ipa: raspberrypi: Code refactoring to match style guidelines
Refactor all the source files in src/ipa/raspberrypi/ to match the recommended formatting guidelines for the libcamera project. The vast majority of changes in this commit comprise of switching from snake_case to CamelCase, and starting class member functions with a lower case character. Signed-off-by: Naushir Patuck <naush@raspberrypi.com> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
parent
b4a3eb6b98
commit
177df04d2b
63 changed files with 2093 additions and 2161 deletions
|
@ -24,33 +24,33 @@ LOG_DEFINE_CATEGORY(RPiAwb)
|
|||
// todo - the locking in this algorithm needs some tidying up as has been done
|
||||
// elsewhere (ALSC and AGC).
|
||||
|
||||
void AwbMode::Read(boost::property_tree::ptree const ¶ms)
|
||||
void AwbMode::read(boost::property_tree::ptree const ¶ms)
|
||||
{
|
||||
ct_lo = params.get<double>("lo");
|
||||
ct_hi = params.get<double>("hi");
|
||||
ctLo = params.get<double>("lo");
|
||||
ctHi = params.get<double>("hi");
|
||||
}
|
||||
|
||||
void AwbPrior::Read(boost::property_tree::ptree const ¶ms)
|
||||
void AwbPrior::read(boost::property_tree::ptree const ¶ms)
|
||||
{
|
||||
lux = params.get<double>("lux");
|
||||
prior.Read(params.get_child("prior"));
|
||||
prior.read(params.get_child("prior"));
|
||||
}
|
||||
|
||||
static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
|
||||
boost::property_tree::ptree const ¶ms)
|
||||
static void readCtCurve(Pwl &ctR, Pwl &ctB,
|
||||
boost::property_tree::ptree const ¶ms)
|
||||
{
|
||||
int num = 0;
|
||||
for (auto it = params.begin(); it != params.end(); it++) {
|
||||
double ct = it->second.get_value<double>();
|
||||
assert(it == params.begin() || ct != ct_r.Domain().end);
|
||||
assert(it == params.begin() || ct != ctR.domain().end);
|
||||
if (++it == params.end())
|
||||
throw std::runtime_error(
|
||||
"AwbConfig: incomplete CT curve entry");
|
||||
ct_r.Append(ct, it->second.get_value<double>());
|
||||
ctR.append(ct, it->second.get_value<double>());
|
||||
if (++it == params.end())
|
||||
throw std::runtime_error(
|
||||
"AwbConfig: incomplete CT curve entry");
|
||||
ct_b.Append(ct, it->second.get_value<double>());
|
||||
ctB.append(ct, it->second.get_value<double>());
|
||||
num++;
|
||||
}
|
||||
if (num < 2)
|
||||
|
@ -58,22 +58,21 @@ static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
|
|||
"AwbConfig: insufficient points in CT curve");
|
||||
}
|
||||
|
||||
void AwbConfig::Read(boost::property_tree::ptree const ¶ms)
|
||||
void AwbConfig::read(boost::property_tree::ptree const ¶ms)
|
||||
{
|
||||
bayes = params.get<int>("bayes", 1);
|
||||
frame_period = params.get<uint16_t>("frame_period", 10);
|
||||
startup_frames = params.get<uint16_t>("startup_frames", 10);
|
||||
convergence_frames = params.get<unsigned int>("convergence_frames", 3);
|
||||
framePeriod = params.get<uint16_t>("framePeriod", 10);
|
||||
startupFrames = params.get<uint16_t>("startupFrames", 10);
|
||||
convergenceFrames = params.get<unsigned int>("convergence_frames", 3);
|
||||
speed = params.get<double>("speed", 0.05);
|
||||
if (params.get_child_optional("ct_curve"))
|
||||
read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
|
||||
readCtCurve(ctR, ctB, params.get_child("ct_curve"));
|
||||
if (params.get_child_optional("priors")) {
|
||||
for (auto &p : params.get_child("priors")) {
|
||||
AwbPrior prior;
|
||||
prior.Read(p.second);
|
||||
prior.read(p.second);
|
||||
if (!priors.empty() && prior.lux <= priors.back().lux)
|
||||
throw std::runtime_error(
|
||||
"AwbConfig: Prior must be ordered in increasing lux value");
|
||||
throw std::runtime_error("AwbConfig: Prior must be ordered in increasing lux value");
|
||||
priors.push_back(prior);
|
||||
}
|
||||
if (priors.empty())
|
||||
|
@ -82,177 +81,170 @@ void AwbConfig::Read(boost::property_tree::ptree const ¶ms)
|
|||
}
|
||||
if (params.get_child_optional("modes")) {
|
||||
for (auto &p : params.get_child("modes")) {
|
||||
modes[p.first].Read(p.second);
|
||||
if (default_mode == nullptr)
|
||||
default_mode = &modes[p.first];
|
||||
modes[p.first].read(p.second);
|
||||
if (defaultMode == nullptr)
|
||||
defaultMode = &modes[p.first];
|
||||
}
|
||||
if (default_mode == nullptr)
|
||||
throw std::runtime_error(
|
||||
"AwbConfig: no AWB modes configured");
|
||||
if (defaultMode == nullptr)
|
||||
throw std::runtime_error("AwbConfig: no AWB modes configured");
|
||||
}
|
||||
min_pixels = params.get<double>("min_pixels", 16.0);
|
||||
min_G = params.get<uint16_t>("min_G", 32);
|
||||
min_regions = params.get<uint32_t>("min_regions", 10);
|
||||
delta_limit = params.get<double>("delta_limit", 0.2);
|
||||
coarse_step = params.get<double>("coarse_step", 0.2);
|
||||
transverse_pos = params.get<double>("transverse_pos", 0.01);
|
||||
