mirror of
https://github.com/opentx/opentx.git
synced 2025-07-12 19:10:19 +03:00
1305 lines
43 KiB
C++
1305 lines
43 KiB
C++
/*
|
|
* Copyright (C) OpenTX
|
|
*
|
|
* Based on code named
|
|
* th9x - http://code.google.com/p/th9x
|
|
* er9x - http://code.google.com/p/er9x
|
|
* gruvin9x - http://code.google.com/p/gruvin9x
|
|
*
|
|
* License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include "opentx.h"
|
|
#include "timers.h"
|
|
|
|
#if defined(VIRTUAL_INPUTS)
|
|
int8_t virtualInputsTrims[NUM_INPUTS];
|
|
#else
|
|
int16_t rawAnas[NUM_INPUTS] = {0};
|
|
#endif
|
|
|
|
int16_t anas [NUM_INPUTS] = {0};
|
|
int16_t trimsxx[NUM_TRIMS] = {0};
|
|
int32_t chans[MAX_OUTPUT_CHANNELS] = {0};
|
|
BeepANACenter bpanaCenter = 0;
|
|
|
|
int24_t act [MAX_MIXERS] = {0};
|
|
SwOn swOn [MAX_MIXERS]; // TODO better name later...
|
|
|
|
uint8_t mixWarning;
|
|
|
|
#if defined(MODULE_ALWAYS_SEND_PULSES)
|
|
uint8_t startupWarningState;
|
|
#endif
|
|
|
|
int16_t calibratedAnalogs[NUM_CALIBRATED_ANALOGS];
|
|
int16_t channelOutputs[MAX_OUTPUT_CHANNELS] = {0};
|
|
int16_t ex_chans[MAX_OUTPUT_CHANNELS] = {0}; // Outputs (before LIMITS) of the last perMain;
|
|
|
|
#if defined(HELI)
|
|
int16_t cyc_anas[3] = {0};
|
|
#endif
|
|
|
|
// #define EXTENDED_EXPO
|
|
// increases range of expo curve but costs about 82 bytes flash
|
|
|
|
// expo-funktion:
|
|
// ---------------
|
|
// kmplot
|
|
// f(x,k)=exp(ln(x)*k/10) ;P[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
|
|
// f(x,k)=x*x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
|
|
// f(x,k)=x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
|
|
// f(x,k)=1+(x-1)*(x-1)*(x-1)*k/10 + (x-1)*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
|
|
// don't know what this above should be, just confusing in my opinion,
|
|
|
|
// here is the real explanation
|
|
// actually the real formula is
|
|
/*
|
|
f(x) = exp( ln(x) * 10^k)
|
|
if it is 10^k or e^k or 2^k etc. just defines the max distortion of the expo curve; I think 10 is useful
|
|
this gives values from 0 to 1 for x and output; k must be between -1 and +1
|
|
we do not like to calculate with floating point. Therefore we rescale for x from 0 to 1024 and for k from -100 to +100
|
|
f(x) = 1024 * ( e^( ln(x/1024) * 10^(k/100) ) )
|
|
This would be really hard to be calculated by such a microcontroller
|
|
Therefore Thomas Husterer compared a few usual function something like x^3, x^4*something, which look similar
|
|
Actually the formula
|
|
f(x) = k*x^3+x*(1-k)
|
|
gives a similar form and should have even advantages compared to a original exp curve.
|
|
This function again expect x from 0 to 1 and k only from 0 to 1
|
|
Therefore rescaling is needed like before:
|
|
f(x) = 1024* ((k/100)*(x/1024)^3 + (x/1024)*(100-k)/100)
|
|
some mathematical tricks
|
|
f(x) = (k*x*x*x/(1024*1024) + x*(100-k)) / 100
|
|
for better rounding results we add the 50
|
|
f(x) = (k*x*x*x/(1024*1024) + x*(100-k) + 50) / 100
|
|
|
|
because we now understand the formula, we can optimize it further
|
|
--> calc100to256(k) --> eliminates /100 by replacing with /256 which is just a simple shift right 8
|
|
k is now between 0 and 256
|
|
f(x) = (k*x*x*x/(1024*1024) + x*(256-k) + 128) / 256
|
|
*/
|
|
|
|
// input parameters;
|
|
// x 0 to 1024;
|
|
// k 0 to 100;
|
|
// output between 0 and 1024
|
|
unsigned int expou(unsigned int x, unsigned int k)
|
|
{
|
|
#if defined(EXTENDED_EXPO)
|
|
bool extended;
|
|
if (k>80) {
|
|
extended=true;
|
|
}
|
|
else {
|
|
k += (k>>2); // use bigger values before extend, because the effect is anyway very very low
|
|
extended=false;
|
|
}
|
|
#endif
|
|
|
|
k = calc100to256(k);
|
|
|
|
uint32_t value = (uint32_t) x*x;
|
|
value *= (uint32_t)k;
|
|
value >>= 8;
|
|
value *= (uint32_t)x;
|
|
|
|
#if defined(EXTENDED_EXPO)
|
|
if (extended) { // for higher values do more multiplications to get a stronger expo curve
|
|
value >>= 16;
|
|
value *= (uint32_t)x;
|
|
value >>= 4;
|
|
value *= (uint32_t)x;
|
|
}
|
|
#endif
|
|
|
|
value >>= 12;
|
|
value += (uint32_t)(256-k)*x+128;
|
|
|
|
return value>>8;
|
|
}
|
|
|
|
int expo(int x, int k)
|
|
{
|
|
if (k == 0) {
|
|
return x;
|
|
}
|
|
|
|
int y;
|
|
bool neg = (x < 0);
|
|
|
|
if (neg) {
|
|
x = -x;
|
|
}
|
|
if (k < 0) {
|
|
y = RESXu - expou(RESXu-x, -k);
|
|
}
|
|
else {
|
|
y = expou(x, k);
|
|
}
|
|
return neg ? -y : y;
|
|
}
|
|
|
|
void applyExpos(int16_t * anas, uint8_t mode APPLY_EXPOS_EXTRA_PARAMS)
|
|
{
|
|
#if !defined(VIRTUAL_INPUTS)
|
|
int16_t anas2[NUM_INPUTS]; // values before expo, to ensure same expo base when multiple expo lines are used
|
|
memcpy(anas2, anas, sizeof(anas2));
|
|
#endif
|
|
|
|
int8_t cur_chn = -1;
|
|
|
|
for (uint8_t i=0; i<MAX_EXPOS; i++) {
|
|
#if defined(BOLD_FONT)
|
|
if (mode==e_perout_mode_normal) swOn[i].activeExpo = false;
|
|
#endif
|
|
ExpoData * ed = expoAddress(i);
|
|
if (!EXPO_VALID(ed)) break; // end of list
|
|
if (ed->chn == cur_chn)
|
|
continue;
|
|
if (ed->flightModes & (1<<mixerCurrentFlightMode))
|
|
continue;
|
|
if (getSwitch(ed->swtch)) {
|
|
#if defined(VIRTUAL_INPUTS)
|
|
int32_t v;
|
|
if (ed->srcRaw == ovwrIdx) {
|
|
v = ovwrValue;
|
|
}
|
|
else {
|
|
v = getValue(ed->srcRaw);
|
|
if (ed->srcRaw >= MIXSRC_FIRST_TELEM && ed->scale > 0) {
|
|
v = (v * 1024) / convertTelemValue(ed->srcRaw-MIXSRC_FIRST_TELEM+1, ed->scale);
|
|
}
|
|
v = limit<int32_t>(-1024, v, 1024);
|
|
}
|
|
#else
|
|
int16_t v = anas2[ed->chn];
|
|
#endif
|
|
if (EXPO_MODE_ENABLE(ed, v)) {
|
|
#if defined(BOLD_FONT)
|
|
if (mode==e_perout_mode_normal) swOn[i].activeExpo = true;
|
|
#endif
|
|
cur_chn = ed->chn;
|
|
|
|
//========== CURVE=================
|
|
#if defined(CPUARM)
|
|
