1
0
Fork 0
mirror of https://github.com/opentx/opentx.git synced 2025-07-24 00:35:18 +03:00
opentx/radio/src/mixer.cpp
2020-12-06 11:48:06 +01:00

1021 lines
33 KiB
C++

/*
* Copyright (C) OpenTX
*
* Based on code named
* th9x - http://code.google.com/p/th9x
* er9x - http://code.google.com/p/er9x
* gruvin9x - http://code.google.com/p/gruvin9x
*
* License GPLv2: http://www.gnu.org/licenses/gpl-2.0.html
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "opentx.h"
#include "timers.h"
int8_t virtualInputsTrims[MAX_INPUTS];
int16_t anas [MAX_INPUTS] = {0};
int16_t trims[NUM_TRIMS] = {0};
int32_t chans[MAX_OUTPUT_CHANNELS] = {0};
BeepANACenter bpanaCenter = 0;
int32_t act [MAX_MIXERS] = {0};
SwOn swOn [MAX_MIXERS]; // TODO better name later...
uint8_t mixWarning;
int16_t calibratedAnalogs[NUM_CALIBRATED_ANALOGS];
int16_t channelOutputs[MAX_OUTPUT_CHANNELS] = {0};
int16_t ex_chans[MAX_OUTPUT_CHANNELS] = {0}; // Outputs (before LIMITS) of the last perMain;
#if defined(HELI)
int16_t cyc_anas[3] = {0};
#endif
// #define EXTENDED_EXPO
// increases range of expo curve but costs about 82 bytes flash
// expo-funktion:
// ---------------
// kmplot
// f(x,k)=exp(ln(x)*k/10) ;P[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
// f(x,k)=x*x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// f(x,k)=x*x*k/10 + x*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// f(x,k)=1+(x-1)*(x-1)*(x-1)*k/10 + (x-1)*(1-k/10) ;P[0,1,2,3,4,5,6,7,8,9,10]
// don't know what this above should be, just confusing in my opinion,
// here is the real explanation
// actually the real formula is
/*
f(x) = exp( ln(x) * 10^k)
if it is 10^k or e^k or 2^k etc. just defines the max distortion of the expo curve; I think 10 is useful
this gives values from 0 to 1 for x and output; k must be between -1 and +1
we do not like to calculate with floating point. Therefore we rescale for x from 0 to 1024 and for k from -100 to +100
f(x) = 1024 * ( e^( ln(x/1024) * 10^(k/100) ) )
This would be really hard to be calculated by such a microcontroller
Therefore Thomas Husterer compared a few usual function something like x^3, x^4*something, which look similar
Actually the formula
f(x) = k*x^3+x*(1-k)
gives a similar form and should have even advantages compared to a original exp curve.
This function again expect x from 0 to 1 and k only from 0 to 1
Therefore rescaling is needed like before:
f(x) = 1024* ((k/100)*(x/1024)^3 + (x/1024)*(100-k)/100)
some mathematical tricks
f(x) = (k*x*x*x/(1024*1024) + x*(100-k)) / 100
for better rounding results we add the 50
f(x) = (k*x*x*x/(1024*1024) + x*(100-k) + 50) / 100
because we now understand the formula, we can optimize it further
--> calc100to256(k) --> eliminates /100 by replacing with /256 which is just a simple shift right 8
k is now between 0 and 256
f(x) = (k*x*x*x/(1024*1024) + x*(256-k) + 128) / 256
*/
// input parameters;
// x 0 to 1024;
// k 0 to 100;
// output between 0 and 1024
unsigned int expou(unsigned int x, unsigned int k)
{
#if defined(EXTENDED_EXPO)
bool extended;
if (k > 80) {
extended=true;
}
else {
k += (k>>2); // use bigger values before extend, because the effect is anyway very very low
extended=false;
}
#endif
k = calc100to256(k);
uint32_t value = (uint32_t) x*x;
value *= (uint32_t)k;
value >>= 8;
value *= (uint32_t)x;
#if defined(EXTENDED_EXPO)
if (extended) { // for higher values do more multiplications to get a stronger expo curve
value >>= 16;
value *= (uint32_t)x;
value >>= 4;
value *= (uint32_t)x;
}
#endif
value >>= 12;
value += (uint32_t)(256-k) * x + 128;
return value >> 8;
}
int expo(int x, int k)
{
if (k == 0) {
return x;
}
int y;
bool neg = (x < 0);
if (neg) {
x = -x;
}
if (x > (int)RESXu) {
x = RESXu;
}
if (k < 0) {
y = RESXu - expou(RESXu-x, -k);
}
else {
y = expou(x, k);
}
return neg ? -y : y;
}
void applyExpos(int16_t * anas, uint8_t mode, uint8_t ovwrIdx, int16_t ovwrValue)
{
int8_t cur_chn = -1;
for (uint8_t i=0; i<MAX_EXPOS; i++) {