transverse_neg = params.get<double>("transverse_neg", 0.01);
|
||||
if (transverse_pos <= 0 || transverse_neg <= 0)
|
||||
throw std::runtime_error(
|
||||
"AwbConfig: transverse_pos/neg must be > 0");
|
||||
sensitivity_r = params.get<double>("sensitivity_r", 1.0);
|
||||
sensitivity_b = params.get<double>("sensitivity_b", 1.0);
|
||||
minPixels = params.get<double>("min_pixels", 16.0);
|
||||
minG = params.get<uint16_t>("min_G", 32);
|
||||
minRegions = params.get<uint32_t>("min_regions", 10);
|
||||
deltaLimit = params.get<double>("delta_limit", 0.2);
|
||||
coarseStep = params.get<double>("coarse_step", 0.2);
|
||||
transversePos = params.get<double>("transverse_pos", 0.01);
|
||||
transverseNeg = params.get<double>("transverse_neg", 0.01);
|
||||
if (transversePos <= 0 || transverseNeg <= 0)
|
||||
throw std::runtime_error("AwbConfig: transverse_pos/neg must be > 0");
|
||||
sensitivityR = params.get<double>("sensitivity_r", 1.0);
|
||||
sensitivityB = params.get<double>("sensitivity_b", 1.0);
|
||||
if (bayes) {
|
||||
if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
|
||||
default_mode == nullptr) {
|
||||
if (ctR.empty() || ctB.empty() || priors.empty() ||
|
||||
defaultMode == nullptr) {
|
||||
LOG(RPiAwb, Warning)
|
||||
<< "Bayesian AWB mis-configured - switch to Grey method";
|
||||
bayes = false;
|
||||
}
|
||||
}
|
||||
fast = params.get<int>(
|
||||
"fast", bayes); // default to fast for Bayesian, otherwise slow
|
||||
whitepoint_r = params.get<double>("whitepoint_r", 0.0);
|
||||
whitepoint_b = params.get<double>("whitepoint_b", 0.0);
|
||||
fast = params.get<int>("fast", bayes); // default to fast for Bayesian, otherwise slow
|
||||
whitepointR = params.get<double>("whitepoint_r", 0.0);
|
||||
whitepointB = params.get<double>("whitepoint_b", 0.0);
|
||||
if (bayes == false)
|
||||
sensitivity_r = sensitivity_b =
|
||||
1.0; // nor do sensitivities make any sense
|
||||
sensitivityR = sensitivityB = 1.0; // nor do sensitivities make any sense
|
||||
}
|
||||
|
||||
Awb::Awb(Controller *controller)
|
||||
: AwbAlgorithm(controller)
|
||||
{
|
||||
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
|
||||
asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false;
|
||||
mode_ = nullptr;
|
||||
manual_r_ = manual_b_ = 0.0;
|
||||
first_switch_mode_ = true;
|
||||
async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
|
||||
manualR_ = manualB_ = 0.0;
|
||||
firstSwitchMode_ = true;
|
||||
asyncThread_ = std::thread(std::bind(&Awb::asyncFunc, this));
|
||||
}
|
||||
|
||||
Awb::~Awb()
|
||||
{
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
async_abort_ = true;
|
||||
asyncAbort_ = true;
|
||||
}
|
||||
async_signal_.notify_one();
|
||||
async_thread_.join();
|
||||
asyncSignal_.notify_one();
|
||||
asyncThread_.join();
|
||||
}
|
||||
|
||||
char const *Awb::Name() const
|
||||
char const *Awb::name() const
|
||||
{
|
||||
return NAME;
|
||||
}
|
||||
|
||||
void Awb::Read(boost::property_tree::ptree const ¶ms)
|
||||
void Awb::read(boost::property_tree::ptree const ¶ms)
|
||||
{
|
||||
config_.Read(params);
|
||||
config_.read(params);
|
||||
}
|
||||
|
||||
void Awb::Initialise()
|
||||
void Awb::initialise()
|
||||
{
|
||||
frame_count_ = frame_phase_ = 0;
|
||||
frameCount_ = framePhase_ = 0;
|
||||
// Put something sane into the status that we are filtering towards,
|
||||
// just in case the first few frames don't have anything meaningful in
|
||||
// them.
|
||||
if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
|
||||
sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
|
||||
sync_results_.gain_r =
|
||||
1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
|
||||
sync_results_.gain_g = 1.0;
|
||||
sync_results_.gain_b =
|
||||
1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
|
||||
if (!config_.ctR.empty() && !config_.ctB.empty()) {
|
||||
syncResults_.temperatureK = config_.ctR.domain().clip(4000);
|
||||
syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK);
|
||||
syncResults_.gainG = 1.0;
|
||||
syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK);
|
||||
} else {
|
||||
// random values just to stop the world blowing up
|
||||
sync_results_.temperature_K = 4500;
|
||||
sync_results_.gain_r = sync_results_.gain_g =
|
||||
sync_results_.gain_b = 1.0;
|
||||
syncResults_.temperatureK = 4500;
|
||||
syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0;
|
||||
}
|
||||
prev_sync_results_ = sync_results_;
|
||||
async_results_ = sync_results_;
|
||||
prevSyncResults_ = syncResults_;
|
||||
asyncResults_ = syncResults_;
|
||||
}
|
||||
|
||||
bool Awb::IsPaused() const
|
||||
bool Awb::isPaused() const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void Awb::Pause()
|
||||
void Awb::pause()
|
||||
{
|
||||
// "Pause" by fixing everything to the most recent values.
