1
0
Fork 0
mirror of https://github.com/opentx/opentx.git synced 2025-07-25 17:25:13 +03:00
opentx/radio/src/curves.cpp

337 lines
9.6 KiB
C++

/*
* Copyright (C) OpenTX
*
* Based on code named
* th9x - http://code.google.com/p/th9x
* er9x - http://code.google.com/p/er9x
* gruvin9x - http://code.google.com/p/gruvin9x
*
* License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "opentx.h"
uint8_t s_curveChan;
int8_t * curveEnd[MAX_CURVES];
void loadCurves()
{
bool showWarning= false;
int8_t * tmp = g_model.points;
for (int i=0; i<MAX_CURVES; i++) {
switch (g_model.curves[i].type) {
case CURVE_TYPE_STANDARD:
tmp += 5+g_model.curves[i].points;
break;
case CURVE_TYPE_CUSTOM:
tmp += 8+2*g_model.curves[i].points;
break;
default:
TRACE("Wrong curve type! Fixing...");
g_model.curves[i].type = CURVE_TYPE_STANDARD;
tmp += 5+g_model.curves[i].points;
break;
}
// Older version did not check if we exceeded the array
int8_t * maxend = &g_model.points[MAX_CURVE_POINTS - 2*(MAX_CURVES-i-1)];
if (tmp > maxend) {
tmp = maxend;
g_model.curves[i].type=CURVE_TYPE_STANDARD;
g_model.curves[i].points=-3;
showWarning=true;
}
curveEnd[i] = tmp;
}
if (showWarning) {
POPUP_WARNING("Invalid curve data repaired");
const char * w = "check your curves, logic switches";
SET_WARNING_INFO(w, strlen(w), 0);
}
}
int8_t * curveAddress(uint8_t idx)
{
return idx==0 ? g_model.points : curveEnd[idx-1];
}
bool moveCurve(uint8_t index, int8_t shift)
{
if (curveEnd[MAX_CURVES-1] + shift > g_model.points + sizeof(g_model.points)) {
AUDIO_WARNING2();
return false;
}
int8_t * nextCrv = curveAddress(index+1);
memmove(nextCrv+shift, nextCrv, 5*(MAX_CURVES-index-1)+curveEnd[MAX_CURVES-1]-curveEnd[index]);
if (shift < 0) memclear(&g_model.points[MAX_CURVE_POINTS-1] + shift, -shift);
while (index<MAX_CURVES) {
curveEnd[index++] += shift;
}
storageDirty(EE_MODEL);
return true;
}
int8_t getCurveX(int noPoints, int point)
{
return -100 + div_and_round((point*2000) / (noPoints-1), 10);
}
void resetCustomCurveX(int8_t * points, int noPoints)
{
for (int i=0; i<noPoints-2; i++) {
points[noPoints+i] = getCurveX(noPoints, i+1);
}
}
#define CUSTOM_POINT_X(points, count, idx) ((idx)==0 ? -100 : (((idx)==(count)-1) ? 100 : points[(count)+(idx)-1]))
int32_t compute_tangent(CurveInfo * crv, int8_t * points, int i)
{
int32_t m=0;
uint8_t num_points = crv->points + 5;
#define MMULT 1024
if (i == 0) {
//linear interpolation between 1st 2 points
//keep 3 decimal-places for m
if (crv->type == CURVE_TYPE_CUSTOM) {
int8_t x0 = CUSTOM_POINT_X(points, num_points, 0);
int8_t x1 = CUSTOM_POINT_X(points, num_points, 1);
if (x1 > x0) m = (MMULT * (points[1] - points[0])) / (x1 - x0);
}
else {
int32_t delta = (2 * 100) / (num_points - 1);