if (mode == e_perout_mode_normal) swOn[i].activeExpo = false;
ExpoData * ed = expoAddress(i);
if (!EXPO_VALID(ed)) break; // end of list
if (ed->chn == cur_chn)
continue;
if (ed->flightModes & (1<<mixerCurrentFlightMode))
continue;
if (ed->srcRaw >= MIXSRC_FIRST_TRAINER && ed->srcRaw <= MIXSRC_LAST_TRAINER && !IS_TRAINER_INPUT_VALID())
continue;
if (getSwitch(ed->swtch)) {
int32_t v;
if (ed->srcRaw == ovwrIdx) {
v = ovwrValue;
}
else {
v = getValue(ed->srcRaw);
if (ed->srcRaw >= MIXSRC_FIRST_TELEM && ed->scale > 0) {
v = (v * 1024) / convertTelemValue(ed->srcRaw-MIXSRC_FIRST_TELEM+1, ed->scale);
}
v = limit<int32_t>(-1024, v, 1024);
}
if (EXPO_MODE_ENABLE(ed, v)) {
if (mode == e_perout_mode_normal) swOn[i].activeExpo = true;
cur_chn = ed->chn;
//========== CURVE=================
if (ed->curve.value) {
v = applyCurve(v, ed->curve);
}
//========== WEIGHT ===============
int32_t weight = GET_GVAR_PREC1(ed->weight, -100, 100, mixerCurrentFlightMode);
v = divRoundClosest((int32_t)v * weight, 1000);
//========== OFFSET ===============
int32_t offset = GET_GVAR_PREC1(ed->offset, -100, 100, mixerCurrentFlightMode);
if (offset) v += divRoundClosest(calc100toRESX(offset), 10);
//========== TRIMS ================
if (ed->carryTrim < TRIM_ON)
virtualInputsTrims[cur_chn] = -ed->carryTrim - 1;
else if (ed->carryTrim == TRIM_ON && ed->srcRaw >= MIXSRC_Rud && ed->srcRaw <= MIXSRC_Ail)
virtualInputsTrims[cur_chn] = ed->srcRaw - MIXSRC_Rud;
else
virtualInputsTrims[cur_chn] = -1;
anas[cur_chn] = v;
}
}
}
}
// #define PREVENT_ARITHMETIC_OVERFLOW
// because of optimizations the reserves before overruns occurs is only the half
// this defines enables some checks the greatly improves this situation
// It should nearly prevent all overruns (is still a chance for it, but quite low)
// negative side is code cost 96 bytes flash
// we do it now half way, only in applyLimits, which costs currently 50bytes
// according opinion poll this topic is currently not very important
// the change below improves already the situation
// the check inside mixer would slow down mix a little bit and costs additionally flash
// also the check inside mixer still is not bulletproof, there may be still situations a overflow could occur
// a bulletproof implementation would take about additional 100bytes flash
// therefore with go with this compromize, interested people could activate this define
// @@@2 open.20.fsguruh ;
// channel = channelnumber -1;
// value = outputvalue with 100 mulitplied usual range -102400 to 102400; output -1024 to 1024
// changed rescaling from *100 to *256 to optimize performance
// rescaled from -262144 to 262144
int16_t applyLimits(uint8_t channel, int32_t value)
{
#if defined(OVERRIDE_CHANNEL_FUNCTION)
if (safetyCh[channel] != OVERRIDE_CHANNEL_UNDEFINED) {
// safety channel available for channel check
return calc100toRESX(safetyCh[channel]);
}
#endif
if (isFunctionActive(FUNCTION_TRAINER_CHANNELS) && IS_TRAINER_INPUT_VALID()) {
return ppmInput[channel] * 2;
}
LimitData * lim = limitAddress(channel);
if (lim->curve) {
// TODO we loose precision here, applyCustomCurve could work with int32_t on ARM boards...
if (lim->curve > 0)
value = 256 * applyCustomCurve(value/256, lim->curve-1);
else
value = 256 * applyCustomCurve(-value/256, -lim->curve-1);
}
int16_t ofs = LIMIT_OFS_RESX(lim);
int16_t lim_p = LIMIT_MAX_RESX(lim);
int16_t lim_n = LIMIT_MIN_RESX(lim);
if (ofs > lim_p) ofs = lim_p;
if (ofs < lim_n) ofs = lim_n;
// because the rescaling optimization would reduce the calculation reserve we activate this for all builds
// it increases the calculation reserve from factor 20,25x to 32x, which it slightly better as original
// without it we would only have 16x which is slightly worse as original, we should not do this
// thanks to gbirkus, he motivated this change, which greatly reduces overruns
// unfortunately the constants and 32bit compares generates about 50 bytes codes; didn't find a way to get it down.