|
||||
manual_r_ = sync_results_.gain_r = prev_sync_results_.gain_r;
|
||||
manual_b_ = sync_results_.gain_b = prev_sync_results_.gain_b;
|
||||
sync_results_.gain_g = prev_sync_results_.gain_g;
|
||||
sync_results_.temperature_K = prev_sync_results_.temperature_K;
|
||||
manualR_ = syncResults_.gainR = prevSyncResults_.gainR;
|
||||
manualB_ = syncResults_.gainB = prevSyncResults_.gainB;
|
||||
syncResults_.gainG = prevSyncResults_.gainG;
|
||||
syncResults_.temperatureK = prevSyncResults_.temperatureK;
|
||||
}
|
||||
|
||||
void Awb::Resume()
|
||||
void Awb::resume()
|
||||
{
|
||||
manual_r_ = 0.0;
|
||||
manual_b_ = 0.0;
|
||||
manualR_ = 0.0;
|
||||
manualB_ = 0.0;
|
||||
}
|
||||
|
||||
unsigned int Awb::GetConvergenceFrames() const
|
||||
unsigned int Awb::getConvergenceFrames() const
|
||||
{
|
||||
// If not in auto mode, there is no convergence
|
||||
// to happen, so no need to drop any frames - return zero.
|
||||
if (!isAutoEnabled())
|
||||
return 0;
|
||||
else
|
||||
return config_.convergence_frames;
|
||||
return config_.convergenceFrames;
|
||||
}
|
||||
|
||||
void Awb::SetMode(std::string const &mode_name)
|
||||
void Awb::setMode(std::string const &modeName)
|
||||
{
|
||||
mode_name_ = mode_name;
|
||||
modeName_ = modeName;
|
||||
}
|
||||
|
||||
void Awb::SetManualGains(double manual_r, double manual_b)
|
||||
void Awb::setManualGains(double manualR, double manualB)
|
||||
{
|
||||
// If any of these are 0.0, we swich back to auto.
|
||||
manual_r_ = manual_r;
|
||||
manual_b_ = manual_b;
|
||||
// If not in auto mode, set these values into the sync_results which
|
||||
manualR_ = manualR;
|
||||
manualB_ = manualB;
|
||||
// If not in auto mode, set these values into the syncResults which
|
||||
// means that Prepare() will adopt them immediately.
|
||||
if (!isAutoEnabled()) {
|
||||
sync_results_.gain_r = prev_sync_results_.gain_r = manual_r_;
|
||||
sync_results_.gain_g = prev_sync_results_.gain_g = 1.0;
|
||||
sync_results_.gain_b = prev_sync_results_.gain_b = manual_b_;
|
||||
syncResults_.gainR = prevSyncResults_.gainR = manualR_;
|
||||
syncResults_.gainG = prevSyncResults_.gainG = 1.0;
|
||||
syncResults_.gainB = prevSyncResults_.gainB = manualB_;
|
||||
}
|
||||
}
|
||||
|
||||
void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
|
||||
void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode,
|
||||
Metadata *metadata)
|
||||
{
|
||||
// On the first mode switch we'll have no meaningful colour
|
||||
// temperature, so try to dead reckon one if in manual mode.
|
||||
if (!isAutoEnabled() && first_switch_mode_ && config_.bayes) {
|
||||
Pwl ct_r_inverse = config_.ct_r.Inverse();
|
||||
Pwl ct_b_inverse = config_.ct_b.Inverse();
|
||||
double ct_r = ct_r_inverse.Eval(ct_r_inverse.Domain().Clip(1 / manual_r_));
|
||||
double ct_b = ct_b_inverse.Eval(ct_b_inverse.Domain().Clip(1 / manual_b_));
|
||||
prev_sync_results_.temperature_K = (ct_r + ct_b) / 2;
|
||||
sync_results_.temperature_K = prev_sync_results_.temperature_K;
|
||||
if (!isAutoEnabled() && firstSwitchMode_ && config_.bayes) {
|
||||
Pwl ctRInverse = config_.ctR.inverse();
|
||||
Pwl ctBInverse = config_.ctB.inverse();
|
||||
double ctR = ctRInverse.eval(ctRInverse.domain().clip(1 / manualR_));
|
||||
double ctB = ctBInverse.eval(ctBInverse.domain().clip(1 / manualB_));
|
||||
prevSyncResults_.temperatureK = (ctR + ctB) / 2;
|
||||
syncResults_.temperatureK = prevSyncResults_.temperatureK;
|
||||
}
|
||||
// Let other algorithms know the current white balance values.