m = (MMULT * (points[1] - points[0])) / delta;
}
}
else if (i == num_points - 1) {
//linear interpolation between last 2 points
//keep 3 decimal-places for m
if (crv->type == CURVE_TYPE_CUSTOM) {
int8_t x0 = CUSTOM_POINT_X(points, num_points, num_points-2);
int8_t x1 = CUSTOM_POINT_X(points, num_points, num_points-1);
if (x1 > x0) m = (MMULT * (points[num_points-1] - points[num_points-2])) / (x1 - x0);
}
else {
int32_t delta = (2 * 100) / (num_points - 1);
m = (MMULT * (points[num_points-1] - points[num_points-2])) / delta;
}
}
else {
//apply monotone rules from
//http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
//1) compute slopes of secant lines
int32_t d0=0, d1=0;
if (crv->type == CURVE_TYPE_CUSTOM) {
int8_t x0 = CUSTOM_POINT_X(points, num_points, i-1);
int8_t x1 = CUSTOM_POINT_X(points, num_points, i);
int8_t x2 = CUSTOM_POINT_X(points, num_points, i+1);
if (x1 > x0) d0 = (MMULT * (points[i] - points[i-1])) / (x1 - x0);
if (x2 > x1) d1 = (MMULT * (points[i+1] - points[i])) / (x2 - x1);
}
else {
int32_t delta = (2 * 100) / (num_points - 1);
d0 = (MMULT * (points[i] - points[i-1])) / (delta);
d1 = (MMULT * (points[i+1] - points[i])) / (delta);
}
//2) compute initial average tangent
m = (d0 + d1) / 2;
//3 check for horizontal lines
if (d0 == 0 || d1 == 0 || (d0 > 0 && d1 < 0) || (d0 < 0 && d1 > 0)) {
m = 0;
}
else if (MMULT * m / d0 > 3 * MMULT) {
m = 3 * d0;
}
else if (MMULT * m / d1 > 3 * MMULT) {
m = 3 * d1;
}
}
return m;
}
/* The following is a hermite cubic spline.
The basis functions can be found here:
http://en.wikipedia.org/wiki/Cubic_Hermite_spline
The tangents are computed via the 'cubic monotone' rules (allowing for local-maxima)
*/
int16_t hermite_spline(int16_t x, uint8_t idx)
{
CurveInfo &crv = g_model.curves[idx];
int8_t *points = curveAddress(idx);
uint8_t count = crv.points+5;
bool custom = (crv.type == CURVE_TYPE_CUSTOM);
if (x < -RESX)
x = -RESX;
else if (x > RESX)
x = RESX;
for (int i=0; i<count-1; i++) {
int32_t p0x, p3x;
if (custom) {
p0x = (i>0 ? calc100toRESX(points[count+i-1]) : -RESX);
p3x = (i<count-2 ? calc100toRESX(points[count+i]) : RESX);
}
else {
p0x = -RESX + (i*2*RESX)/(count-1);
p3x = -RESX + ((i+1)*2*RESX)/(count-1);
}
if (x >= p0x && x <= p3x) {
int32_t p0y = calc100toRESX(points[i]);
int32_t p3y = calc100toRESX(points[i+1]);
int32_t m0 = compute_tangent(&crv, points, i);
int32_t m3 = compute_tangent(&crv, points, i+1);
int32_t y;
int32_t h = p3x - p0x;
int32_t t = (h > 0 ? (MMULT * (x - p0x)) / h : 0);
int32_t t2 = t * t / MMULT;
int32_t t3 = t2 * t / MMULT;
int32_t h00 = 2*t3 - 3*t2 + MMULT;
int32_t h10 = t3 - 2*t2 + t;
int32_t h01 = -2*t3 + 3*t2;
int32_t h11 = t3 - t2;
y = p0y * h00 + h * (m0 * h10 / MMULT) + p3y * h01 + h * (m3 * h11 / MMULT);