value = limit(int32_t(-RESXl*256), value, int32_t(RESXl*256)); // saves 2 bytes compared to other solutions up to now
#if defined(PPM_LIMITS_SYMETRICAL)
if (value) {
int16_t tmp;
if (lim->symetrical)
tmp = (value > 0) ? (lim_p) : (-lim_n);
else
tmp = (value > 0) ? (lim_p - ofs) : (-lim_n + ofs);
value = (int32_t) value * tmp; // div by 1024*256 -> output = -1024..1024
#else
if (value) {
int16_t tmp = (value > 0) ? (lim_p - ofs) : (-lim_n + ofs);
value = (int32_t) value * tmp; // div by 1024*256 -> output = -1024..1024
#endif
#ifdef CORRECT_NEGATIVE_SHIFTS
int8_t sign = (value<0?1:0);
value -= sign;
tmp = value>>16; // that's quite tricky: the shiftright 16 operation is assmbled just with addressmove; just forget the two least significant bytes;
tmp >>= 2; // now one simple shift right for two bytes does the rest
tmp += sign;
#else
tmp = value>>16; // that's quite tricky: the shiftright 16 operation is assmbled just with addressmove; just forget the two least significant bytes;
tmp >>= 2; // now one simple shift right for two bytes does the rest
#endif
ofs += tmp; // ofs can to added directly because already recalculated,
}
if (ofs > lim_p)
ofs = lim_p;
if (ofs < lim_n)
ofs = lim_n;
if (lim->revert)
ofs = -ofs; // finally do the reverse.
return ofs;
}
// TODO same naming convention than the drawSource
getvalue_t getValue(mixsrc_t i)
{
if (i == MIXSRC_NONE) {
return 0;
}
else if (i <= MIXSRC_LAST_INPUT) {
return anas[i-MIXSRC_FIRST_INPUT];
}
#if defined(LUA_INPUTS)
else if (i <= MIXSRC_LAST_LUA) {
#if defined(LUA_MODEL_SCRIPTS)
div_t qr = div(i-MIXSRC_FIRST_LUA, MAX_SCRIPT_OUTPUTS);
return scriptInputsOutputs[qr.quot].outputs[qr.rem].value;
#else
return 0;
#endif
}
#endif
else if (i <= MIXSRC_LAST_POT + NUM_MOUSE_ANALOGS) {
return calibratedAnalogs[i - MIXSRC_Rud];
}
#if defined(GYRO)
else if (i == MIXSRC_GYRO1) {
return gyro.scaledX();
}
else if (i == MIXSRC_GYRO2) {
return gyro.scaledY();
}
#endif
else if (i == MIXSRC_MAX) {
return 1024;
}
else if (i <= MIXSRC_CYC3) {
#if defined(HELI)
return cyc_anas[i - MIXSRC_CYC1];
#else
return 0;
#endif
}
else if (i <= MIXSRC_LAST_TRIM) {
return calc1000toRESX((int16_t)8 * getTrimValue(mixerCurrentFlightMode, i-MIXSRC_FIRST_TRIM));
}
// TODO : find a better define
#if defined(PCBFRSKY) || defined(PCBFLYSKY)
else if (i >= MIXSRC_FIRST_SWITCH && i <= MIXSRC_LAST_SWITCH) {
mixsrc_t sw = i - MIXSRC_FIRST_SWITCH;
if (SWITCH_EXISTS(sw)) {
return (switchState(3*sw) ? -1024 : (IS_CONFIG_3POS(sw) && switchState(3*sw+1) ? 0 : 1024));
}
else {
return 0;
}
}
#else
else if (i == MIXSRC_3POS) {
return (getSwitch(SW_ID0+1) ? -1024 : (getSwitch(SW_ID1+1) ? 0 : 1024));
}
// don't use switchState directly to give getSwitch possibility to hack values if needed for switch warning
else if (i < MIXSRC_SW1) {
return getSwitch(SWSRC_THR+i-MIXSRC_THR) ? 1024 : -1024;
}
#endif
else if (i <= MIXSRC_LAST_LOGICAL_SWITCH) {
return getSwitch(SWSRC_FIRST_LOGICAL_SWITCH + i - MIXSRC_FIRST_LOGICAL_SWITCH) ? 1024 : -1024;
}
else if (i <= MIXSRC_LAST_TRAINER) {
int16_t x = ppmInput[i - MIXSRC_FIRST_TRAINER];
if (i < MIXSRC_FIRST_TRAINER + NUM_CAL_PPM) {
x -= g_eeGeneral.trainer.calib[i - MIXSRC_FIRST_TRAINER];
}
return x * 2;
}
else if (i <= MIXSRC_LAST_CH) {
return ex_chans[i - MIXSRC_CH1];
}
else if (i <= MIXSRC_LAST_GVAR) {
#if defined(GVARS)
return GVAR_VALUE(i - MIXSRC_GVAR1, getGVarFlightMode(mixerCurrentFlightMode, i - MIXSRC_GVAR1));
#else
return 0;
#endif
}
else if (i == MIXSRC_TX_VOLTAGE) {
return g_vbat100mV;
}
else if (i < MIXSRC_FIRST_TIMER) {
// TX_TIME + SPARES
#if defined(RTCLOCK)