if (ed->curve.value) {
|
|
v = applyCurve(v, ed->curve);
|
|
}
|
|
#else
|
|
int8_t curveParam = ed->curveParam;
|
|
if (curveParam) {
|
|
if (ed->curveMode == MODE_CURVE)
|
|
v = applyCurve(v, curveParam);
|
|
else
|
|
v = expo(v, GET_GVAR(curveParam, -100, 100, mixerCurrentFlightMode));
|
|
}
|
|
#endif
|
|
|
|
//========== WEIGHT ===============
|
|
#if defined(CPUARM)
|
|
int32_t weight = GET_GVAR_PREC1(ed->weight, MIN_EXPO_WEIGHT, 100, mixerCurrentFlightMode);
|
|
v = div_and_round((int32_t)v * weight, 1000);
|
|
#else
|
|
int16_t weight = GET_GVAR(ed->weight, MIN_EXPO_WEIGHT, 100, mixerCurrentFlightMode);
|
|
weight = calc100to256(weight);
|
|
v = ((int32_t)v * weight) >> 8;
|
|
#endif
|
|
|
|
#if defined(VIRTUAL_INPUTS)
|
|
//========== OFFSET ===============
|
|
int32_t offset = GET_GVAR_PREC1(ed->offset, -100, 100, mixerCurrentFlightMode);
|
|
if (offset) v += div_and_round(calc100toRESX(offset), 10);
|
|
|
|
//========== TRIMS ================
|
|
if (ed->carryTrim < TRIM_ON)
|
|
virtualInputsTrims[cur_chn] = -ed->carryTrim - 1;
|
|
else if (ed->carryTrim == TRIM_ON && ed->srcRaw >= INPUTSRC_FIRST && ed->srcRaw < INPUTSRC_FIRST+NUM_STICKS)
|
|
virtualInputsTrims[cur_chn] = ed->srcRaw - INPUTSRC_FIRST;
|
|
else
|
|
virtualInputsTrims[cur_chn] = -1;
|
|
#endif
|
|
|
|
anas[cur_chn] = v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// #define PREVENT_ARITHMETIC_OVERFLOW
|
|
// because of optimizations the reserves before overruns occurs is only the half
|
|
// this defines enables some checks the greatly improves this situation
|
|
// It should nearly prevent all overruns (is still a chance for it, but quite low)
|
|
// negative side is code cost 96 bytes flash
|
|
|
|
// we do it now half way, only in applyLimits, which costs currently 50bytes
|
|
// according opinion poll this topic is currently not very important
|
|
// the change below improves already the situation
|
|
// the check inside mixer would slow down mix a little bit and costs additionally flash
|
|
// also the check inside mixer still is not bulletproof, there may be still situations a overflow could occur
|
|
// a bulletproof implementation would take about additional 100bytes flash
|
|
// therefore with go with this compromize, interested people could activate this define
|
|
|
|
// @@@2 open.20.fsguruh ;
|
|
// channel = channelnumber -1;
|
|
// value = outputvalue with 100 mulitplied usual range -102400 to 102400; output -1024 to 1024
|
|
// changed rescaling from *100 to *256 to optimize performance
|
|
// rescaled from -262144 to 262144
|
|
int16_t applyLimits(uint8_t channel, int32_t value)
|
|
{
|
|
LimitData * lim = limitAddress(channel);
|
|
|
|
#if defined(CPUARM) && defined(CURVES)
|
|
if (lim->curve) {
|
|
// TODO we loose precision here, applyCustomCurve could work with int32_t on ARM boards...
|
|
if (lim->curve > 0)
|
|
value = 256 * applyCustomCurve(value/256, lim->curve-1);
|
|
else
|
|
value = 256 * applyCustomCurve(-value/256, -lim->curve-1);
|
|
}
|
|
#endif
|
|
|
|
int16_t ofs = LIMIT_OFS_RESX(lim);
|
|
int16_t lim_p = LIMIT_MAX_RESX(lim);
|
|
int16_t lim_n = LIMIT_MIN_RESX(lim);
|
|
|
|
if (ofs > lim_p) ofs = lim_p;
|
|
if (ofs < lim_n) ofs = lim_n;
|
|
|
|
// because the rescaling optimization would reduce the calculation reserve we activate this for all builds
|
|
// it increases the calculation reserve from factor 20,25x to 32x, which it slightly better as original
|
|
// without it we would only have 16x which is slightly worse as original, we should not do this
|
|
|
|
// thanks to gbirkus, he motivated this change, which greatly reduces overruns
|
|
// unfortunately the constants and 32bit compares generates about 50 bytes codes; didn't find a way to get it down.
|
|
value = limit(int32_t(-RESXl*256), value, int32_t(RESXl*256)); // saves 2 bytes compared to other solutions up to now
|
|
|
|
#if defined(PCBACAIR)
|
|
if (channel < NUM_STICKS) {
|
|
int trimIndex = (3 * channel);
|
|
int trimMin = trimsxx[trimIndex + 1];
|
|
if (value >= 0) {
|
|
int trimMax = trimsxx[trimIndex + 2];
|
|
value += 256 * (trimMin + ((trimMax - trimMin) * value / (RESXl * 256)));
|
|
}
|
|
else {
|
|
int trimMax = trimsxx[trimIndex];
|
|
value += 256 * (trimMin + ((trimMin - trimMax) * value / (RESXl * 256)));
|
|
}
|
|
g_model.moduleData[INTERNAL_MODULE].failsafeChannels[channel] = (lim->revert ? -trimsxx[trimIndex + 1] : trimsxx[trimIndex + 1]);
|
|
}
|
|
#endif
|
|
|
|
#if defined(PPM_LIMITS_SYMETRICAL)
|
|
if (value) {
|
|
int16_t tmp;
|
|
if (lim->symetrical)
|
|
tmp = (value > 0) ? (lim_p) : (-lim_n);
|
|
else
|
|
tmp = (value > 0) ? (lim_p - ofs) : (-lim_n + ofs);
|
|
value = (int32_t) value * tmp; // div by 1024*256 -> output = -1024..1024
|
|
#else
|
|
if (value) {
|
|
int16_t tmp = (value > 0) ? (lim_p - ofs) : (-lim_n + ofs);
|
|
value = (int32_t) value * tmp; // div by 1024*256 -> output = -1024..1024
|
|
#endif
|
|
|
|
#ifdef CORRECT_NEGATIVE_SHIFTS
|
|
int8_t sign = (value<0?1:0);
|
|
value -= sign;
|
|
tmp = value>>16; // that's quite tricky: the shiftright 16 operation is assmbled just with addressmove; just forget the two least significant bytes;
|
|
tmp >>= 2; // now one simple shift right for two bytes does the rest
|
|
tmp += sign;
|
|
#else
|
|
tmp = value>>16; // that's quite tricky: the shiftright 16 operation is assmbled just with addressmove; just forget the two least significant bytes;
|
|
tmp >>= 2; // now one simple shift right for two bytes does the rest
|
|
#endif
|
|
|
|
ofs += tmp; // ofs can to added directly because already recalculated,
|
|
}
|
|
|
|
if (ofs > lim_p) ofs = lim_p;
|
|
if (ofs < lim_n) ofs = lim_n;
|
|
|
|
if (lim->revert) ofs = -ofs; // finally do the reverse.