|
||||
metadata->Set("awb.status", prev_sync_results_);
|
||||
first_switch_mode_ = false;
|
||||
metadata->set("awb.status", prevSyncResults_);
|
||||
firstSwitchMode_ = false;
|
||||
}
|
||||
|
||||
bool Awb::isAutoEnabled() const
|
||||
{
|
||||
return manual_r_ == 0.0 || manual_b_ == 0.0;
|
||||
return manualR_ == 0.0 || manualB_ == 0.0;
|
||||
}
|
||||
|
||||
void Awb::fetchAsyncResults()
|
||||
{
|
||||
LOG(RPiAwb, Debug) << "Fetch AWB results";
|
||||
async_finished_ = false;
|
||||
async_started_ = false;
|
||||
asyncFinished_ = false;
|
||||
asyncStarted_ = false;
|
||||
// It's possible manual gains could be set even while the async
|
||||
// thread was running, so only copy the results if still in auto mode.
|
||||
if (isAutoEnabled())
|
||||
sync_results_ = async_results_;
|
||||
syncResults_ = asyncResults_;
|
||||
}
|
||||
|
||||
void Awb::restartAsync(StatisticsPtr &stats, double lux)
|
||||
|
@ -261,75 +253,74 @@ void Awb::restartAsync(StatisticsPtr &stats, double lux)
|
|||
// this makes a new reference which belongs to the asynchronous thread
|
||||
statistics_ = stats;
|
||||
// store the mode as it could technically change
|
||||
auto m = config_.modes.find(mode_name_);
|
||||
auto m = config_.modes.find(modeName_);
|
||||
mode_ = m != config_.modes.end()
|
||||
? &m->second
|
||||
: (mode_ == nullptr ? config_.default_mode : mode_);
|
||||
: (mode_ == nullptr ? config_.defaultMode : mode_);
|
||||
lux_ = lux;
|
||||
frame_phase_ = 0;
|
||||
async_started_ = true;
|
||||
size_t len = mode_name_.copy(async_results_.mode,
|
||||
sizeof(async_results_.mode) - 1);
|
||||
async_results_.mode[len] = '\0';
|
||||
framePhase_ = 0;
|
||||
asyncStarted_ = true;
|
||||
size_t len = modeName_.copy(asyncResults_.mode,
|
||||
sizeof(asyncResults_.mode) - 1);
|
||||
asyncResults_.mode[len] = '\0';
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
async_start_ = true;
|
||||
asyncStart_ = true;
|
||||
}
|
||||
async_signal_.notify_one();
|
||||
asyncSignal_.notify_one();
|
||||
}
|
||||
|
||||
void Awb::Prepare(Metadata *image_metadata)
|
||||
void Awb::prepare(Metadata *imageMetadata)
|
||||
{
|
||||
if (frame_count_ < (int)config_.startup_frames)
|
||||
frame_count_++;
|
||||
double speed = frame_count_ < (int)config_.startup_frames
|
||||
if (frameCount_ < (int)config_.startupFrames)
|
||||
frameCount_++;
|
||||
double speed = frameCount_ < (int)config_.startupFrames
|
||||
? 1.0
|
||||
: config_.speed;
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "frame_count " << frame_count_ << " speed " << speed;
|
||||
<< "frame_count " << frameCount_ << " speed " << speed;
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_);
|
||||
if (async_started_ && async_finished_)
|
||||
if (asyncStarted_ && asyncFinished_)
|
||||
fetchAsyncResults();
|
||||
}
|
||||
// Finally apply IIR filter to results and put into metadata.
|
||||
memcpy(prev_sync_results_.mode, sync_results_.mode,
|
||||
sizeof(prev_sync_results_.mode));
|
||||
prev_sync_results_.temperature_K =
|
||||
speed * sync_results_.temperature_K +
|
||||
(1.0 - speed) * prev_sync_results_.temperature_K;
|
||||
prev_sync_results_.gain_r = speed * sync_results_.gain_r +
|
||||
(1.0 - speed) * prev_sync_results_.gain_r;
|
||||
prev_sync_results_.gain_g = speed * sync_results_.gain_g +
|
||||
(1.0 - speed) * prev_sync_results_.gain_g;
|
||||
prev_sync_results_.gain_b = speed * sync_results_.gain_b +
|
||||
(1.0 - speed) * prev_sync_results_.gain_b;
|
||||
image_metadata->Set("awb.status", prev_sync_results_);
|
||||
memcpy(prevSyncResults_.mode, syncResults_.mode,
|
||||
sizeof(prevSyncResults_.mode));
|
||||
prevSyncResults_.temperatureK = speed * syncResults_.temperatureK +
|
||||
(1.0 - speed) * prevSyncResults_.temperatureK;
|
||||
prevSyncResults_.gainR = speed * syncResults_.gainR +
|
||||
(1.0 - speed) * prevSyncResults_.gainR;
|
||||
prevSyncResults_.gainG = speed * syncResults_.gainG +
|
||||
(1.0 - speed) * prevSyncResults_.gainG;
|
||||
prevSyncResults_.gainB = speed * syncResults_.gainB +
|
||||
(1.0 - speed) * prevSyncResults_.gainB;
|
||||
imageMetadata->set("awb.status", prevSyncResults_);
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "Using AWB gains r " << prev_sync_results_.gain_r << " g "
|
||||
<< prev_sync_results_.gain_g << " b "
|
||||
<< prev_sync_results_.gain_b;
|
||||
<< "Using AWB gains r " << prevSyncResults_.gainR << " g "
|
||||
<< prevSyncResults_.gainG << " b "
|
||||
<< prevSyncResults_.gainB;
|
||||
}
|
||||
|
||||
void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
|
||||
void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata)
|
||||
{
|
||||
// Count frames since we last poked the async thread.