return (g_rtcTime % SECS_PER_DAY) / 60; // number of minutes from midnight
#else
return 0;
#endif
}
else if (i <= MIXSRC_LAST_TIMER) {
return timersStates[i - MIXSRC_FIRST_TIMER].val;
}
else if (i <= MIXSRC_LAST_TELEM) {
if (IS_FAI_FORBIDDEN(i)) {
return 0;
}
i -= MIXSRC_FIRST_TELEM;
div_t qr = div(i, 3);
TelemetryItem & telemetryItem = telemetryItems[qr.quot];
switch (qr.rem) {
case 1:
return telemetryItem.valueMin;
case 2:
return telemetryItem.valueMax;
default:
return telemetryItem.value;
}
}
else return 0;
}
void evalInputs(uint8_t mode)
{
BeepANACenter anaCenter = 0;
for (uint8_t i = 0; i < NUM_STICKS + NUM_POTS + NUM_SLIDERS; i++) {
// normalization [0..2048] -> [-1024..1024]
uint8_t ch = (i < NUM_STICKS ? CONVERT_MODE(i) : i);
int16_t v = anaIn(i);
if (IS_POT_MULTIPOS(i)) {
v -= RESX;
}
#if !defined(SIMU)
else {
CalibData * calib = &g_eeGeneral.calib[i];
v -= calib->mid;
v = v * (int32_t) RESX / (max((int16_t) 100, (v > 0 ? calib->spanPos : calib->spanNeg)));
}
#endif
if (v < -RESX) v = -RESX;
if (v > RESX) v = RESX;
if (g_model.throttleReversed && ch==THR_STICK) {
v = -v;
}
BeepANACenter mask = (BeepANACenter)1 << ch;
calibratedAnalogs[ch] = v; // for show in expo
// filtering for center beep
uint8_t tmp = (uint16_t)abs(v) / 16;
if (mode == e_perout_mode_normal) {
if (tmp==0 || (tmp==1 && (bpanaCenter & mask))) {
anaCenter |= mask;
if ((g_model.beepANACenter & mask) && !(bpanaCenter & mask) && s_mixer_first_run_done && !menuCalibrationState) {
if (!IS_POT(i) || IS_POT_SLIDER_AVAILABLE(i)) {
AUDIO_POT_MIDDLE(i);
}
}
}
}
if (ch < NUM_STICKS) { // only do this for sticks
if (mode & e_perout_mode_nosticks) {
v = 0;
}
if (mode <= e_perout_mode_inactive_flight_mode && isFunctionActive(FUNCTION_TRAINER_STICK1+ch) && IS_TRAINER_INPUT_VALID()) {
// trainer mode
TrainerMix* td = &g_eeGeneral.trainer.mix[ch];
if (td->mode) {
uint8_t chStud = td->srcChn;
int32_t vStud = (ppmInput[chStud] - g_eeGeneral.trainer.calib[chStud]);
vStud *= td->studWeight;
vStud /= 50;
switch (td->mode) {
case 1:
// add-mode
v = limit<int16_t>(-RESX, v+vStud, RESX);
break;
case 2:
// subst-mode
v = vStud;
break;
}
}
}
calibratedAnalogs[ch] = v;
}
}
#if NUM_MOUSE_ANALOGS > 0
for (uint8_t i=0; i<NUM_MOUSE_ANALOGS; i++) {
uint8_t ch = NUM_STICKS+NUM_POTS+NUM_SLIDERS+i;
int16_t v = anaIn(MOUSE1+i);
CalibData * calib = &g_eeGeneral.calib[ch];
v -= calib->mid;
v = v * (int32_t) RESX / (max((int16_t) 100, (v > 0 ? calib->spanPos : calib->spanNeg)));
if (v < -RESX) v = -RESX;
if (v > RESX) v = RESX;
calibratedAnalogs[ch] = v;
}
#endif
/* EXPOs */
applyExpos(anas, mode);
/* TRIMs */
evalTrims(); // when no virtual inputs, the trims need the anas array calculated above (when throttle trim enabled)
if (mode == e_perout_mode_normal) {
bpanaCenter = anaCenter;
}
}
int getStickTrimValue(int stick, int stickValue)
{
if (stick < 0)
return 0;
int trim = trims[stick];
uint8_t thrTrimSw = g_model.getThrottleStickTrimSource() - MIXSRC_FIRST_TRIM;
if (stick == thrTrimSw) {
if (g_model.throttleReversed)
trim = -trim;
if (g_model.thrTrim) {
trim = (g_model.extendedTrims) ? 2*TRIM_EXTENDED_MAX + trim : 2*TRIM_MAX + trim;
trim = trim * (1024 - stickValue) / (2*RESX);
}
}
return trim;
}
int getSourceTrimOrigin(int source)
{
if (source >= MIXSRC_Rud && source <= MIXSRC_Ail)
return source - MIXSRC_Rud;
else if (source >= MIXSRC_FIRST_INPUT && source <= MIXSRC_LAST_INPUT)
return virtualInputsTrims[source - MIXSRC_FIRST_INPUT];
else
return -1;
}
int getSourceTrimValue(int source, int stickValue=0)
{
auto origin = getSourceTrimOrigin(source);
if (origin >= 0) {