|
|
|
|
#if defined(OVERRIDE_CHANNEL_FUNCTION)
|
|
if (safetyCh[channel] != OVERRIDE_CHANNEL_UNDEFINED) {
|
|
// safety channel available for channel check
|
|
ofs = calc100toRESX(safetyCh[channel]);
|
|
}
|
|
#endif
|
|
|
|
return ofs;
|
|
}
|
|
|
|
// TODO same naming convention than the drawSource
|
|
|
|
getvalue_t getValue(mixsrc_t i)
|
|
{
|
|
if (i == MIXSRC_NONE) {
|
|
return 0;
|
|
}
|
|
|
|
#if defined(VIRTUAL_INPUTS)
|
|
else if (i <= MIXSRC_LAST_INPUT) {
|
|
return anas[i-MIXSRC_FIRST_INPUT];
|
|
}
|
|
#endif
|
|
|
|
#if defined(LUA_INPUTS)
|
|
else if (i < MIXSRC_LAST_LUA) {
|
|
#if defined(LUA_MODEL_SCRIPTS)
|
|
div_t qr = div(i-MIXSRC_FIRST_LUA, MAX_SCRIPT_OUTPUTS);
|
|
return scriptInputsOutputs[qr.quot].outputs[qr.rem].value;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined(LUA_INPUTS)
|
|
else if (i <= MIXSRC_LAST_POT+NUM_MOUSE_ANALOGS) {
|
|
return calibratedAnalogs[i-INPUTSRC_FIRST];
|
|
}
|
|
#else
|
|
else if (i>=MIXSRC_FIRST_STICK && i<=MIXSRC_LAST_POT+NUM_MOUSE_ANALOGS) {
|
|
return calibratedAnalogs[i-MIXSRC_Rud];
|
|
}
|
|
#endif
|
|
|
|
#if defined(PCBGRUVIN9X) || defined(PCBMEGA2560) || defined(ROTARY_ENCODERS)
|
|
else if (i <= MIXSRC_LAST_ROTARY_ENCODER) {
|
|
return getRotaryEncoder(i-MIXSRC_REa);
|
|
}
|
|
#endif
|
|
|
|
else if (i == MIXSRC_MAX) {
|
|
return 1024;
|
|
}
|
|
|
|
else if (i <= MIXSRC_CYC3) {
|
|
#if defined(HELI)
|
|
return cyc_anas[i - MIXSRC_CYC1];
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
else if (i <= MIXSRC_LAST_TRIM) {
|
|
return calc1000toRESX((int16_t)8 * getTrimValue(mixerCurrentFlightMode, i-MIXSRC_FIRST_TRIM));
|
|
}
|
|
|
|
#if defined(PCBFLAMENCO)
|
|
else if (i==MIXSRC_SA) return (switchState(SW_SA0) ? -1024 : (switchState(SW_SA1) ? 0 : 1024));
|
|
else if (i==MIXSRC_SB) return (switchState(SW_SB0) ? -1024 : 1024);
|
|
else if (i==MIXSRC_SC) return (switchState(SW_SC0) ? -1024 : (switchState(SW_SC1) ? 0 : 1024));
|
|
else if (i==MIXSRC_SE) return (switchState(SW_SE0) ? -1024 : 1024);
|
|
else if (i==MIXSRC_SF) return (switchState(SW_SF0) ? -1024 : (switchState(SW_SF1) ? 0 : 1024));
|
|
#elif defined(PCBTARANIS) || defined(PCBHORUS)
|
|
else if ((i >= MIXSRC_FIRST_SWITCH) && (i <= MIXSRC_LAST_SWITCH)) {
|
|
mixsrc_t sw = i-MIXSRC_FIRST_SWITCH;
|
|
if (SWITCH_EXISTS(sw)) {
|
|
return (switchState(3*sw) ? -1024 : (switchState(3*sw+1) ? 0 : 1024));
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
#else
|
|
else if (i == MIXSRC_3POS) {
|
|
return (getSwitch(SW_ID0+1) ? -1024 : (getSwitch(SW_ID1+1) ? 0 : 1024));
|
|
}
|
|
// don't use switchState directly to give getSwitch possibility to hack values if needed for switch warning
|
|
else if (i < MIXSRC_SW1) {
|
|
return getSwitch(SWSRC_THR+i-MIXSRC_THR) ? 1024 : -1024;
|
|
}
|
|
#endif
|
|
|
|
else if (i <= MIXSRC_LAST_LOGICAL_SWITCH) {
|
|
return getSwitch(SWSRC_FIRST_LOGICAL_SWITCH+i-MIXSRC_FIRST_LOGICAL_SWITCH) ? 1024 : -1024;
|
|
}
|
|
else if (i <= MIXSRC_LAST_TRAINER) {
|
|
int16_t x = ppmInput[i-MIXSRC_FIRST_TRAINER];
|
|
if (i<MIXSRC_FIRST_TRAINER+NUM_CAL_PPM) {
|
|
x -= g_eeGeneral.trainer.calib[i-MIXSRC_FIRST_TRAINER];
|
|
}
|
|
return x*2;
|
|
}
|
|
else if (i <= MIXSRC_LAST_CH) {
|
|
return ex_chans[i-MIXSRC_CH1];
|
|
}
|
|
|
|
#if defined(GVARS)
|
|
else if (i <= MIXSRC_LAST_GVAR) {
|
|
return GVAR_VALUE(i-MIXSRC_GVAR1, getGVarFlightMode(mixerCurrentFlightMode, i - MIXSRC_GVAR1));
|
|
}
|
|
#endif
|
|
|
|
#if defined(CPUARM)
|
|
else if (i == MIXSRC_TX_VOLTAGE) {
|
|
return g_vbat100mV;
|
|
}
|
|
else if (i < MIXSRC_FIRST_TIMER) {
|
|
// TX_TIME + SPARES
|
|
#if defined(RTCLOCK)
|
|
return (g_rtcTime % SECS_PER_DAY) / 60; // number of minutes from midnight
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
else if (i <= MIXSRC_LAST_TIMER) {
|
|
return timersStates[i-MIXSRC_FIRST_TIMER].val;
|
|
}
|
|
#else
|
|
else if (i == MIXSRC_FIRST_TELEM-1+TELEM_TX_VOLTAGE) {
|
|
return g_vbat100mV;
|
|
}
|
|
else if (i <= MIXSRC_FIRST_TELEM-1+TELEM_TIMER2) {
|
|
return timersStates[i-MIXSRC_FIRST_TELEM+1-TELEM_TIMER1].val;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CPUARM)
|
|
else if (i <= MIXSRC_LAST_TELEM) {
|
|
i -= MIXSRC_FIRST_TELEM;
|
|
div_t qr = div(i, 3);
|
|
TelemetryItem & telemetryItem = telemetryItems[qr.quot];
|
|
switch (qr.rem) {
|
|
case 1:
|
|
return telemetryItem.valueMin;
|
|
case 2:
|
|
return telemetryItem.valueMax;
|
|
default:
|
|
return telemetryItem.value;
|
|
}
|
|
}
|
|
#elif defined(TELEMETRY_FRSKY)
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_RSSI_TX) return telemetryData.rssi[1].value;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_RSSI_RX) return telemetryData.rssi[0].value;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_A1) return telemetryData.analog[TELEM_ANA_A1].value;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_A2) return telemetryData.analog[TELEM_ANA_A2].value;
|
|
#if defined(TELEMETRY_FRSKY_SPORT)
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_ALT) return telemetryData.hub.baroAltitude;
|
|
#elif defined(FRSKY_HUB) || defined(WS_HOW_HIGH)
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_ALT) return TELEMETRY_RELATIVE_BARO_ALT_BP;
|
|
#endif
|
|
#if defined(FRSKY_HUB)