|
||||
if (frame_phase_ < (int)config_.frame_period)
|
||||
frame_phase_++;
|
||||
LOG(RPiAwb, Debug) << "frame_phase " << frame_phase_;
|
||||
if (framePhase_ < (int)config_.framePeriod)
|
||||
framePhase_++;
|
||||
LOG(RPiAwb, Debug) << "frame_phase " << framePhase_;
|
||||
// We do not restart the async thread if we're not in auto mode.
|
||||
if (isAutoEnabled() &&
|
||||
(frame_phase_ >= (int)config_.frame_period ||
|
||||
frame_count_ < (int)config_.startup_frames)) {
|
||||
(framePhase_ >= (int)config_.framePeriod ||
|
||||
frameCount_ < (int)config_.startupFrames)) {
|
||||
// Update any settings and any image metadata that we need.
|
||||
struct LuxStatus lux_status = {};
|
||||
lux_status.lux = 400; // in case no metadata
|
||||
if (image_metadata->Get("lux.status", lux_status) != 0)
|
||||
struct LuxStatus luxStatus = {};
|
||||
luxStatus.lux = 400; // in case no metadata
|
||||
if (imageMetadata->get("lux.status", luxStatus) != 0)
|
||||
LOG(RPiAwb, Debug) << "No lux metadata found";
|
||||
LOG(RPiAwb, Debug) << "Awb lux value is " << lux_status.lux;
|
||||
LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux;
|
||||
|
||||
if (async_started_ == false)
|
||||
restartAsync(stats, lux_status.lux);
|
||||
if (asyncStarted_ == false)
|
||||
restartAsync(stats, luxStatus.lux);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -338,32 +329,32 @@ void Awb::asyncFunc()
|
|||
while (true) {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_);
|
||||
async_signal_.wait(lock, [&] {
|
||||
return async_start_ || async_abort_;
|
||||
asyncSignal_.wait(lock, [&] {
|
||||
return asyncStart_ || asyncAbort_;
|
||||
});
|
||||
async_start_ = false;
|
||||
if (async_abort_)
|
||||
asyncStart_ = false;
|
||||
if (asyncAbort_)
|
||||
break;
|
||||
}
|
||||
doAwb();
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex_);
|
||||
async_finished_ = true;
|
||||
asyncFinished_ = true;
|
||||
}
|
||||
sync_signal_.notify_one();
|
||||
syncSignal_.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
static void generate_stats(std::vector<Awb::RGB> &zones,
|
||||
bcm2835_isp_stats_region *stats, double min_pixels,
|
||||
double min_G)
|
||||
static void generateStats(std::vector<Awb::RGB> &zones,
|
||||
bcm2835_isp_stats_region *stats, double minPixels,
|
||||
double minG)
|
||||
{
|
||||
for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
|
||||
Awb::RGB zone;
|
||||
double counted = stats[i].counted;
|
||||
if (counted >= min_pixels) {
|
||||
if (counted >= minPixels) {
|
||||
zone.G = stats[i].g_sum / counted;
|
||||
if (zone.G >= min_G) {
|
||||
if (zone.G >= minG) {
|
||||
zone.R = stats[i].r_sum / counted;
|
||||
zone.B = stats[i].b_sum / counted;
|
||||
zones.push_back(zone);
|
||||
|
@ -377,32 +368,33 @@ void Awb::prepareStats()
|
|||
zones_.clear();
|
||||
// LSC has already been applied to the stats in this pipeline, so stop
|
||||
// any LSC compensation. We also ignore config_.fast in this version.
|
||||
generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
|
||||
config_.min_G);
|
||||
generateStats(zones_, statistics_->awb_stats, config_.minPixels,
|
||||
config_.minG);
|
||||
// we're done with these; we may as well relinquish our hold on the
|
||||
// pointer.
|
||||
statistics_.reset();
|
||||
// apply sensitivities, so values appear to come from our "canonical"
|
||||
// sensor.
|
||||
for (auto &zone : zones_)
|
||||
zone.R *= config_.sensitivity_r,
|
||||
zone.B *= config_.sensitivity_b;
|
||||
for (auto &zone : zones_) {
|
||||
zone.R *= config_.sensitivityR;
|
||||
zone.B *= config_.sensitivityB;
|
||||
}
|
||||
}
|
||||
|
||||
double Awb::computeDelta2Sum(double gain_r, double gain_b)
|
||||
double Awb::computeDelta2Sum(double gainR, double gainB)
|
||||
{
|
||||
// Compute the sum of the squared colour error (non-greyness) as it
|
||||
// appears in the log likelihood equation.
