utils: raspberrypi: ctt: Code tidying
Altered the way that some lines are laid out, made functions more attractive to look at, and tidied up messy areas. Signed-off-by: Ben Benson <ben.benson@raspberrypi.com> Reviewed-by: David Plowman <david.plowman@raspberrypi.com> Reviewed-by: Naushir Patuck <naush@raspberrypi.com> Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
This commit is contained in:
parent
6213ecb859
commit
09dd65442b
1 changed files with 27 additions and 34 deletions
|
@ -47,11 +47,8 @@ def degamma(x):
|
|||
|
||||
|
||||
def gamma(x):
|
||||
# return (x * * (1 / 2.4) * 1.055 - 0.055)
|
||||
e = []
|
||||
for i in range(len(x)):
|
||||
e.append(((x[i] / 255) ** (1 / 2.4) * 1.055 - 0.055) * 255)
|
||||
return e
|
||||
# Take 3 long array of color values and gamma them
|
||||
return [((colour / 255) ** (1 / 2.4) * 1.055 - 0.055) * 255 for colour in x]
|
||||
|
||||
|
||||
"""
|
||||
|
@ -96,10 +93,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
"""
|
||||
m_srgb = degamma(m_rgb) # now in 16 bit color.
|
||||
|
||||
m_lab = []
|
||||
for col in m_srgb:
|
||||
m_lab.append(colors.RGB_to_LAB(col / 256))
|
||||
# This produces matrix of LAB values for ideal color chart)
|
||||
# Produce array of LAB values for ideal color chart
|
||||
m_lab = [colors.RGB_to_LAB(color / 256) for color in m_srgb]
|
||||
|
||||
"""
|
||||
reorder reference values to match how patches are ordered
|
||||
|
@ -168,7 +163,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
sumde = 0
|
||||
ccm = do_ccm(r, g, b, m_srgb)
|
||||
# This is the initial guess that our optimisation code works with.
|
||||
|
||||
original_ccm = ccm
|
||||
r1 = ccm[0]
|
||||
r2 = ccm[1]
|
||||
g1 = ccm[3]
|
||||
|
@ -188,7 +183,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
We use our old CCM as the initial guess for the program to find the
|
||||
optimised matrix
|
||||
'''
|
||||
result = minimize(guess, x0, args=(r, g, b, m_lab), tol=0.0000000001)
|
||||
result = minimize(guess, x0, args=(r, g, b, m_lab), tol=0.01)
|
||||
'''
|
||||
This produces a color matrix which has the lowest delta E possible,
|
||||
based off the input data. Note it is impossible for this to reach
|
||||
|
@ -199,12 +194,13 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
[r1, r2, g1, g2, b1, b2] = result.x
|
||||
# The new, optimised color correction matrix values
|
||||
optimised_ccm = [r1, r2, (1 - r1 - r2), g1, g2, (1 - g1 - g2), b1, b2, (1 - b1 - b2)]
|
||||
|
||||
# This is the optimised Color Matrix (preserving greys by summing rows up to 1)
|
||||
Cam.log += str(optimised_ccm)
|
||||
Cam.log += "\n Old Color Correction Matrix Below \n"
|
||||
Cam.log += str(ccm)
|
||||
|
||||
formatted_ccm = np.array(ccm).reshape((3, 3))
|
||||
formatted_ccm = np.array(original_ccm).reshape((3, 3))
|
||||
|
||||
'''
|
||||
below is a whole load of code that then applies the latest color
|
||||
|
@ -213,22 +209,21 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
'''
|
||||
optimised_ccm_rgb = [] # Original Color Corrected Matrix RGB / LAB
|
||||
optimised_ccm_lab = []
|
||||
for w in range(24):
|
||||
RGB = np.array([r[w], g[w], b[w]])
|
||||
ccm_applied_rgb = np.dot(formatted_ccm, (RGB / 256))
|
||||
|
||||
formatted_optimised_ccm = np.array(optimised_ccm).reshape((3, 3))