y /= MMULT;
return y;
}
}
return 0;
}
int intpol(int x, uint8_t idx) // -100, -75, -50, -25, 0 ,25 ,50, 75, 100
{
CurveInfo & crv = g_model.curves[idx];
int8_t * points = curveAddress(idx);
uint8_t count = crv.points+5;
bool custom = (crv.type == CURVE_TYPE_CUSTOM);
int16_t erg = 0;
x += RESXu;
if (x <= 0) {
erg = (int16_t)points[0] * (RESX/4);
}
else if (x >= (RESX*2)) {
erg = (int16_t)points[count-1] * (RESX/4);
}
else {
uint16_t a=0, b=0;
uint8_t i;
if (custom) {
for (i=0; i<count-1; i++) {
a = b;
b = (i==count-2 ? 2*RESX : RESX + calc100toRESX(points[count+i]));
if ((uint16_t)x<=b) break;
}
}
else {
uint16_t d = (RESX * 2) / (count-1);
i = (uint16_t)x / d;
a = i * d;
b = a + d;
}
erg = (int16_t)points[i]*(RESX/4) + ((int32_t)(x-a) * (points[i+1]-points[i]) * (RESX/4)) / ((b-a));
}
return erg / 25; // 100*D5/RESX;
}
int applyCurve(int x, CurveRef & curve)
{
switch (curve.type) {
case CURVE_REF_DIFF:
{
int curveParam = GET_GVAR_PREC1(curve.value, -100, 100, mixerCurrentFlightMode);
if (curveParam > 0 && x < 0)
x = (x * (1000 - curveParam)) / 1000;
else if (curveParam < 0 && x > 0)
x = (x * (1000 + curveParam)) / 1000;
return x;
}
case CURVE_REF_EXPO:
{
int curveParam = GET_GVAR_PREC1(curve.value, -100, 100, mixerCurrentFlightMode) / 10;
return expo(x, curveParam);
}
case CURVE_REF_FUNC:
switch (curve.value) {
case CURVE_X_GT0:
if (x < 0) x = 0; //x|x>0
return x;
case CURVE_X_LT0:
if (x > 0) x = 0; //x|x<0
return x;
case CURVE_ABS_X: // x|abs(x)
return abs(x);
case CURVE_F_GT0: //f|f>0
return x > 0 ? RESX : 0;
case CURVE_F_LT0: //f|f<0
return x < 0 ? -RESX : 0;
case CURVE_ABS_F: //f|abs(f)
return x > 0 ? RESX : -RESX;
}
break;
case CURVE_REF_CUSTOM:
{
int curveParam = curve.value;
if (curveParam < 0) {
x = -x;
curveParam = -curveParam;
}
if (curveParam > 0 && curveParam <= MAX_CURVES) {
return applyCustomCurve(x, curveParam - 1);
}
break;
}
}
return x;
}
int applyCustomCurve(int x, uint8_t idx)
{
if (idx >= MAX_CURVES)
return 0;
CurveInfo & crv = g_model.curves[idx];
if (crv.smooth)
return hermite_spline(x, idx);
else
return intpol(x, idx);
}
point_t getPoint(uint8_t i)
{
point_t result = {0, 0};
CurveInfo & crv = g_model.curves[s_curveChan];
int8_t * points = curveAddress(s_curveChan);
bool custom = (crv.type == CURVE_TYPE_CUSTOM);
uint8_t count = 5+crv.points;
if (i < count) {
result.x = CURVE_CENTER_X-1-CURVE_SIDE_WIDTH + i*CURVE_SIDE_WIDTH*2/(count-1);
result.y = CURVE_CENTER_Y - (points[i]) * (CURVE_SIDE_WIDTH-1) / 100;
if (custom && i>0 && i<count-1) {
result.x = CURVE_CENTER_X - 1 - CURVE_SIDE_WIDTH + (100 + (100 + points[count + i - 1]) * (2 * CURVE_SIDE_WIDTH)) / 200;
}
}
return result;
}
int applyCurrentCurve(int x)
{
return applyCustomCurve(x, s_curveChan);
}