|
||||
double delta2_sum = 0;
|
||||
double delta2Sum = 0;
|
||||
for (auto &z : zones_) {
|
||||
double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
|
||||
double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
|
||||
double delta2 = delta_r * delta_r + delta_b * delta_b;
|
||||
//LOG(RPiAwb, Debug) << "delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2;
|
||||
delta2 = std::min(delta2, config_.delta_limit);
|
||||
delta2_sum += delta2;
|
||||
double deltaR = gainR * z.R - 1 - config_.whitepointR;
|
||||
double deltaB = gainB * z.B - 1 - config_.whitepointB;
|
||||
double delta2 = deltaR * deltaR + deltaB * deltaB;
|
||||
//LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2;
|
||||
delta2 = std::min(delta2, config_.deltaLimit);
|
||||
delta2Sum += delta2;
|
||||
}
|
||||
return delta2_sum;
|
||||
return delta2Sum;
|
||||
}
|
||||
|
||||
Pwl Awb::interpolatePrior()
|
||||
|
@ -420,7 +412,7 @@ Pwl Awb::interpolatePrior()
|
|||
idx++;
|
||||
double lux0 = config_.priors[idx].lux,
|
||||
lux1 = config_.priors[idx + 1].lux;
|
||||
return Pwl::Combine(config_.priors[idx].prior,
|
||||
return Pwl::combine(config_.priors[idx].prior,
|
||||
config_.priors[idx + 1].prior,
|
||||
[&](double /*x*/, double y0, double y1) {
|
||||
return y0 + (y1 - y0) *
|
||||
|
@ -429,62 +421,60 @@ Pwl Awb::interpolatePrior()
|
|||
}
|
||||
}
|
||||
|
||||
static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
|
||||
Pwl::Point const &C)
|
||||
static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b,
|
||||
Pwl::Point const &c)
|
||||
{
|
||||
// Given 3 points on a curve, find the extremum of the function in that
|
||||
// interval by fitting a quadratic.
|
||||
const double eps = 1e-3;
|
||||
Pwl::Point CA = C - A, BA = B - A;
|
||||
double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
|
||||
Pwl::Point ca = c - a, ba = b - a;
|
||||
double denominator = 2 * (ba.y * ca.x - ca.y * ba.x);
|
||||
if (abs(denominator) > eps) {
|
||||
double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
|
||||
double result = numerator / denominator + A.x;
|
||||
return std::max(A.x, std::min(C.x, result));
|
||||
double numerator = ba.y * ca.x * ca.x - ca.y * ba.x * ba.x;
|
||||
double result = numerator / denominator + a.x;
|
||||
return std::max(a.x, std::min(c.x, result));
|
||||
}
|
||||
// has degenerated to straight line segment
|
||||
return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
|
||||
return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x);
|
||||
}
|
||||
|
||||
double Awb::coarseSearch(Pwl const &prior)
|
||||
{
|
||||
points_.clear(); // assume doesn't deallocate memory
|
||||
size_t best_point = 0;
|
||||
double t = mode_->ct_lo;
|
||||
int span_r = 0, span_b = 0;
|
||||
size_t bestPoint = 0;
|
||||
double t = mode_->ctLo;
|
||||
int spanR = 0, spanB = 0;
|
||||
// Step down the CT curve evaluating log likelihood.
|
||||
while (true) {
|
||||
double r = config_.ct_r.Eval(t, &span_r);
|
||||
double b = config_.ct_b.Eval(t, &span_b);
|
||||
double gain_r = 1 / r, gain_b = 1 / b;
|
||||
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
|
||||
double prior_log_likelihood =
|
||||
prior.Eval(prior.Domain().Clip(t));
|
||||
double final_log_likelihood = delta2_sum - prior_log_likelihood;
|
||||
double r = config_.ctR.eval(t, &spanR);
|
||||
double b = config_.ctB.eval(t, &spanB);
|
||||
double gainR = 1 / r, gainB = 1 / b;
|
||||
double delta2Sum = computeDelta2Sum(gainR, gainB);
|
||||
double priorLogLikelihood = prior.eval(prior.domain().clip(t));
|
||||
double finalLogLikelihood = delta2Sum - priorLogLikelihood;
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "t: " << t << " gain_r " << gain_r << " gain_b "
|
||||
<< gain_b << " delta2_sum " << delta2_sum
|
||||
<< " prior " << prior_log_likelihood << " final "
|
||||
<< final_log_likelihood;
|
||||
points_.push_back(Pwl::Point(t, final_log_likelihood));
|
||||
if (points_.back().y < points_[best_point].y)
|
||||
best_point = points_.size() - 1;
|
||||
if (t == mode_->ct_hi)
|
||||
<< "t: " << t << " gain R " << gainR << " gain B "
|
||||
<< gainB << " delta2_sum " << delta2Sum
|
||||
<< " prior " << priorLogLikelihood << " final "
|
||||
<< finalLogLikelihood;
|
||||
points_.push_back(Pwl::Point(t, finalLogLikelihood));
|
||||
if (points_.back().y < points_[bestPoint].y)
|
||||
bestPoint = points_.size() - 1;
|
||||
if (t == mode_->ctHi)
|
||||
break;
|
||||
// for even steps along the r/b curve scale them by the current t
|
||||
t = std::min(t + t / 10 * config_.coarse_step,
|
||||
mode_->ct_hi);
|
||||
t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi);
|
||||
}
|
||||
t = points_[best_point].x;
|
||||
t = points_[bestPoint].x;
|
||||
LOG(RPiAwb, Debug) << "Coarse search found CT " << t;
|
||||
// We have the best point of the search, but refine it with a quadratic
|
||||
// interpolation around its neighbours.