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_RPM) return telemetryData.hub.rpm;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_FUEL) return telemetryData.hub.fuelLevel;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_T1) return telemetryData.hub.temperature1;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_T2) return telemetryData.hub.temperature2;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_SPEED) return TELEMETRY_GPS_SPEED_BP;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_DIST) return telemetryData.hub.gpsDistance;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_GPSALT) return TELEMETRY_RELATIVE_GPS_ALT_BP;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_CELL) return (int16_t)TELEMETRY_MIN_CELL_VOLTAGE;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_CELLS_SUM) return (int16_t)telemetryData.hub.cellsSum;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_VFAS) return (int16_t)telemetryData.hub.vfas;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_CURRENT) return (int16_t)telemetryData.hub.current;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_CONSUMPTION) return telemetryData.hub.currentConsumption;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_POWER) return telemetryData.hub.power;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_ACCx) return telemetryData.hub.accelX;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_ACCy) return telemetryData.hub.accelY;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_ACCz) return telemetryData.hub.accelZ;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_HDG) return telemetryData.hub.gpsCourse_bp;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_VSPEED) return telemetryData.hub.varioSpeed;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_ASPEED) return telemetryData.hub.airSpeed;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_DTE) return telemetryData.hub.dTE;
|
|
else if (i<=MIXSRC_FIRST_TELEM-1+TELEM_MIN_A1) return telemetryData.analog[TELEM_ANA_A1].min;
|
|
else if (i==MIXSRC_FIRST_TELEM-1+TELEM_MIN_A2) return telemetryData.analog[TELEM_ANA_A2].min;
|
|
else if (i<=MIXSRC_FIRST_TELEM-1+TELEM_CSW_MAX) return *(((int16_t*)(&telemetryData.hub.minAltitude))+i-(MIXSRC_FIRST_TELEM-1+TELEM_MIN_ALT));
|
|
#endif
|
|
#endif
|
|
else return 0;
|
|
}
|
|
|
|
void evalInputs(uint8_t mode)
|
|
{
|
|
BeepANACenter anaCenter = 0;
|
|
|
|
#if defined(HELI) && !defined(VIRTUAL_INPUTS)
|
|
uint16_t d = 0;
|
|
if (g_model.swashR.value) {
|
|
uint32_t v = (int32_t(calibratedAnalogs[ELE_STICK])*calibratedAnalogs[ELE_STICK] + int32_t(calibratedAnalogs[AIL_STICK])*calibratedAnalogs[AIL_STICK]);
|
|
uint32_t q = calc100toRESX(g_model.swashR.value);
|
|
q *= q;
|
|
if (v > q) {
|
|
d = isqrt32(v);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (uint8_t i=0; i<NUM_STICKS+NUM_POTS+NUM_SLIDERS; i++) {
|
|
// normalization [0..2048] -> [-1024..1024]
|
|
uint8_t ch = (i < NUM_STICKS ? CONVERT_MODE(i) : i);
|
|
int16_t v = anaIn(i);
|
|
|
|
if (IS_POT_MULTIPOS(i)) {
|
|
v -= RESX;
|
|
}
|
|
#if !defined(SIMU)
|
|
else {
|
|
CalibData * calib = &g_eeGeneral.calib[i];
|
|
v -= calib->mid;
|
|
v = v * (int32_t) RESX / (max((int16_t) 100, (v > 0 ? calib->spanPos : calib->spanNeg)));
|
|
}
|
|
#endif
|
|
|
|
if (v < -RESX) v = -RESX;
|
|
if (v > RESX) v = RESX;
|
|
|
|
#if defined(PCBTARANIS) && !defined(PCBX7) && !defined(SIMU)
|
|
// TODO why not in the driver?
|
|
if (i==POT1 || i==SLIDER1) {
|
|
v = -v;
|
|
}
|
|
#endif
|
|
|
|
if (g_model.throttleReversed && ch==THR_STICK) {
|
|
v = -v;
|
|
}
|
|
|
|
BeepANACenter mask = (BeepANACenter)1 << ch;
|
|
|
|
calibratedAnalogs[ch] = v; // for show in expo
|
|
|
|
// filtering for center beep
|
|
uint8_t tmp = (uint16_t)abs(v) / 16;
|
|
#if defined(CPUARM)
|
|
if (mode == e_perout_mode_normal) {
|
|
if (tmp==0 || (tmp==1 && (bpanaCenter & mask))) {
|
|
anaCenter |= mask;
|
|
if ((g_model.beepANACenter & mask) && !(bpanaCenter & mask) && !menuCalibrationState) {
|
|
if (!IS_POT(i) || IS_POT_SLIDER_AVAILABLE(i)) {
|
|
AUDIO_POT_MIDDLE(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (tmp <= 1) anaCenter |= (tmp==0 ? mask : (bpanaCenter & mask));
|
|
#endif
|
|
|
|
if (ch < NUM_STICKS) { // only do this for sticks
|
|
#if defined(VIRTUAL_INPUTS)
|
|
if (mode & e_perout_mode_nosticks) {
|
|
v = 0;
|
|
}
|
|
#endif
|
|
|
|
if (mode <= e_perout_mode_inactive_flight_mode && isFunctionActive(FUNCTION_TRAINER+ch) && IS_TRAINER_INPUT_VALID()) {
|
|
// trainer mode
|
|
TrainerMix* td = &g_eeGeneral.trainer.mix[ch];
|
|
if (td->mode) {
|
|
uint8_t chStud = td->srcChn;
|
|
int32_t vStud = (ppmInput[chStud]- g_eeGeneral.trainer.calib[chStud]);
|
|
vStud *= td->studWeight;
|
|
vStud /= 50;
|
|
switch (td->mode) {
|
|
case 1:
|
|
// add-mode
|
|
v = limit<int16_t>(-RESX, v+vStud, RESX);
|
|
break;
|
|
case 2:
|
|
// subst-mode
|
|
v = vStud;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(VIRTUAL_INPUTS)
|
|
calibratedAnalogs[ch] = v;
|
|
#else
|
|
#if defined(HELI)
|
|
if (d && (ch==ELE_STICK || ch==AIL_STICK)) {
|
|
v = (int32_t(v) * calc100toRESX(g_model.swashR.value)) / int32_t(d);
|
|
}
|
|
#endif
|
|
rawAnas[ch] = v;
|
|
anas[ch] = v; // set values for mixer
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if defined(ROTARY_ENCODERS)
|
|
for (uint8_t i=0; i<NUM_ROTARY_ENCODERS; i++) {
|
|
if (getRotaryEncoder(i) == 0) {
|
|
anaCenter |= ((BeepANACenter)1 << (NUM_STICKS+NUM_POTS+NUM_SLIDERS+NUM_MOUSE_ANALOGS+i));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if NUM_MOUSE_ANALOGS > 0
|
|
for (uint8_t i=0; i<NUM_MOUSE_ANALOGS; i++) {
|
|
uint8_t ch = NUM_STICKS+NUM_POTS+NUM_SLIDERS+i;
|
|
int16_t v = anaIn(MOUSE1+i);
|
|
CalibData * calib = &g_eeGeneral.calib[ch];
|
|
v -= calib->mid;
|
|