return getStickTrimValue(origin, stickValue);
}
else {
return 0;
}
}
uint8_t mixerCurrentFlightMode;
void evalFlightModeMixes(uint8_t mode, uint8_t tick10ms)
{
evalInputs(mode);
if (tick10ms)
evalLogicalSwitches(mode==e_perout_mode_normal);
#if defined(HELI)
int heliEleValue = getValue(g_model.swashR.elevatorSource);
int heliAilValue = getValue(g_model.swashR.aileronSource);
if (g_model.swashR.value) {
uint32_t v = ((int32_t)heliEleValue*heliEleValue + (int32_t)heliAilValue*heliAilValue);
uint32_t q = calc100toRESX(g_model.swashR.value);
q *= q;
if (v>q) {
uint16_t d = isqrt32(v);
int16_t tmp = calc100toRESX(g_model.swashR.value);
heliEleValue = (int32_t) heliEleValue*tmp/d;
heliAilValue = (int32_t) heliAilValue*tmp/d;
}
}
#define REZ_SWASH_X(x) ((x) - (x)/8 - (x)/128 - (x)/512) // 1024*sin(60) ~= 886
#define REZ_SWASH_Y(x) ((x)) // 1024 => 1024
if (g_model.swashR.type) {
getvalue_t vp = heliEleValue + getSourceTrimValue(g_model.swashR.elevatorSource);
getvalue_t vr = heliAilValue + getSourceTrimValue(g_model.swashR.aileronSource);
getvalue_t vc = 0;
if (g_model.swashR.collectiveSource)
vc = getValue(g_model.swashR.collectiveSource);
vp = (vp * g_model.swashR.elevatorWeight) / 100;
vr = (vr * g_model.swashR.aileronWeight) / 100;
vc = (vc * g_model.swashR.collectiveWeight) / 100;
switch (g_model.swashR.type) {
case SWASH_TYPE_120:
vp = REZ_SWASH_Y(vp);
vr = REZ_SWASH_X(vr);
cyc_anas[0] = vc - vp;
cyc_anas[1] = vc + vp/2 + vr;
cyc_anas[2] = vc + vp/2 - vr;
break;
case SWASH_TYPE_120X:
vp = REZ_SWASH_X(vp);
vr = REZ_SWASH_Y(vr);
cyc_anas[0] = vc - vr;
cyc_anas[1] = vc + vr/2 + vp;
cyc_anas[2] = vc + vr/2 - vp;
break;
case SWASH_TYPE_140:
vp = REZ_SWASH_Y(vp);
vr = REZ_SWASH_Y(vr);
cyc_anas[0] = vc - vp;
cyc_anas[1] = vc + vp + vr;
cyc_anas[2] = vc + vp - vr;
break;
case SWASH_TYPE_90:
vp = REZ_SWASH_Y(vp);
vr = REZ_SWASH_Y(vr);
cyc_anas[0] = vc - vp;
cyc_anas[1] = vc + vr;
cyc_anas[2] = vc - vr;
break;
default:
break;
}
}
#endif
memclear(chans, sizeof(chans)); // all outputs to 0
//========== MIXER LOOP ===============
uint8_t lv_mixWarning = 0;
uint8_t pass = 0;
bitfield_channels_t dirtyChannels = (bitfield_channels_t)-1; // all dirty when mixer starts
do {
bitfield_channels_t passDirtyChannels = 0;
for (uint8_t i=0; i<MAX_MIXERS; i++) {
if (mode == e_perout_mode_normal && pass == 0)
swOn[i].activeMix = 0;
MixData * md = mixAddress(i);
if (md->srcRaw == 0)
break;
mixsrc_t stickIndex = md->srcRaw - MIXSRC_Rud;
if (!(dirtyChannels & ((bitfield_channels_t)1 << md->destCh)))
continue;
// if this is the first calculation for the destination channel, initialize it with 0 (otherwise would be random)
if (i == 0 || md->destCh != (md-1)->destCh)
chans[md->destCh] = 0;
//========== FLIGHT MODE && SWITCH =====
bool mixCondition = (md->flightModes != 0 || md->swtch);
delayval_t mixEnabled = (!(md->flightModes & (1 << mixerCurrentFlightMode)) && getSwitch(md->swtch)) ? DELAY_POS_MARGIN+1 : 0;
#define MIXER_LINE_DISABLE() (mixCondition = true, mixEnabled = 0)
if (mixEnabled && md->srcRaw >= MIXSRC_FIRST_TRAINER && md->srcRaw <= MIXSRC_LAST_TRAINER && !IS_TRAINER_INPUT_VALID()) {
MIXER_LINE_DISABLE();
}
#if defined(LUA_MODEL_SCRIPTS)
// disable mixer if Lua script is used as source and script was killed
if (mixEnabled && md->srcRaw >= MIXSRC_FIRST_LUA && md->srcRaw <= MIXSRC_LAST_LUA) {
div_t qr = div(md->srcRaw-MIXSRC_FIRST_LUA, MAX_SCRIPT_OUTPUTS);
if (scriptInternalData[qr.quot].state != SCRIPT_OK) {
MIXER_LINE_DISABLE();
}
}
#endif
//========== VALUE ===============
getvalue_t v = 0;
if (mode > e_perout_mode_inactive_flight_mode) {