|
||||
if (points_.size() > 2) {
|
||||
unsigned long bp = std::min(best_point, points_.size() - 2);
|
||||
best_point = std::max(1UL, bp);
|
||||
t = interpolate_quadatric(points_[best_point - 1],
|
||||
points_[best_point],
|
||||
points_[best_point + 1]);
|
||||
unsigned long bp = std::min(bestPoint, points_.size() - 2);
|
||||
bestPoint = std::max(1UL, bp);
|
||||
t = interpolateQuadatric(points_[bestPoint - 1],
|
||||
points_[bestPoint],
|
||||
points_[bestPoint + 1]);
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "After quadratic refinement, coarse search has CT "
|
||||
<< t;
|
||||
|
@ -494,80 +484,76 @@ double Awb::coarseSearch(Pwl const &prior)
|
|||
|
||||
void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
|
||||
{
|
||||
int span_r = -1, span_b = -1;
|
||||
config_.ct_r.Eval(t, &span_r);
|
||||
config_.ct_b.Eval(t, &span_b);
|
||||
double step = t / 10 * config_.coarse_step * 0.1;
|
||||
int spanR = -1, spanB = -1;
|
||||
config_.ctR.eval(t, &spanR);
|
||||
config_.ctB.eval(t, &spanB);
|
||||
double step = t / 10 * config_.coarseStep * 0.1;
|
||||
int nsteps = 5;
|
||||
double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
|
||||
config_.ct_r.Eval(t - nsteps * step, &span_r);
|
||||
double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
|
||||
config_.ct_b.Eval(t - nsteps * step, &span_b);
|
||||
Pwl::Point transverse(b_diff, -r_diff);
|
||||
if (transverse.Len2() < 1e-6)
|
||||
double rDiff = config_.ctR.eval(t + nsteps * step, &spanR) -
|
||||
config_.ctR.eval(t - nsteps * step, &spanR);
|
||||
double bDiff = config_.ctB.eval(t + nsteps * step, &spanB) -
|
||||
config_.ctB.eval(t - nsteps * step, &spanB);
|
||||
Pwl::Point transverse(bDiff, -rDiff);
|
||||
if (transverse.len2() < 1e-6)
|
||||
return;
|
||||
// unit vector orthogonal to the b vs. r function (pointing outwards
|
||||
// with r and b increasing)
|
||||
transverse = transverse / transverse.Len();
|
||||
double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
|
||||
double transverse_range =
|
||||
config_.transverse_neg + config_.transverse_pos;
|
||||
const int MAX_NUM_DELTAS = 12;
|
||||
transverse = transverse / transverse.len();
|
||||
double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0;
|
||||
double transverseRange = config_.transverseNeg + config_.transversePos;
|
||||
const int maxNumDeltas = 12;
|
||||
// a transverse step approximately every 0.01 r/b units
|
||||
int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
|
||||
num_deltas = num_deltas < 3 ? 3 :
|
||||
(num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
|
||||
int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
|
||||
numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas);
|
||||
// Step down CT curve. March a bit further if the transverse range is
|
||||
// large.
|
||||
nsteps += num_deltas;
|
||||
nsteps += numDeltas;
|
||||
for (int i = -nsteps; i <= nsteps; i++) {
|
||||
double t_test = t + i * step;
|
||||
double prior_log_likelihood =
|
||||
prior.Eval(prior.Domain().Clip(t_test));
|
||||
double r_curve = config_.ct_r.Eval(t_test, &span_r);
|
||||
double b_curve = config_.ct_b.Eval(t_test, &span_b);
|
||||
double tTest = t + i * step;
|
||||
double priorLogLikelihood =
|
||||
prior.eval(prior.domain().clip(tTest));
|
||||
double rCurve = config_.ctR.eval(tTest, &spanR);
|
||||
double bCurve = config_.ctB.eval(tTest, &spanB);
|
||||
// x will be distance off the curve, y the log likelihood there
|
||||
Pwl::Point points[MAX_NUM_DELTAS];
|
||||
int best_point = 0;
|
||||
Pwl::Point points[maxNumDeltas];
|
||||
int bestPoint = 0;
|
||||
// Take some measurements transversely *off* the CT curve.
|
||||
for (int j = 0; j < num_deltas; j++) {
|
||||
points[j].x = -config_.transverse_neg +
|
||||
(transverse_range * j) / (num_deltas - 1);
|
||||
Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
|
||||
transverse * points[j].x;
|
||||
double r_test = rb_test.x, b_test = rb_test.y;
|
||||
double gain_r = 1 / r_test, gain_b = 1 / b_test;
|
||||
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
|
||||
points[j].y = delta2_sum - prior_log_likelihood;
|
||||
for (int j = 0; j < numDeltas; j++) {
|
||||
points[j].x = -config_.transverseNeg +
|
||||
(transverseRange * j) / (numDeltas - 1);
|
||||
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
|
||||
transverse * points[j].x;
|
||||
double rTest = rbTest.x, bTest = rbTest.y;
|
||||
double gainR = 1 / rTest, gainB = 1 / bTest;
|
||||
double delta2Sum = computeDelta2Sum(gainR, gainB);
|
||||
points[j].y = delta2Sum - priorLogLikelihood;
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "At t " << t_test << " r " << r_test << " b "
|
||||
<< b_test << ": " << points[j].y;
|
||||
if (points[j].y < points[best_point].y)
|
||||
best_point = j;
|
||||
<< "At t " << tTest << " r " << rTest << " b "
|
||||
<< bTest << ": " << points[j].y;
|
||||
if (points[j].y < points[bestPoint].y)
|
||||
bestPoint = j;
|
||||
}
|
||||
// We have NUM_DELTAS points transversely across the CT curve,
|
||||
// now let's do a quadratic interpolation for the best result.