v = v * (int32_t) RESX / (max((int16_t) 100, (v > 0 ? calib->spanPos : calib->spanNeg)));
|
|
if (v < -RESX) v = -RESX;
|
|
if (v > RESX) v = RESX;
|
|
calibratedAnalogs[ch] = v;
|
|
}
|
|
#endif
|
|
|
|
/* EXPOs */
|
|
applyExpos(anas, mode);
|
|
|
|
/* TRIMs */
|
|
evalTrims(); // when no virtual inputs, the trims need the anas array calculated above (when throttle trim enabled)
|
|
|
|
if (mode == e_perout_mode_normal) {
|
|
#if !defined(CPUARM)
|
|
anaCenter &= g_model.beepANACenter;
|
|
if (((bpanaCenter ^ anaCenter) & anaCenter)) AUDIO_POT_MIDDLE();
|
|
#endif
|
|
bpanaCenter = anaCenter;
|
|
}
|
|
}
|
|
|
|
#if defined(VIRTUAL_INPUTS)
|
|
int getStickTrimValue(int stick, int stickValue)
|
|
{
|
|
if (stick < 0)
|
|
return 0;
|
|
|
|
#if defined(PCBACAIR)
|
|
return 0;
|
|
#else
|
|
int trim = trimsxx[stick];
|
|
if (stick == THR_STICK) {
|
|
if (g_model.thrTrim) {
|
|
int trimMin = g_model.extendedTrims ? 2*TRIM_EXTENDED_MIN : 2*TRIM_MIN;
|
|
trim = ((g_model.throttleReversed ? (trim+trimMin) : (trim-trimMin)) * (RESX-stickValue)) >> (RESX_SHIFT+1);
|
|
}
|
|
if (g_model.throttleReversed) {
|
|
trim = -trim;
|
|
}
|
|
}
|
|
return trim;
|
|
#endif
|
|
}
|
|
|
|
int getSourceTrimValue(int source, int stickValue=0)
|
|
{
|
|
if (source >= MIXSRC_FIRST_STICK && source < MIXSRC_FIRST_STICK+NUM_STICKS)
|
|
return getStickTrimValue(source - MIXSRC_FIRST_STICK, stickValue);
|
|
else if (source >= MIXSRC_FIRST_INPUT && source <= MIXSRC_LAST_INPUT)
|
|
return getStickTrimValue(virtualInputsTrims[source - MIXSRC_FIRST_INPUT], stickValue);
|
|
else
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
uint8_t mixerCurrentFlightMode;
|
|
void evalFlightModeMixes(uint8_t mode, uint8_t tick10ms)
|
|
{
|
|
evalInputs(mode);
|
|
|
|
if (tick10ms) evalLogicalSwitches(mode==e_perout_mode_normal);
|
|
|
|
#if defined(MODULE_ALWAYS_SEND_PULSES)
|
|
checkStartupWarnings();
|
|
#endif
|
|
|
|
#if defined(HELI)
|
|
#if defined(VIRTUAL_INPUTS)
|
|
int heliEleValue = getValue(g_model.swashR.elevatorSource);
|
|
int heliAilValue = getValue(g_model.swashR.aileronSource);
|
|
#else
|
|
int16_t heliEleValue = anas[ELE_STICK];
|
|
int16_t heliAilValue = anas[AIL_STICK];
|
|
#endif
|
|
if (g_model.swashR.value) {
|
|
uint32_t v = ((int32_t)heliEleValue*heliEleValue + (int32_t)heliAilValue*heliAilValue);
|
|
uint32_t q = calc100toRESX(g_model.swashR.value);
|
|
q *= q;
|
|
if (v>q) {
|
|
uint16_t d = isqrt32(v);
|
|
int16_t tmp = calc100toRESX(g_model.swashR.value);
|
|
heliEleValue = (int32_t) heliEleValue*tmp/d;
|
|
heliAilValue = (int32_t) heliAilValue*tmp/d;
|
|
}
|
|
}
|
|
|
|
#define REZ_SWASH_X(x) ((x) - (x)/8 - (x)/128 - (x)/512) // 1024*sin(60) ~= 886
|
|
#define REZ_SWASH_Y(x) ((x)) // 1024 => 1024
|
|
|
|
if (g_model.swashR.type) {
|
|
#if defined(VIRTUAL_INPUTS)
|
|
getvalue_t vp = heliEleValue + getSourceTrimValue(g_model.swashR.elevatorSource);
|
|
getvalue_t vr = heliAilValue + getSourceTrimValue(g_model.swashR.aileronSource);
|
|
#else
|
|
getvalue_t vp = heliEleValue + trims[ELE_STICK];
|
|
getvalue_t vr = heliAilValue + trims[AIL_STICK];
|
|
#endif
|
|
getvalue_t vc = 0;
|
|
if (g_model.swashR.collectiveSource)
|
|
vc = getValue(g_model.swashR.collectiveSource);
|
|
|
|
#if defined(VIRTUAL_INPUTS)
|
|
vp = (vp * g_model.swashR.elevatorWeight) / 100;
|
|
vr = (vr * g_model.swashR.aileronWeight) / 100;
|
|
vc = (vc * g_model.swashR.collectiveWeight) / 100;
|
|
#else
|
|
if (g_model.swashR.invertELE) vp = -vp;
|
|
if (g_model.swashR.invertAIL) vr = -vr;
|
|
if (g_model.swashR.invertCOL) vc = -vc;
|
|
#endif
|
|
|
|
switch (g_model.swashR.type) {
|
|
case SWASH_TYPE_120:
|
|
vp = REZ_SWASH_Y(vp);
|
|
vr = REZ_SWASH_X(vr);
|
|
cyc_anas[0] = vc - vp;
|
|
cyc_anas[1] = vc + vp/2 + vr;
|
|
cyc_anas[2] = vc + vp/2 - vr;
|
|
break;
|
|
case SWASH_TYPE_120X:
|
|
vp = REZ_SWASH_X(vp);
|
|
vr = REZ_SWASH_Y(vr);
|
|
cyc_anas[0] = vc - vr;
|
|
cyc_anas[1] = vc + vr/2 + vp;
|
|
cyc_anas[2] = vc + vr/2 - vp;
|
|
break;
|
|
case SWASH_TYPE_140:
|
|
vp = REZ_SWASH_Y(vp);
|
|
vr = REZ_SWASH_Y(vr);
|
|
cyc_anas[0] = vc - vp;
|
|
cyc_anas[1] = vc + vp + vr;
|
|
cyc_anas[2] = vc + vp - vr;
|
|
break;
|
|
case SWASH_TYPE_90:
|
|
vp = REZ_SWASH_Y(vp);
|
|
vr = REZ_SWASH_Y(vr);
|
|
cyc_anas[0] = vc - vp;
|
|
cyc_anas[1] = vc + vr;
|
|
cyc_anas[2] = vc - vr;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
memclear(chans, sizeof(chans)); // All outputs to 0
|
|
|
|
//========== MIXER LOOP ===============
|
|
uint8_t lv_mixWarning = 0;
|
|
|
|
uint8_t pass = 0;
|
|
|
|
bitfield_channels_t dirtyChannels = (bitfield_channels_t)-1; // all dirty when mixer starts
|
|
|
|
do {
|
|
|
|
bitfield_channels_t passDirtyChannels = 0;
|
|
|
|
for (uint8_t i=0; i<MAX_MIXERS; i++) {
|
|
|
|
#if defined(BOLD_FONT)
|
|
if (mode==e_perout_mode_normal && pass==0) swOn[i].activeMix = 0;
|
|
#endif
|
|
|
|
MixData * md = mixAddress(i);
|
|
|
|
#if defined(PCBACAIR)
|
|
if (md->srcRaw == 0) continue;
|
|
#else
|
|
if (md->srcRaw == 0) break;
|
|
#endif
|
|
|
|
mixsrc_t stickIndex = md->srcRaw - MIXSRC_FIRST_STICK;
|
|
|
|
if (!(dirtyChannels & ((bitfield_channels_t)1 << md->destCh))) continue;
|
|
|
|
// if this is the first calculation for the destination channel, initialize it with 0 (otherwise would be random)
|
|
if (i == 0 || md->destCh != (md-1)->destCh) {
|
|
chans[md->destCh] = 0;
|
|
}
|
|
|
|
//========== PHASE && SWITCH =====
|
|
bool mixCondition = (md->flightModes != 0 || md->swtch);
|
|