|
||||
after_gamma_rgb = []
|
||||
after_gamma_lab = []
|
||||
|
||||
for RGB in zip(r, g, b):
|
||||
ccm_applied_rgb = np.dot(formatted_ccm, (np.array(RGB) / 256))
|
||||
optimised_ccm_rgb.append(gamma(ccm_applied_rgb))
|
||||
optimised_ccm_lab.append(colors.RGB_to_LAB(ccm_applied_rgb))
|
||||
|
||||
formatted_optimised_ccm = np.array(ccm).reshape((3, 3))
|
||||
after_gamma_rgb = []
|
||||
after_gamma_lab = []
|
||||
for w in range(24):
|
||||
RGB = np.array([r[w], g[w], b[w]])
|
||||
optimised_ccm_applied_rgb = np.dot(formatted_optimised_ccm, RGB / 256)
|
||||
optimised_ccm_applied_rgb = np.dot(formatted_optimised_ccm, np.array(RGB) / 256)
|
||||
after_gamma_rgb.append(gamma(optimised_ccm_applied_rgb))
|
||||
after_gamma_lab.append(colors.RGB_to_LAB(optimised_ccm_applied_rgb))
|
||||
'''
|
||||
Gamma After RGB / LAB
|
||||
Gamma After RGB / LAB - not used in calculations, only used for visualisation
|
||||
We now want to spit out some data that shows
|
||||
how the optimisation has improved the color matrices
|
||||
'''
|
||||
|
@ -303,9 +298,8 @@ def guess(x0, r, g, b, m_lab): # provides a method of numerical feedback f
|
|||
def transform_and_evaluate(ccm, r, g, b, m_lab): # Transforms colors to LAB and applies the correction matrix
|
||||
# create list of matrix changed colors
|
||||
realrgb = []
|
||||
for i in range(len(r)):
|
||||
RGB = np.array([r[i], g[i], b[i]])
|
||||
rgb_post_ccm = np.dot(ccm, RGB) # This is RGB values after the color correction matrix has been applied
|
||||
for RGB in zip(r, g, b):
|
||||
rgb_post_ccm = np.dot(ccm, np.array(RGB) / 256) # This is RGB values after the color correction matrix has been applied
|
||||
realrgb.append(colors.RGB_to_LAB(rgb_post_ccm))
|
||||
# now compare that with m_lab and return numeric result, averaged for each patch
|
||||
return (sumde(realrgb, m_lab) / 24) # returns an average result of delta E
|
||||
|
@ -315,12 +309,12 @@ def sumde(listA, listB):
|
|||
global typenum, test_patches
|
||||
sumde = 0
|
||||
maxde = 0
|
||||
patchde = []
|
||||
for i in range(len(listA)):
|
||||
if maxde < (deltae(listA[i], listB[i])):
|
||||
maxde = deltae(listA[i], listB[i])
|
||||
patchde.append(deltae(listA[i], listB[i]))
|
||||
sumde += deltae(listA[i], listB[i])
|
||||
patchde = [] # Create array of the delta E values for each patch. useful for optimisation of certain patches
|
||||
for listA_item, listB_item in zip(listA, listB):
|
||||
if maxde < (deltae(listA_item, listB_item)):
|
||||
maxde = deltae(listA_item, listB_item)
|
||||
patchde.append(deltae(listA_item, listB_item))
|
||||
sumde += deltae(listA_item, listB_item)
|
||||
'''
|
||||
The different options specified at the start allow for
|
||||
the maximum to be returned, average or specific patches
|
||||
|
@ -330,9 +324,8 @@ def sumde(listA, listB):
|
|||
if typenum == 1:
|
||||
return maxde
|
||||
if typenum == 2:
|
||||
output = 0
|
||||
for y in range(len(test_patches)):
|
||||
output += patchde[test_patches[y]] # grabs the specific patches (no need for averaging here)
|
||||
output = sum([patchde[test_patch] for test_patch in test_patches])
|
||||
# Selects only certain patches and returns the output for them
|
||||
return output
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue