libcamera: ipa: Raspberry Pi IPA

Initial implementation of the Raspberry Pi (BCM2835) libcamera IPA and
associated libraries.

All code is licensed under the BSD-2-Clause terms.
Copyright (c) 2019-2020 Raspberry Pi Trading Ltd.

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Naushir Patuck 2020-05-03 16:48:42 +01:00 committed by Laurent Pinchart
parent 740fd1b62f
commit 0db2c8dc75
69 changed files with 8242 additions and 0 deletions

View file

@ -0,0 +1,608 @@
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi (Trading) Limited
*
* awb.cpp - AWB control algorithm
*/
#include "../logging.hpp"
#include "../lux_status.h"
#include "awb.hpp"
using namespace RPi;
#define NAME "rpi.awb"
#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y
const double Awb::RGB::INVALID = -1.0;
void AwbMode::Read(boost::property_tree::ptree const &params)
{
ct_lo = params.get<double>("lo");
ct_hi = params.get<double>("hi");
}
void AwbPrior::Read(boost::property_tree::ptree const &params)
{
lux = params.get<double>("lux");
prior.Read(params.get_child("prior"));
}
static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
boost::property_tree::ptree const &params)
{
int num = 0;
for (auto it = params.begin(); it != params.end(); it++) {
double ct = it->second.get_value<double>();
assert(it == params.begin() || ct != ct_r.Domain().end);
if (++it == params.end())
throw std::runtime_error(
"AwbConfig: incomplete CT curve entry");
ct_r.Append(ct, it->second.get_value<double>());
if (++it == params.end())
throw std::runtime_error(
"AwbConfig: incomplete CT curve entry");
ct_b.Append(ct, it->second.get_value<double>());
num++;
}
if (num < 2)
throw std::runtime_error(
"AwbConfig: insufficient points in CT curve");
}
void AwbConfig::Read(boost::property_tree::ptree const &params)
{
RPI_LOG("AwbConfig");
bayes = params.get<int>("bayes", 1);
frame_period = params.get<uint16_t>("frame_period", 10);
startup_frames = params.get<uint16_t>("startup_frames", 10);
speed = params.get<double>("speed", 0.05);
if (params.get_child_optional("ct_curve"))
read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
if (params.get_child_optional("priors")) {
for (auto &p : params.get_child("priors")) {
AwbPrior prior;
prior.Read(p.second);
if (!priors.empty() && prior.lux <= priors.back().lux)
throw std::runtime_error(
"AwbConfig: Prior must be ordered in increasing lux value");
priors.push_back(prior);
}
if (priors.empty())
throw std::runtime_error(
"AwbConfig: no AWB priors configured");
}
if (params.get_child_optional("modes")) {
for (auto &p : params.get_child("modes")) {
modes[p.first].Read(p.second);
if (default_mode == nullptr)
default_mode = &modes[p.first];
}
if (default_mode == nullptr)
throw std::runtime_error(
"AwbConfig: no AWB modes configured");
}
min_pixels = params.get<double>("min_pixels", 16.0);
min_G = params.get<uint16_t>("min_G", 32);
min_regions = params.get<uint32_t>("min_regions", 10);
delta_limit = params.get<double>("delta_limit", 0.2);
coarse_step = params.get<double>("coarse_step", 0.2);
transverse_pos = params.get<double>("transverse_pos", 0.01);
transverse_neg = params.get<double>("transverse_neg", 0.01);
if (transverse_pos <= 0 || transverse_neg <= 0)
throw std::runtime_error(
"AwbConfig: transverse_pos/neg must be > 0");
sensitivity_r = params.get<double>("sensitivity_r", 1.0);
sensitivity_b = params.get<double>("sensitivity_b", 1.0);
if (bayes) {
if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
default_mode == nullptr) {
RPI_WARN(
"Bayesian AWB mis-configured - switch to Grey method");
bayes = false;
}
}
fast = params.get<int>(
"fast", bayes); // default to fast for Bayesian, otherwise slow
whitepoint_r = params.get<double>("whitepoint_r", 0.0);
whitepoint_b = params.get<double>("whitepoint_b", 0.0);
if (bayes == false)
sensitivity_r = sensitivity_b =
1.0; // nor do sensitivities make any sense
}
Awb::Awb(Controller *controller)
: AwbAlgorithm(controller)
{
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
mode_ = nullptr;
manual_r_ = manual_b_ = 0.0;
async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
}
Awb::~Awb()
{
{
std::lock_guard<std::mutex> lock(mutex_);
async_abort_ = true;
async_signal_.notify_one();
}
async_thread_.join();
}
char const *Awb::Name() const
{
return NAME;
}
void Awb::Read(boost::property_tree::ptree const &params)
{
config_.Read(params);
}
void Awb::Initialise()
{
frame_count2_ = frame_count_ = frame_phase_ = 0;
// Put something sane into the status that we are filtering towards,
// just in case the first few frames don't have anything meaningful in
// them.
if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
sync_results_.gain_r =
1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
sync_results_.gain_g = 1.0;
sync_results_.gain_b =
1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
} else {
// random values just to stop the world blowing up
sync_results_.temperature_K = 4500;
sync_results_.gain_r = sync_results_.gain_g =
sync_results_.gain_b = 1.0;
}
prev_sync_results_ = sync_results_;
}
void Awb::SetMode(std::string const &mode_name)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
mode_name_ = mode_name;
}
void Awb::SetManualGains(double manual_r, double manual_b)
{
std::unique_lock<std::mutex> lock(settings_mutex_);
// If any of these are 0.0, we swich back to auto.
manual_r_ = manual_r;
manual_b_ = manual_b;
}
void Awb::fetchAsyncResults()
{
RPI_LOG("Fetch AWB results");
async_finished_ = false;
async_started_ = false;
sync_results_ = async_results_;
}
void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name,
double lux)
{
RPI_LOG("Starting AWB thread");
// this makes a new reference which belongs to the asynchronous thread
statistics_ = stats;
// store the mode as it could technically change
auto m = config_.modes.find(mode_name);
mode_ = m != config_.modes.end()
? &m->second
: (mode_ == nullptr ? config_.default_mode : mode_);
lux_ = lux;
frame_phase_ = 0;
async_start_ = true;
async_started_ = true;
size_t len = mode_name.copy(async_results_.mode,
sizeof(async_results_.mode) - 1);
async_results_.mode[len] = '\0';
async_signal_.notify_one();
}
void Awb::Prepare(Metadata *image_metadata)
{
if (frame_count_ < (int)config_.startup_frames)
frame_count_++;
double speed = frame_count_ < (int)config_.startup_frames
? 1.0
: config_.speed;
RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed);
{
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ && async_finished_) {
RPI_LOG("AWB thread finished");
fetchAsyncResults();
}
}
// Finally apply IIR filter to results and put into metadata.
memcpy(prev_sync_results_.mode, sync_results_.mode,
sizeof(prev_sync_results_.mode));
prev_sync_results_.temperature_K =
speed * sync_results_.temperature_K +
(1.0 - speed) * prev_sync_results_.temperature_K;
prev_sync_results_.gain_r = speed * sync_results_.gain_r +
(1.0 - speed) * prev_sync_results_.gain_r;
prev_sync_results_.gain_g = speed * sync_results_.gain_g +
(1.0 - speed) * prev_sync_results_.gain_g;
prev_sync_results_.gain_b = speed * sync_results_.gain_b +
(1.0 - speed) * prev_sync_results_.gain_b;
image_metadata->Set("awb.status", prev_sync_results_);
RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g "
<< prev_sync_results_.gain_g << " b "
<< prev_sync_results_.gain_b);
}
void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
// Count frames since we last poked the async thread.
if (frame_phase_ < (int)config_.frame_period)
frame_phase_++;
if (frame_count2_ < (int)config_.startup_frames)
frame_count2_++;
RPI_LOG("Awb: frame_phase " << frame_phase_);
if (frame_phase_ >= (int)config_.frame_period ||
frame_count2_ < (int)config_.startup_frames) {
// Update any settings and any image metadata that we need.
std::string mode_name;
{
std::unique_lock<std::mutex> lock(settings_mutex_);
mode_name = mode_name_;
}
struct LuxStatus lux_status = {};
lux_status.lux = 400; // in case no metadata
if (image_metadata->Get("lux.status", lux_status) != 0)
RPI_LOG("No lux metadata found");
RPI_LOG("Awb lux value is " << lux_status.lux);
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ == false) {
RPI_LOG("AWB thread starting");
restartAsync(stats, mode_name, lux_status.lux);
}
}
}
void Awb::asyncFunc()
{
while (true) {
{
std::unique_lock<std::mutex> lock(mutex_);
async_signal_.wait(lock, [&] {
return async_start_ || async_abort_;
});
async_start_ = false;
if (async_abort_)
break;
}
doAwb();
{
std::lock_guard<std::mutex> lock(mutex_);
async_finished_ = true;
sync_signal_.notify_one();
}
}
}
static void generate_stats(std::vector<Awb::RGB> &zones,
bcm2835_isp_stats_region *stats, double min_pixels,
double min_G)
{
for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
Awb::RGB zone; // this is "invalid", unless R gets overwritten later
double counted = stats[i].counted;
if (counted >= min_pixels) {
zone.G = stats[i].g_sum / counted;
if (zone.G >= min_G) {
zone.R = stats[i].r_sum / counted;
zone.B = stats[i].b_sum / counted;
}
}
zones.push_back(zone);
}
}
void Awb::prepareStats()
{
zones_.clear();
// LSC has already been applied to the stats in this pipeline, so stop
// any LSC compensation. We also ignore config_.fast in this version.
generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
config_.min_G);
// we're done with these; we may as well relinquish our hold on the
// pointer.
statistics_.reset();
// apply sensitivities, so values appear to come from our "canonical"
// sensor.
for (auto &zone : zones_)
zone.R *= config_.sensitivity_r,
zone.B *= config_.sensitivity_b;
}
double Awb::computeDelta2Sum(double gain_r, double gain_b)
{
// Compute the sum of the squared colour error (non-greyness) as it
// appears in the log likelihood equation.
double delta2_sum = 0;
for (auto &z : zones_) {
double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
double delta2 = delta_r * delta_r + delta_b * delta_b;
//RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2);
delta2 = std::min(delta2, config_.delta_limit);
delta2_sum += delta2;
}
return delta2_sum;
}
Pwl Awb::interpolatePrior()
{
// Interpolate the prior log likelihood function for our current lux
// value.
if (lux_ <= config_.priors.front().lux)
return config_.priors.front().prior;
else if (lux_ >= config_.priors.back().lux)
return config_.priors.back().prior;
else {
int idx = 0;
// find which two we lie between
while (config_.priors[idx + 1].lux < lux_)
idx++;
double lux0 = config_.priors[idx].lux,
lux1 = config_.priors[idx + 1].lux;
return Pwl::Combine(config_.priors[idx].prior,
config_.priors[idx + 1].prior,
[&](double /*x*/, double y0, double y1) {
return y0 + (y1 - y0) *
(lux_ - lux0) / (lux1 - lux0);
});
}
}
static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
Pwl::Point const &C)
{
// Given 3 points on a curve, find the extremum of the function in that
// interval by fitting a quadratic.
const double eps = 1e-3;
Pwl::Point CA = C - A, BA = B - A;
double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
if (abs(denominator) > eps) {
double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
double result = numerator / denominator + A.x;
return std::max(A.x, std::min(C.x, result));
}
// has degenerated to straight line segment
return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
}
double Awb::coarseSearch(Pwl const &prior)
{
points_.clear(); // assume doesn't deallocate memory
size_t best_point = 0;
double t = mode_->ct_lo;
int span_r = 0, span_b = 0;
// Step down the CT curve evaluating log likelihood.
while (true) {
double r = config_.ct_r.Eval(t, &span_r);
double b = config_.ct_b.Eval(t, &span_b);
double gain_r = 1 / r, gain_b = 1 / b;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
double prior_log_likelihood =
prior.Eval(prior.Domain().Clip(t));
double final_log_likelihood = delta2_sum - prior_log_likelihood;
RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b "
<< gain_b << " delta2_sum " << delta2_sum
<< " prior " << prior_log_likelihood << " final "
<< final_log_likelihood);
points_.push_back(Pwl::Point(t, final_log_likelihood));
if (points_.back().y < points_[best_point].y)
best_point = points_.size() - 1;
if (t == mode_->ct_hi)
break;
// for even steps along the r/b curve scale them by the current t
t = std::min(t + t / 10 * config_.coarse_step,
mode_->ct_hi);
}
t = points_[best_point].x;
RPI_LOG("Coarse search found CT " << t);
// We have the best point of the search, but refine it with a quadratic
// interpolation around its neighbours.
if (points_.size() > 2) {
unsigned long bp = std::min(best_point, points_.size() - 2);
best_point = std::max(1UL, bp);
t = interpolate_quadatric(points_[best_point - 1],
points_[best_point],
points_[best_point + 1]);
RPI_LOG("After quadratic refinement, coarse search has CT "
<< t);
}
return t;
}
void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
{
int span_r, span_b;
config_.ct_r.Eval(t, &span_r);
config_.ct_b.Eval(t, &span_b);
double step = t / 10 * config_.coarse_step * 0.1;
int nsteps = 5;
double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
config_.ct_r.Eval(t - nsteps * step, &span_r);
double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
config_.ct_b.Eval(t - nsteps * step, &span_b);
Pwl::Point transverse(b_diff, -r_diff);
if (transverse.Len2() < 1e-6)
return;
// unit vector orthogonal to the b vs. r function (pointing outwards
// with r and b increasing)
transverse = transverse / transverse.Len();
double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
double transverse_range =
config_.transverse_neg + config_.transverse_pos;
const int MAX_NUM_DELTAS = 12;
// a transverse step approximately every 0.01 r/b units
int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
num_deltas = num_deltas < 3 ? 3 :
(num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
// Step down CT curve. March a bit further if the transverse range is
// large.
nsteps += num_deltas;
for (int i = -nsteps; i <= nsteps; i++) {
double t_test = t + i * step;
double prior_log_likelihood =
prior.Eval(prior.Domain().Clip(t_test));
double r_curve = config_.ct_r.Eval(t_test, &span_r);
double b_curve = config_.ct_b.Eval(t_test, &span_b);
// x will be distance off the curve, y the log likelihood there
Pwl::Point points[MAX_NUM_DELTAS];
int best_point = 0;
// Take some measurements transversely *off* the CT curve.
for (int j = 0; j < num_deltas; j++) {
points[j].x = -config_.transverse_neg +
(transverse_range * j) / (num_deltas - 1);
Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
transverse * points[j].x;
double r_test = rb_test.x, b_test = rb_test.y;
double gain_r = 1 / r_test, gain_b = 1 / b_test;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
points[j].y = delta2_sum - prior_log_likelihood;
RPI_LOG("At t " << t_test << " r " << r_test << " b "
<< b_test << ": " << points[j].y);
if (points[j].y < points[best_point].y)
best_point = j;
}
// We have NUM_DELTAS points transversely across the CT curve,
// now let's do a quadratic interpolation for the best result.
best_point = std::max(1, std::min(best_point, num_deltas - 2));
Pwl::Point rb_test =
Pwl::Point(r_curve, b_curve) +
transverse *
interpolate_quadatric(points[best_point - 1],
points[best_point],
points[best_point + 1]);
double r_test = rb_test.x, b_test = rb_test.y;
double gain_r = 1 / r_test, gain_b = 1 / b_test;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
double final_log_likelihood = delta2_sum - prior_log_likelihood;
RPI_LOG("Finally "
<< t_test << " r " << r_test << " b " << b_test << ": "
<< final_log_likelihood
<< (final_log_likelihood < best_log_likelihood ? " BEST"
: ""));
if (best_t == 0 || final_log_likelihood < best_log_likelihood)
best_log_likelihood = final_log_likelihood,
best_t = t_test, best_r = r_test, best_b = b_test;
}
t = best_t, r = best_r, b = best_b;
RPI_LOG("Fine search found t " << t << " r " << r << " b " << b);
}
void Awb::awbBayes()
{
// May as well divide out G to save computeDelta2Sum from doing it over
// and over.
for (auto &z : zones_)
z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
// Get the current prior, and scale according to how many zones are
// valid... not entirely sure about this.
Pwl prior = interpolatePrior();
prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
prior.Map([](double x, double y) {
RPI_LOG("(" << x << "," << y << ")");
});
double t = coarseSearch(prior);
double r = config_.ct_r.Eval(t);
double b = config_.ct_b.Eval(t);
RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")");
// Not entirely sure how to handle the fine search yet. Mostly the
// estimated CT is already good enough, but the fine search allows us to
// wander transverely off the CT curve. Under some illuminants, where
// there may be more or less green light, this may prove beneficial,
// though I probably need more real datasets before deciding exactly how
// this should be controlled and tuned.
fineSearch(t, r, b, prior);
RPI_LOG("After fine search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")");
// Write results out for the main thread to pick up. Remember to adjust
// the gains from the ones that the "canonical sensor" would require to
// the ones needed by *this* sensor.
async_results_.temperature_K = t;
async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
async_results_.gain_g = 1.0;
async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
}
void Awb::awbGrey()
{
RPI_LOG("Grey world AWB");
// Make a separate list of the derivatives for each of red and blue, so
// that we can sort them to exclude the extreme gains. We could
// consider some variations, such as normalising all the zones first, or
// doing an L2 average etc.
std::vector<RGB> &derivs_R(zones_);
std::vector<RGB> derivs_B(derivs_R);
std::sort(derivs_R.begin(), derivs_R.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.R < b.G * a.R;
});
std::sort(derivs_B.begin(), derivs_B.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.B < b.G * a.B;
});
// Average the middle half of the values.
int discard = derivs_R.size() / 4;
RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
for (auto ri = derivs_R.begin() + discard,
bi = derivs_B.begin() + discard;
ri != derivs_R.end() - discard; ri++, bi++)
sum_R += *ri, sum_B += *bi;
double gain_r = sum_R.G / (sum_R.R + 1),
gain_b = sum_B.G / (sum_B.B + 1);
async_results_.temperature_K = 4500; // don't know what it is
async_results_.gain_r = gain_r;
async_results_.gain_g = 1.0;
async_results_.gain_b = gain_b;
}
void Awb::doAwb()
{
if (manual_r_ != 0.0 && manual_b_ != 0.0) {
async_results_.temperature_K = 4500; // don't know what it is
async_results_.gain_r = manual_r_;
async_results_.gain_g = 1.0;
async_results_.gain_b = manual_b_;
RPI_LOG("Using manual white balance: gain_r "
<< async_results_.gain_r << " gain_b "
<< async_results_.gain_b);
} else {
prepareStats();
RPI_LOG("Valid zones: " << zones_.size());
if (zones_.size() > config_.min_regions) {
if (config_.bayes)
awbBayes();
else
awbGrey();
RPI_LOG("CT found is "
<< async_results_.temperature_K
<< " with gains r " << async_results_.gain_r
<< " and b " << async_results_.gain_b);
}
}
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
return (Algorithm *)new Awb(controller);
}
static RegisterAlgorithm reg(NAME, &Create);