delayval_t mixEnabled = (!(md->flightModes & (1 << mixerCurrentFlightMode)) && getSwitch(md->swtch)) ? DELAY_POS_MARGIN+1 : 0;
|
|
|
|
#define MIXER_LINE_DISABLE() (mixCondition = true, mixEnabled = 0)
|
|
|
|
if (mixEnabled && md->srcRaw >= MIXSRC_FIRST_TRAINER && md->srcRaw <= MIXSRC_LAST_TRAINER && !IS_TRAINER_INPUT_VALID()) {
|
|
MIXER_LINE_DISABLE();
|
|
}
|
|
|
|
#if defined(LUA_MODEL_SCRIPTS)
|
|
// disable mixer if Lua script is used as source and script was killed
|
|
if (mixEnabled && md->srcRaw >= MIXSRC_FIRST_LUA && md->srcRaw <= MIXSRC_LAST_LUA) {
|
|
div_t qr = div(md->srcRaw-MIXSRC_FIRST_LUA, MAX_SCRIPT_OUTPUTS);
|
|
if (scriptInternalData[qr.quot].state != SCRIPT_OK) {
|
|
MIXER_LINE_DISABLE();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//========== VALUE ===============
|
|
getvalue_t v = 0;
|
|
if (mode > e_perout_mode_inactive_flight_mode) {
|
|
#if defined(VIRTUAL_INPUTS)
|
|
if (!mixEnabled) {
|
|
continue;
|
|
}
|
|
else {
|
|
v = getValue(md->srcRaw);
|
|
}
|
|
#else
|
|
if (!mixEnabled || stickIndex >= NUM_STICKS || (stickIndex == THR_STICK && g_model.thrTrim)) {
|
|
continue;
|
|
}
|
|
else {
|
|
if (!(mode & e_perout_mode_nosticks)) v = anas[stickIndex];
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
#if !defined(VIRTUAL_INPUTS)
|
|
if (stickIndex < NUM_STICKS) {
|
|
v = md->noExpo ? rawAnas[stickIndex] : anas[stickIndex];
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
mixsrc_t srcRaw = MIXSRC_FIRST_STICK + stickIndex;
|
|
v = getValue(srcRaw);
|
|
srcRaw -= MIXSRC_CH1;
|
|
if (srcRaw<=MIXSRC_LAST_CH-MIXSRC_CH1 && md->destCh != srcRaw) {
|
|
if (dirtyChannels & ((bitfield_channels_t)1 << srcRaw) & (passDirtyChannels|~(((bitfield_channels_t) 1 << md->destCh)-1)))
|
|
passDirtyChannels |= (bitfield_channels_t) 1 << md->destCh;
|
|
if (srcRaw < md->destCh || pass > 0)
|
|
v = chans[srcRaw] >> 8;
|
|
}
|
|
}
|
|
if (!mixCondition) {
|
|
mixEnabled = v >> DELAY_POS_SHIFT;
|
|
}
|
|
}
|
|
|
|
bool apply_offset_and_curve = true;
|
|
|
|
//========== DELAYS ===============
|
|
delayval_t _swOn = swOn[i].now;
|
|
delayval_t _swPrev = swOn[i].prev;
|
|
bool swTog = (mixEnabled > _swOn+DELAY_POS_MARGIN || mixEnabled < _swOn-DELAY_POS_MARGIN);
|
|
if (mode==e_perout_mode_normal && swTog) {
|
|
if (!swOn[i].delay) _swPrev = _swOn;
|
|
swOn[i].delay = (mixEnabled > _swOn ? md->delayUp : md->delayDown) * (100/DELAY_STEP);
|
|
swOn[i].now = mixEnabled;
|
|
swOn[i].prev = _swPrev;
|
|
}
|
|
if (mode==e_perout_mode_normal && swOn[i].delay > 0) {
|
|
swOn[i].delay = max<int16_t>(0, (int16_t)swOn[i].delay - tick10ms);
|
|
if (!mixCondition)
|
|
v = _swPrev << DELAY_POS_SHIFT;
|
|
else if (mixEnabled)
|
|
continue;
|
|
}
|
|
else {
|
|
if (mode==e_perout_mode_normal) {
|
|
swOn[i].now = swOn[i].prev = mixEnabled;
|
|
}
|
|
if (!mixEnabled) {
|
|
if ((md->speedDown || md->speedUp) && md->mltpx!=MLTPX_REP) {
|
|
if (mixCondition) {
|
|
v = (md->mltpx == MLTPX_ADD ? 0 : RESX);
|
|
apply_offset_and_curve = false;
|
|
}
|
|
}
|
|
else if (mixCondition) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mode==e_perout_mode_normal && (!mixCondition || mixEnabled || swOn[i].delay)) {
|
|
if (md->mixWarn) lv_mixWarning |= 1 << (md->mixWarn - 1);
|
|
#if defined(BOLD_FONT)
|
|
swOn[i].activeMix = true;
|
|
#endif
|
|
}
|
|
|
|
if (apply_offset_and_curve) {
|
|
|
|
//========== TRIMS ================
|
|
if (!(mode & e_perout_mode_notrims)) {
|
|
#if defined(VIRTUAL_INPUTS)
|
|
if (md->carryTrim == 0) {
|
|
v += getSourceTrimValue(md->srcRaw, v);
|
|
}
|
|
#else
|
|
int8_t mix_trim = md->carryTrim;
|
|
if (mix_trim < TRIM_ON)
|
|
mix_trim = -mix_trim - 1;
|
|
else if (mix_trim == TRIM_ON && stickIndex < NUM_STICKS)
|
|
mix_trim = stickIndex;
|
|
else
|
|
mix_trim = -1;
|
|
if (mix_trim >= 0) {
|
|
int16_t trim = trims[mix_trim];
|
|
if (mix_trim == THR_STICK && g_model.throttleReversed)
|
|
v -= trim;
|
|
else
|
|
v += trim;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if defined(CPUARM)
|
|
int32_t weight = GET_GVAR_PREC1(MD_WEIGHT(md), GV_RANGELARGE_NEG, GV_RANGELARGE, mixerCurrentFlightMode);
|
|
weight = calc100to256_16Bits(weight);
|
|
#else
|
|
// saves 12 bytes code if done here and not together with weight; unknown reason
|
|
int16_t weight = GET_GVAR(MD_WEIGHT(md), GV_RANGELARGE_NEG, GV_RANGELARGE, mixerCurrentFlightMode);
|
|
weight = calc100to256_16Bits(weight);
|
|
#endif
|
|
//========== SPEED ===============
|
|
// now its on input side, but without weight compensation. More like other remote controls
|
|
// lower weight causes slower movement
|
|
|
|
if (mode <= e_perout_mode_inactive_flight_mode && (md->speedUp || md->speedDown)) { // there are delay values
|
|
#define DEL_MULT_SHIFT 8
|
|
// we recale to a mult 256 higher value for calculation
|
|
int32_t tact = act[i];
|
|
int16_t diff = v - (tact>>DEL_MULT_SHIFT);
|
|
if (diff) {
|
|
// open.20.fsguruh: speed is defined in % movement per second; In menu we specify the full movement (-100% to 100%) = 200% in total
|
|
// the unit of the stored value is the value from md->speedUp or md->speedDown divide SLOW_STEP seconds; e.g. value 4 means 4/SLOW_STEP = 2 seconds for CPU64
|
|
// because we get a tick each 10msec, we need 100 ticks for one second
|
|
// the value in md->speedXXX gives the time it should take to do a full movement from -100 to 100 therefore 200%. This equals 2048 in recalculated internal range
|
|
if (tick10ms || !s_mixer_first_run_done) {
|
|
// only if already time is passed add or substract a value according the speed configured
|
|
int32_t rate = (int32_t) tick10ms << (DEL_MULT_SHIFT+11); // = DEL_MULT*2048*tick10ms
|
|
// rate equals a full range for one second; if less time is passed rate is accordingly smaller
|
|
// if one second passed, rate would be 2048 (full motion)*256(recalculated weight)*100(100 ticks needed for one second)
|
|
int32_t currentValue = ((int32_t) v<<DEL_MULT_SHIFT);
|
|
if (diff > 0) {
|
|
if (s_mixer_first_run_done && md->speedUp > 0) {
|
|
// if a speed upwards is defined recalculate the new value according configured speed; the higher the speed the smaller the add value is
|
|
int32_t newValue = tact+rate/((int16_t)(100/SLOW_STEP)*md->speedUp);
|
|
if (newValue<currentValue) currentValue = newValue; // Endposition; prevent toggling around the destination
|
|
}
|
|
}
|
|
else { // if is <0 because ==0 is not possible
|
|
if (s_mixer_first_run_done && md->speedDown > 0) {
|
|
// see explanation in speedUp
|
|
int32_t newValue = tact-rate/((int16_t)(100/SLOW_STEP)*md->speedDown);
|
|
if (newValue>currentValue) currentValue = newValue; // Endposition; prevent toggling around the destination
|
|
}
|
|
}
|
|
act[i] = tact = currentValue;
|
|
// open.20.fsguruh: this implementation would save about 50 bytes code
|
|
} // endif tick10ms ; in case no time passed assign the old value, not the current value from source
|
|
v = (tact >> DEL_MULT_SHIFT);
|
|
}
|
|
}
|
|
|
|
//========== CURVES ===============
|
|
#if defined(CPUARM)
|
|
if (apply_offset_and_curve && md->curve.type != CURVE_REF_DIFF && md->curve.value) {
|
|
v = applyCurve(v, md->curve);
|
|
}
|
|
#else
|
|
if (apply_offset_and_curve && md->curveParam && md->curveMode == MODE_CURVE) {
|
|
v = applyCurve(v, md->curveParam);
|
|
}
|
|
#endif
|
|
|
|
//========== WEIGHT ===============
|
|
int32_t dv = (int32_t)v * weight;
|
|
#if defined(CPUARM)
|
|
dv = div_and_round(dv, 10);
|
|
#endif
|
|
|
|
//========== OFFSET / AFTER ===============
|
|
if (apply_offset_and_curve) {
|
|
#if defined(CPUARM)
|
|
int32_t offset = GET_GVAR_PREC1(MD_OFFSET(md), GV_RANGELARGE_NEG, GV_RANGELARGE, mixerCurrentFlightMode);
|
|
if (offset) dv += div_and_round(calc100toRESX_16Bits(offset), 10) << 8;
|
|
#else
|
|
int16_t offset = GET_GVAR(MD_OFFSET(md), GV_RANGELARGE_NEG, GV_RANGELARGE, mixerCurrentFlightMode);
|
|
if (offset) dv += int32_t(calc100toRESX_16Bits(offset)) << 8;
|
|
#endif
|
|
}
|
|
|
|
//========== DIFFERENTIAL =========
|
|
#if defined(CPUARM)
|
|
if (md->curve.type == CURVE_REF_DIFF && md->curve.value) {
|
|
dv = applyCurve(dv, md->curve);
|
|
}
|
|
#else
|
|
if (md->curveMode == MODE_DIFFERENTIAL) {
|
|
// @@@2 also recalculate curveParam to a 256 basis which ease the calculation later a lot
|
|
int16_t curveParam = calc100to256(GET_GVAR(md->curveParam, -100, 100, mixerCurrentFlightMode));
|
|
if (curveParam > 0 && dv < 0)
|
|
dv = (dv * (256 - curveParam)) >> 8;
|
|
else if (curveParam < 0 && dv > 0)
|
|
dv = (dv * (256 + curveParam)) >> 8;
|
|
}
|
|
#endif
|
|
|
|
int32_t * ptr = &chans[md->destCh]; // Save calculating address several times
|
|
|
|
switch (md->mltpx) {
|
|
case MLTPX_REP:
|
|
*ptr = dv;
|
|
#if defined(BOLD_FONT)
|
|
if (mode==e_perout_mode_normal) {
|
|
for (uint8_t m=i-1; m<MAX_MIXERS && mixAddress(m)->destCh==md->destCh; m--)
|
|
swOn[m].activeMix = false;
|
|
}
|
|
#endif
|
|
break;
|
|
case MLTPX_MUL:
|
|
// @@@2 we have to remove the weight factor of 256 in case of 100%; now we use the new base of 256
|
|
dv >>= 8;
|
|
dv *= *ptr;
|
|
dv >>= RESX_SHIFT; // same as dv /= RESXl;
|
|
*ptr = dv;
|
|
break;
|
|
default: // MLTPX_ADD
|
|
*ptr += dv; //Mixer output add up to the line (dv + (dv>0 ? 100/2 : -100/2))/(100);
|
|
break;
|
|
} //endswitch md->mltpx
|
|
#ifdef PREVENT_ARITHMETIC_OVERFLOW
|
|
/*
|
|
// a lot of assumptions must be true, for this kind of check; not really worth for only 4 bytes flash savings
|
|
// this solution would save again 4 bytes flash
|
|
int8_t testVar=(*ptr<<1)>>24;
|
|
if ( (testVar!=-1) && (testVar!=0 ) ) {
|
|
// this devices by 64 which should give a good balance between still over 100% but lower then 32x100%; should be OK
|
|
*ptr >>= 6; // this is quite tricky, reduces the value a lot but should be still over 100% and reduces flash need
|
|
} */
|
|
|
|
|
|
PACK( union u_int16int32_t {
|
|
struct {
|
|
int16_t lo;
|
|
int16_t hi;
|
|
} words_t;
|
|
int32_t dword;
|
|
});
|
|
|
|
u_int16int32_t tmp;
|
|
tmp.dword=*ptr;
|
|
|
|
if (tmp.dword<0) {
|
|
if ((tmp.words_t.hi&0xFF80)!=0xFF80) tmp.words_t.hi=0xFF86; // set to min nearly
|
|
}
|
|
else {
|
|
if ((tmp.words_t.hi|0x007F)!=0x007F) tmp.words_t.hi=0x0079; // set to max nearly
|
|
}
|
|
*ptr = tmp.dword;
|
|
// this implementation saves 18bytes flash
|
|
|
|
/* dv=*ptr>>8;
|
|
if (dv>(32767-RESXl)) {
|
|
*ptr=(32767-RESXl)<<8;
|
|
} else if (dv<(-32767+RESXl)) {
|
|
*ptr=(-32767+RESXl)<<8;
|
|
}*/
|
|
// *ptr=limit( int32_t(int32_t(-1)<<23), *ptr, int32_t(int32_t(1)<<23)); // limit code cost 72 bytes
|
|
// *ptr=limit( int32_t((-32767+RESXl)<<8), *ptr, int32_t((32767-RESXl)<<8)); // limit code cost 80 bytes
|
|
#endif
|
|
|
|
} //endfor mixers
|
|
|
|
tick10ms = 0;
|
|
dirtyChannels &= passDirtyChannels;
|
|
|
|
} while (++pass < 5 && dirtyChannels);
|
|
|
|
mixWarning = lv_mixWarning;
|
|
}
|
|
|
|
int32_t sum_chans512[MAX_OUTPUT_CHANNELS] = {0};
|
|
|
|
|
|
#define MAX_ACT 0xffff
|
|
uint8_t lastFlightMode = 255; // TODO reinit everything here when the model changes, no???
|
|
|
|
#if defined(CPUARM)
|
|
tmr10ms_t flightModeTransitionTime;
|
|
uint8_t flightModeTransitionLast = 255;
|
|
#endif
|
|
|
|
void evalMixes(uint8_t tick10ms)
|
|
{
|
|
#if defined(PCBMEGA2560) && defined(DEBUG) && !defined(VOICE)
|
|
PORTH |= 0x40; // PORTH:6 LOW->HIGH signals start of mixer interrupt
|
|
#endif
|
|
|
|
static uint16_t fp_act[MAX_FLIGHT_MODES] = {0};
|
|
static uint16_t delta = 0;
|
|
static ACTIVE_PHASES_TYPE flightModesFade = 0;
|
|
|
|
LS_RECURSIVE_EVALUATION_RESET();
|
|
|
|
uint8_t fm = getFlightMode();
|
|
|
|
if (lastFlightMode != fm) {
|
|
#if defined(CPUARM)
|
|
flightModeTransitionTime = get_tmr10ms();
|
|
#endif
|
|
|
|
if (lastFlightMode == 255) {
|
|
fp_act[fm] = MAX_ACT;
|
|
}
|
|
else {
|
|
uint8_t fadeTime = max(g_model.flightModeData[lastFlightMode].fadeOut, g_model.flightModeData[fm].fadeIn);
|
|
ACTIVE_PHASES_TYPE transitionMask = ((ACTIVE_PHASES_TYPE)1 << lastFlightMode) + ((ACTIVE_PHASES_TYPE)1 << fm);
|
|
if (fadeTime) {
|
|
flightModesFade |= transitionMask;
|
|
delta = (MAX_ACT / (100/SLOW_STEP)) / fadeTime;
|
|
}
|
|
else {
|
|
flightModesFade &= ~transitionMask;
|
|
fp_act[lastFlightMode] = 0;
|
|
fp_act[fm] = MAX_ACT;
|
|
}
|
|
#if defined(CPUARM)
|
|
logicalSwitchesCopyState(lastFlightMode, fm); // push last logical switches state from old to new flight mode
|
|
#endif
|
|
}
|
|
lastFlightMode = fm;
|
|
}
|
|
|
|
#if defined(CPUARM)
|
|
if (flightModeTransitionTime && get_tmr10ms() > flightModeTransitionTime+SWITCHES_DELAY()) {
|
|
flightModeTransitionTime = 0;
|
|
if (fm != flightModeTransitionLast) {
|
|
if (flightModeTransitionLast != 255) {
|
|
PLAY_PHASE_OFF(flightModeTransitionLast);
|
|
}
|
|
PLAY_PHASE_ON(fm);
|
|
flightModeTransitionLast = fm;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int32_t weight = 0;
|
|
if (flightModesFade) {
|
|
memclear(sum_chans512, sizeof(sum_chans512));
|
|
for (uint8_t p=0; p<MAX_FLIGHT_MODES; p++) {
|
|
LS_RECURSIVE_EVALUATION_RESET();
|
|
if (flightModesFade & ((ACTIVE_PHASES_TYPE)1 << p)) {
|
|
mixerCurrentFlightMode = p;
|
|
evalFlightModeMixes(p==fm ? e_perout_mode_normal : e_perout_mode_inactive_flight_mode, p==fm ? tick10ms : 0);
|
|
for (uint8_t i=0; i<MAX_OUTPUT_CHANNELS; i++)
|
|
sum_chans512[i] += (chans[i] >> 4) * fp_act[p];
|
|
weight += fp_act[p];
|
|
}
|
|
LS_RECURSIVE_EVALUATION_RESET();
|
|
}
|
|
assert(weight);
|
|
mixerCurrentFlightMode = fm;
|
|
}
|
|
else {
|
|
mixerCurrentFlightMode = fm;
|
|
evalFlightModeMixes(e_perout_mode_normal, tick10ms);
|
|
}
|
|
|
|
//========== FUNCTIONS ===============
|
|
// must be done after mixing because some functions use the inputs/channels values
|
|
// must be done before limits because of the applyLimit function: it checks for safety switches which would be not initialized otherwise
|
|
if (tick10ms) {
|
|
#if defined(MASTER_VOLUME)
|
|
requiredSpeakerVolume = g_eeGeneral.speakerVolume + VOLUME_LEVEL_DEF;
|
|
#endif
|
|
|
|
#if defined(CPUARM)
|
|
if (!g_model.noGlobalFunctions) {
|
|
evalFunctions(g_eeGeneral.customFn, globalFunctionsContext);
|
|
}
|
|
evalFunctions(g_model.customFn, modelFunctionsContext);
|
|
#else
|
|
evalFunctions();
|
|
#endif
|
|
}
|
|
|
|
#if defined(PCBACAIR)
|
|
// A7 Custom mixing
|
|
// V1 = X1 / X2; (0 < V1 < 1)
|
|
uint16_t v1;
|
|
if (g_model.xValue[1] == 0) {
|
|
g_model.xValue[0] = 10;
|
|
g_model.xValue[1] = 50;
|
|
}
|
|
|
|
v1 = g_model.xValue[0] * 100 / g_model.xValue[1];
|
|
#endif
|
|
|
|
//========== LIMITS ===============
|
|
for (uint8_t i=0; i<MAX_OUTPUT_CHANNELS; i++) {
|
|
// chans[i] holds data from mixer. chans[i] = v*weight => 1024*256
|
|
// later we multiply by the limit (up to 100) and then we need to normalize
|
|
// at the end chans[i] = chans[i]/256 => -1024..1024
|
|
// interpolate value with min/max so we get smooth motion from center to stop
|
|
// this limits based on v original values and min=-1024, max=1024 RESX=1024
|
|
int32_t q = (flightModesFade ? (sum_chans512[i] / weight) << 4 : chans[i]);
|
|
|
|
#if defined(PCBSTD)
|
|
ex_chans[i] = q >> 8;
|
|
#else
|
|
ex_chans[i] = q / 256;
|
|
#endif
|
|
|
|
int16_t value = applyLimits(i, q); // applyLimits will remove the 256 100% basis
|
|
|
|
#if defined(PCBACAIR)
|
|
// CH3 = V1 * CH1 + CH2 * (1 - V1)
|
|
if(i == 2)
|
|
value = (v1 * channelOutputs[0] + channelOutputs[1] * (100 - v1)) / 100;
|
|
// CH4 = V1 * CH2 + CH1 * (1 - V1)
|
|
else if (i == 3)
|
|
value = (v1 * channelOutputs[1] + channelOutputs[0] * (100 - v1)) / 100;
|
|
#endif
|
|
|
|
cli();
|
|
channelOutputs[i] = value; // copy consistent word to int-level
|
|
sei();
|
|
}
|
|
|
|
if (tick10ms && flightModesFade) {
|
|
uint16_t tick_delta = delta * tick10ms;
|
|
for (uint8_t p=0; p<MAX_FLIGHT_MODES; p++) {
|
|
ACTIVE_PHASES_TYPE flightModeMask = ((ACTIVE_PHASES_TYPE)1 << p);
|
|
if (flightModesFade & flightModeMask) {
|
|
if (p == fm) {
|
|
if (MAX_ACT - fp_act[p] > tick_delta)
|
|
fp_act[p] += tick_delta;
|
|
else {
|
|
fp_act[p] = MAX_ACT;
|
|
flightModesFade -= flightModeMask;
|
|
}
|
|
}
|
|
else {
|
|
if (fp_act[p] > tick_delta)
|
|
fp_act[p] -= tick_delta;
|
|
else {
|
|
fp_act[p] = 0;
|
|
flightModesFade -= flightModeMask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(CPUM2560) && defined(DEBUG) && !defined(VOICE)
|
|
PORTH &= ~0x40; // PORTH:6 HIGH->LOW signals end of mixer interrupt
|
|
#endif
|
|
}
|