if (mixEnabled)
v = getValue(md->srcRaw);
else
continue;
}
else {
mixsrc_t srcRaw = MIXSRC_Rud + stickIndex;
v = getValue(srcRaw);
srcRaw -= MIXSRC_CH1;
if (srcRaw <= MIXSRC_LAST_CH-MIXSRC_CH1 && md->destCh != srcRaw) {
if (dirtyChannels & ((bitfield_channels_t)1 << srcRaw) & (passDirtyChannels|~(((bitfield_channels_t) 1 << md->destCh)-1)))
passDirtyChannels |= (bitfield_channels_t) 1 << md->destCh;
if (srcRaw < md->destCh || pass > 0)
v = chans[srcRaw] >> 8;
}
if (!mixCondition) {
mixEnabled = v;
}
}
bool applyOffsetAndCurve = true;
//========== DELAYS ===============
delayval_t _swOn = swOn[i].now;
delayval_t _swPrev = swOn[i].prev;
bool swTog = (mixEnabled > _swOn+DELAY_POS_MARGIN || mixEnabled < _swOn-DELAY_POS_MARGIN);
if (mode == e_perout_mode_normal && swTog) {
if (!swOn[i].delay)
_swPrev = _swOn;
swOn[i].delay = (mixEnabled > _swOn ? md->delayUp : md->delayDown) * 10;
swOn[i].now = mixEnabled;
swOn[i].prev = _swPrev;
}
if (mode == e_perout_mode_normal && swOn[i].delay > 0) {
swOn[i].delay = max<int16_t>(0, (int16_t)swOn[i].delay - tick10ms);
if (!mixCondition)
v = _swPrev;
else if (mixEnabled)
continue;
}
else {
if (mode==e_perout_mode_normal) {
swOn[i].now = swOn[i].prev = mixEnabled;
}
if (!mixEnabled) {
if ((md->speedDown || md->speedUp) && md->mltpx!=MLTPX_REP) {
if (mixCondition) {
v = (md->mltpx == MLTPX_ADD ? 0 : RESX);
applyOffsetAndCurve = false;
}
}
else if (mixCondition) {
continue;
}
}
}
if (mode==e_perout_mode_normal && (!mixCondition || mixEnabled || swOn[i].delay)) {
if (md->mixWarn)
lv_mixWarning |= 1 << (md->mixWarn - 1);
swOn[i].activeMix = true;
}
if (applyOffsetAndCurve) {
bool applyTrims = !(mode & e_perout_mode_notrims);
if (!applyTrims && g_model.thrTrim) {
auto origin = getSourceTrimOrigin(md->srcRaw);
if (origin == g_model.getThrottleStickTrimSource() - MIXSRC_FIRST_TRIM) {
applyTrims = true;
}
}
if (applyTrims && md->carryTrim == 0) {
v += getSourceTrimValue(md->srcRaw, v);
}
}
int32_t weight = GET_GVAR_PREC1(MD_WEIGHT(md), GV_RANGELARGE_NEG, GV_RANGELARGE, mixerCurrentFlightMode);
weight = calc100to256_16Bits(weight);
//========== SPEED ===============
// now its on input side, but without weight compensation. More like other remote controls
// lower weight causes slower movement
if (mode <= e_perout_mode_inactive_flight_mode && (md->speedUp || md->speedDown)) { // there are delay values
#define DEL_MULT_SHIFT 8
// we recale to a mult 256 higher value for calculation
int32_t tact = act[i];
int16_t diff = v - (tact>>DEL_MULT_SHIFT);
if (diff) {
// open.20.fsguruh: speed is defined in % movement per second; In menu we specify the full movement (-100% to 100%) = 200% in total
// the unit of the stored value is the value from md->speedUp or md->speedDown * 0.1s; e.g. value 4 means 0.4 seconds
// because we get a tick each 10msec, we need 100 ticks for one second
// the value in md->speedXXX gives the time it should take to do a full movement from -100 to 100 therefore 200%. This equals 2048 in recalculated internal range
if (tick10ms || !s_mixer_first_run_done) {
// only if already time is passed add or substract a value according the speed configured
int32_t rate = (int32_t) tick10ms << (DEL_MULT_SHIFT+11); // = DEL_MULT*2048*tick10ms
// rate equals a full range for one second; if less time is passed rate is accordingly smaller
// if one second passed, rate would be 2048 (full motion)*256(recalculated weight)*100(100 ticks needed for one second)
int32_t currentValue = ((int32_t) v<<DEL_MULT_SHIFT);
if (diff > 0) {
if (s_mixer_first_run_done && md->speedUp > 0) {
