj;
#endif
char *convertSimuPath(const char *path)
{
static char result[1024];
if (path[0] == '/' && strcmp(simuSdDirectory, "/") != 0)
sprintf(result, "%s%s", simuSdDirectory, path);
else
strcpy(result, path);
return result;
}
FRESULT f_stat (const TCHAR * name, FILINFO *)
{
char *path = convertSimuPath(name);
struct stat tmp;
TRACE("f_stat(%s)", path);
return stat(path, &tmp) ? FR_INVALID_NAME : FR_OK;
}
FRESULT f_mount (BYTE, FATFS*)
{
return FR_OK;
}
FRESULT f_open (FIL * fil, const TCHAR *name, BYTE flag)
{
char *path = convertSimuPath(name);
TRACE("f_open(%s)", path);
if (!(flag & FA_WRITE)) {
struct stat tmp;
if (stat(path, &tmp))
return FR_INVALID_NAME;
fil->fsize = tmp.st_size;
}
fil->fs = (FATFS*)fopen(path, (flag & FA_WRITE) ? "wb+" : "rb+");
return FR_OK;
}
FRESULT f_read (FIL* fil, void* data, UINT size, UINT* read)
{
if (fil && fil->fs) *read = fread(data, 1, size, (FILE*)fil->fs);
return FR_OK;
}
FRESULT f_write (FIL* fil, const void* data, UINT size, UINT* written)
{
if (fil && fil->fs) *written = fwrite(data, 1, size, (FILE*)fil->fs);
return FR_OK;
}
FRESULT f_lseek (FIL* fil, DWORD offset)
{
if (fil && fil->fs) fseek((FILE*)fil->fs, offset, SEEK_SET);
return FR_OK;
}
FRESULT f_close (FIL * fil)
{
if (fil && fil->fs) {
fclose((FILE*)fil->fs);
fil->fs = NULL;
}
return FR_OK;
}
FRESULT f_chdir (const TCHAR *name)
{
chdir(convertSimuPath(name));
return FR_OK;
}
FRESULT f_opendir (DIR * rep, const TCHAR * name)
{
char *path = convertSimuPath(name);
TRACE("f_opendir(%s)", path);
rep->fs = (FATFS *)simu::opendir(path);
return FR_OK;
}
FRESULT f_readdir (DIR * rep, FILINFO * fil)
{
if (!rep->fs) return FR_NO_FILE;
simu::dirent * ent = simu::readdir((simu::DIR *)rep->fs);
if (!ent) return FR_NO_FILE;
#if defined(WIN32) || !defined(__GNUC__) || defined(__APPLE__)
fil->fattrib = (ent->d_type == DT_DIR ? AM_DIR : 0);
#else
if (ent->d_type == simu::DT_UNKNOWN) {
fil->fattrib = 0;
struct stat buf;
if (stat(ent->d_name, &buf) == 0) {
fil->fattrib = (S_ISDIR(buf.st_mode) ? AM_DIR : 0);
}
}
else {
fil->fattrib = (ent->d_type == simu::DT_DIR ? AM_DIR : 0);
}
#endif
memset(fil->fname, 0, 13);
memset(fil->lfname, 0, SD_SCREEN_FILE_LENGTH);
strncpy(fil->fname, ent->d_name, 13-1);
strcpy(fil->lfname, ent->d_name);
// TRACE("f_readdir(): %s", fil->fname);
return FR_OK;
}
FRESULT f_mkfs (unsigned char, unsigned char, unsigned int)
{
printf("Format SD...\n"); fflush(stdout);
return FR_OK;
}
FRESULT f_mkdir (const TCHAR*)
{
return FR_OK;
}
FRESULT f_unlink (const TCHAR*)
{
return FR_OK;
}
int f_putc (TCHAR c, FIL * fil)
{
if (fil && fil->fs) fwrite(&c, 1, 1, (FILE*)fil->fs);
return FR_OK;
}
int f_puts (const TCHAR * str, FIL * fil)
{
int n;
for (n = 0; *str; str++, n++) {
if (f_putc(*str, fil) == EOF) return EOF;
}
return n;
}
int f_printf (FIL *fil, const TCHAR * format, ...)
{
va_list arglist;
va_start(arglist, format);
if (fil && fil->fs) vfprintf((FILE*)fil->fs, format, arglist);
va_end(arglist);
return 0;
}
FRESULT f_getcwd (TCHAR *path, UINT sz_path)
{
strcpy(path, ".");
return FR_OK;
}
#if defined(PCBSKY9X)
int32_t Card_state = SD_ST_MOUNTED;
uint32_t Card_CSD[4]; // TODO elsewhere
#endif
#endif
bool lcd_refresh = true;
uint8_t lcd_buf[DISPLAY_BUF_SIZE];
void lcdSetRefVolt(uint8_t val)
{
}
void lcdRefresh()
{
memcpy(lcd_buf, displayBuf, DISPLAY_BUF_SIZE);
lcd_refresh = true;
}
#if defined(PCBTARANIS)
void pwrInit() { }
uint32_t pwrCheck() { return true; }
void pwrOff() { }
void usbStart() { }
int usbPlugged() { return false; }
void USART_DeInit(USART_TypeDef* ) { }
ErrorStatus RTC_SetTime(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_TimeStruct) { return SUCCESS; }
ErrorStatus RTC_SetDate(uint32_t RTC_Format, RTC_DateTypeDef* RTC_DateStruct) { return SUCCESS; }
void RTC_GetTime(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_TimeStruct) { }
void RTC_GetDate(uint32_t RTC_Format, RTC_DateTypeDef* RTC_DateStruct) { }
void RTC_TimeStructInit(RTC_TimeTypeDef* RTC_TimeStruct) { }
void RTC_DateStructInit(RTC_DateTypeDef* RTC_DateStruct) { }
void PWR_BackupAccessCmd(FunctionalState NewState) { }
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource) { }
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) { }
void RCC_RTCCLKCmd(FunctionalState NewState) { }
ErrorStatus RTC_Init(RTC_InitTypeDef* RTC_InitStruct) { return SUCCESS; }
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data) { }
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG) { return SET; }
void GPIO_PinAFConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_PinSource, uint8_t GPIO_AF) { }
void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct) { }
void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState) { }
void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState) { }
void RCC_PLLI2SConfig(uint32_t PLLI2SN, uint32_t PLLI2SR) { }
void RCC_PLLI2SCmd(FunctionalState NewState) { }
void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource) { }
void SPI_I2S_DeInit(SPI_TypeDef* SPIx) { }
void I2S_Init(SPI_TypeDef* SPIx, I2S_InitTypeDef* I2S_InitStruct) { }
void I2S_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState) { }
void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState) { }
void RCC_LSEConfig(uint8_t RCC_LSE) { }
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) { return RESET; }
ErrorStatus RTC_WaitForSynchro(void) { return SUCCESS; }
void unlockFlash() { }
void lockFlash() { }
void writeFlash(uint32_t *address, uint32_t *buffer) { SIMU_SLEEP(100); }
uint32_t isBootloaderStart(const void *block) { return 1; }
void turnBacklightOn(uint8_t level, uint8_t color) { }
void turnBacklightOff(void) { }
#endif