// if a speed upwards is defined recalculate the new value according configured speed; the higher the speed the smaller the add value is
int32_t newValue = tact+rate/((int16_t)10*md->speedUp);
if (newValue<currentValue) currentValue = newValue; // Endposition; prevent toggling around the destination
}
}
else { // if is <0 because ==0 is not possible
if (s_mixer_first_run_done && md->speedDown > 0) {
// see explanation in speedUp
int32_t newValue = tact-rate/((int16_t)10*md->speedDown);
if (newValue>currentValue) currentValue = newValue; // Endposition; prevent toggling around the destination
}
}
act[i] = tact = currentValue;
// open.20.fsguruh: this implementation would save about 50 bytes code
} // endif tick10ms ; in case no time passed assign the old value, not the current value from source
v = (tact >> DEL_MULT_SHIFT);
}
}
//========== CURVES ===============
if (applyOffsetAndCurve && md->curve.type != CURVE_REF_DIFF && md->curve.value) {
v = applyCurve(v, md->curve);
}
//========== WEIGHT ===============
int32_t dv = (int32_t)v * weight;
dv = divRoundClosest(dv, 10);
//========== OFFSET / AFTER ===============
if (applyOffsetAndCurve) {
int32_t offset = GET_GVAR_PREC1(MD_OFFSET(md), GV_RANGELARGE_NEG, GV_RANGELARGE, mixerCurrentFlightMode);
if (offset) dv += divRoundClosest(calc100toRESX_16Bits(offset), 10) << 8;
}
//========== DIFFERENTIAL =========
if (md->curve.type == CURVE_REF_DIFF && md->curve.value) {
dv = applyCurve(dv, md->curve);
}
int32_t * ptr = &chans[md->destCh]; // Save calculating address several times
switch (md->mltpx) {
case MLTPX_REP:
*ptr = dv;
if (mode == e_perout_mode_normal) {
for (uint8_t m=i-1; m<MAX_MIXERS && mixAddress(m)->destCh==md->destCh; m--)
swOn[m].activeMix = false;
}
break;
case MLTPX_MUL:
// @@@2 we have to remove the weight factor of 256 in case of 100%; now we use the new base of 256
dv >>= 8;
dv *= *ptr;
dv >>= RESX_SHIFT; // same as dv /= RESXl;
*ptr = dv;
break;
default: // MLTPX_ADD
*ptr += dv; //Mixer output add up to the line (dv + (dv>0 ? 100/2 : -100/2))/(100);
break;
} // endswitch md->mltpx
#ifdef PREVENT_ARITHMETIC_OVERFLOW
/*
// a lot of assumptions must be true, for this kind of check; not really worth for only 4 bytes flash savings
// this solution would save again 4 bytes flash
int8_t testVar=(*ptr<<1)>>24;
if ( (testVar!=-1) && (testVar!=0 ) ) {
// this devices by 64 which should give a good balance between still over 100% but lower then 32x100%; should be OK
*ptr >>= 6; // this is quite tricky, reduces the value a lot but should be still over 100% and reduces flash need
} */
PACK( union u_int16int32_t {
struct {
int16_t lo;
int16_t hi;
} words_t;
int32_t dword;
});
u_int16int32_t tmp;
tmp.dword=*ptr;
if (tmp.dword<0) {
if ((tmp.words_t.hi&0xFF80)!=0xFF80) tmp.words_t.hi=0xFF86; // set to min nearly
}
else {
if ((tmp.words_t.hi|0x007F)!=0x007F) tmp.words_t.hi=0x0079; // set to max nearly
}
*ptr = tmp.dword;
// this implementation saves 18bytes flash
/* dv=*ptr>>8;
if (dv>(32767-RESXl)) {
*ptr=(32767-RESXl)<<8;
} else if (dv<(-32767+RESXl)) {
*ptr=(-32767+RESXl)<<8;
}*/
// *ptr=limit( int32_t(int32_t(-1)<<23), *ptr, int32_t(int32_t(1)<<23)); // limit code cost 72 bytes
// *ptr=limit( int32_t((-32767+RESXl)<<8), *ptr, int32_t((32767-RESXl)<<8)); // limit code cost 80 bytes
#endif
} //endfor mixers
tick10ms = 0;
dirtyChannels &= passDirtyChannels;
} while (++pass < 5 && dirtyChannels);
mixWarning = lv_mixWarning;
}
#define MAX_ACT 0xffff
uint8_t lastFlightMode = 255; // TODO reinit everything here when the model changes, no???
tmr10ms_t flightModeTransitionTime;
uint8_t flightModeTransitionLast = 255;
void evalMixes(uint8_t tick10ms)
{
int32_t sum_chans512[MAX_OUTPUT_CHANNELS];
static uint16_t fp_act[MAX_FLIGHT_MODES] = {0};
static uint16_t delta = 0;
static uint16_t flightModesFade = 0;
uint8_t fm = getFlightMode();
if (lastFlightMode != fm) {
flightModeTransitionTime = get_tmr10ms();
if (lastFlightMode == 255) {
fp_act[fm] = MAX_ACT;
}
else {
uint8_t fadeTime = max(g_model.flightModeData[lastFlightMode].fadeOut, g_model.flightModeData[fm].fadeIn);
uint16_t transitionMask = (0x01u << lastFlightMode) + (0x01u << fm);
if (fadeTime) {
flightModesFade |= transitionMask;
delta = (MAX_ACT / 10) / fadeTime;
}
else {
flightModesFade &= ~transitionMask;
fp_act[lastFlightMode] = 0;
fp_act[fm] = MAX_ACT;
}
logicalSwitchesCopyState(lastFlightMode, fm); // push last logical switches state from old to new flight mode
}
lastFlightMode = fm;
}
if (flightModeTransitionTime && get_tmr10ms() > flightModeTransitionTime+SWITCHES_DELAY()) {
flightModeTransitionTime = 0;
if (fm != flightModeTransitionLast) {
if (flightModeTransitionLast != 255) {
PLAY_PHASE_OFF(flightModeTransitionLast);
}
PLAY_PHASE_ON(fm);
flightModeTransitionLast = fm;
}
}
int32_t weight = 0;
if (flightModesFade) {
memclear(sum_chans512, sizeof(sum_chans512));
for (uint8_t p=0; p<MAX_FLIGHT_MODES; p++) {
if (flightModesFade & (0x01 << p)) {
mixerCurrentFlightMode = p;
evalFlightModeMixes(p==fm ? e_perout_mode_normal : e_perout_mode_inactive_flight_mode, p==fm ? tick10ms : 0);
for (uint8_t i=0; i<MAX_OUTPUT_CHANNELS; i++)
sum_chans512[i] += limit<int32_t>(-0x6fff, chans[i] >> 4, 0x6fff) * fp_act[p];
weight += fp_act[p];
}
}
assert(weight);
mixerCurrentFlightMode = fm;
}
else {
mixerCurrentFlightMode = fm;
evalFlightModeMixes(e_perout_mode_normal, tick10ms);
}
//========== FUNCTIONS ===============
// must be done after mixing because some functions use the inputs/channels values
// must be done before limits because of the applyLimit function: it checks for safety switches which would be not initialized otherwise
if (tick10ms) {
requiredSpeakerVolume = g_eeGeneral.speakerVolume + VOLUME_LEVEL_DEF;
requiredBacklightBright = g_eeGeneral.backlightBright;
if (!g_model.noGlobalFunctions) {
evalFunctions(g_eeGeneral.customFn, globalFunctionsContext);
}
evalFunctions(g_model.customFn, modelFunctionsContext);
}
//========== LIMITS ===============
for (uint8_t i=0; i<MAX_OUTPUT_CHANNELS; i++) {
// chans[i] holds data from mixer. chans[i] = v*weight => 1024*256
// later we multiply by the limit (up to 100) and then we need to normalize
// at the end chans[i] = chans[i]/256 => -1024..1024
// interpolate value with min/max so we get smooth motion from center to stop
// this limits based on v original values and min=-1024, max=1024 RESX=1024
int32_t q = (flightModesFade ? (sum_chans512[i] / weight) << 4 : chans[i]);
ex_chans[i] = q / 256;
int16_t value = applyLimits(i, q); // applyLimits will remove the 256 100% basis
channelOutputs[i] = value; // copy consistent word to int-level
}
if (tick10ms && flightModesFade) {
uint16_t tick_delta = delta * tick10ms;
for (uint8_t p=0; p<MAX_FLIGHT_MODES; p++) {
uint16_t flightModeMask = (0x01 << p);
if (flightModesFade & flightModeMask) {
if (p == fm) {
if (MAX_ACT - fp_act[p] > tick_delta)
fp_act[p] += tick_delta;
else {
fp_act[p] = MAX_ACT;
flightModesFade -= flightModeMask;
}
}
else {
if (fp_act[p] > tick_delta)
fp_act[p] -= tick_delta;
else {
fp_act[p] = 0;
flightModesFade -= flightModeMask;
}
}
}
}
}
}