|
||||
best_point = std::max(1, std::min(best_point, num_deltas - 2));
|
||||
Pwl::Point rb_test =
|
||||
Pwl::Point(r_curve, b_curve) +
|
||||
transverse *
|
||||
interpolate_quadatric(points[best_point - 1],
|
||||
points[best_point],
|
||||
points[best_point + 1]);
|
||||
double r_test = rb_test.x, b_test = rb_test.y;
|
||||
double gain_r = 1 / r_test, gain_b = 1 / b_test;
|
||||
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
|
||||
double final_log_likelihood = delta2_sum - prior_log_likelihood;
|
||||
bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2));
|
||||
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
|
||||
transverse * interpolateQuadatric(points[bestPoint - 1],
|
||||
points[bestPoint],
|
||||
points[bestPoint + 1]);
|
||||
double rTest = rbTest.x, bTest = rbTest.y;
|
||||
double gainR = 1 / rTest, gainB = 1 / bTest;
|
||||
double delta2Sum = computeDelta2Sum(gainR, gainB);
|
||||
double finalLogLikelihood = delta2Sum - priorLogLikelihood;
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "Finally "
|
||||
<< t_test << " r " << r_test << " b " << b_test << ": "
|
||||
<< final_log_likelihood
|
||||
<< (final_log_likelihood < best_log_likelihood ? " BEST" : "");
|
||||
if (best_t == 0 || final_log_likelihood < best_log_likelihood)
|
||||
best_log_likelihood = final_log_likelihood,
|
||||
best_t = t_test, best_r = r_test, best_b = b_test;
|
||||
<< tTest << " r " << rTest << " b " << bTest << ": "
|
||||
<< finalLogLikelihood
|
||||
<< (finalLogLikelihood < bestLogLikelihood ? " BEST" : "");
|
||||
if (bestT == 0 || finalLogLikelihood < bestLogLikelihood)
|
||||
bestLogLikelihood = finalLogLikelihood,
|
||||
bestT = tTest, bestR = rTest, bestB = bTest;
|
||||
}
|
||||
t = best_t, r = best_r, b = best_b;
|
||||
t = bestT, r = bestR, b = bestB;
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "Fine search found t " << t << " r " << r << " b " << b;
|
||||
}
|
||||
|
@ -582,12 +568,12 @@ void Awb::awbBayes()
|
|||
// valid... not entirely sure about this.
|
||||
Pwl prior = interpolatePrior();
|
||||
prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
|
||||
prior.Map([](double x, double y) {
|
||||
prior.map([](double x, double y) {
|
||||
LOG(RPiAwb, Debug) << "(" << x << "," << y << ")";
|
||||
});
|
||||
double t = coarseSearch(prior);
|
||||
double r = config_.ct_r.Eval(t);
|
||||
double b = config_.ct_b.Eval(t);
|
||||
double r = config_.ctR.eval(t);
|
||||
double b = config_.ctB.eval(t);
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "After coarse search: r " << r << " b " << b << " (gains r "
|
||||
<< 1 / r << " b " << 1 / b << ")";
|
||||
|
@ -604,10 +590,10 @@ void Awb::awbBayes()
|
|||
// Write results out for the main thread to pick up. Remember to adjust
|
||||
// the gains from the ones that the "canonical sensor" would require to
|
||||
// the ones needed by *this* sensor.
|
||||
async_results_.temperature_K = t;
|
||||
async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
|
||||
async_results_.gain_g = 1.0;
|
||||
async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
|
||||
asyncResults_.temperatureK = t;
|
||||
asyncResults_.gainR = 1.0 / r * config_.sensitivityR;
|
||||
asyncResults_.gainG = 1.0;
|
||||
asyncResults_.gainB = 1.0 / b * config_.sensitivityB;
|
||||
}
|
||||
|
||||
void Awb::awbGrey()
|
||||
|
@ -617,51 +603,51 @@ void Awb::awbGrey()
|
|||
// that we can sort them to exclude the extreme gains. We could
|
||||
// consider some variations, such as normalising all the zones first, or
|
||||
// doing an L2 average etc.
|
||||
std::vector<RGB> &derivs_R(zones_);
|
||||
std::vector<RGB> derivs_B(derivs_R);
|
||||
std::sort(derivs_R.begin(), derivs_R.end(),
|
||||
std::vector<RGB> &derivsR(zones_);
|
||||
std::vector<RGB> derivsB(derivsR);
|
||||
std::sort(derivsR.begin(), derivsR.end(),
|
||||
[](RGB const &a, RGB const &b) {
|
||||
return a.G * b.R < b.G * a.R;
|
||||
});
|
||||
std::sort(derivs_B.begin(), derivs_B.end(),
|
||||
std::sort(derivsB.begin(), derivsB.end(),
|
||||
[](RGB const &a, RGB const &b) {
|
||||
return a.G * b.B < b.G * a.B;
|
||||
});
|
||||
// Average the middle half of the values.
|
||||
int discard = derivs_R.size() / 4;
|
||||
RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
|
||||
for (auto ri = derivs_R.begin() + discard,
|
||||
bi = derivs_B.begin() + discard;
|
||||
ri != derivs_R.end() - discard; ri++, bi++)
|
||||
sum_R += *ri, sum_B += *bi;
|
||||
double gain_r = sum_R.G / (sum_R.R + 1),
|
||||
gain_b = sum_B.G / (sum_B.B + 1);
|
||||
async_results_.temperature_K = 4500; // don't know what it is
|
||||
async_results_.gain_r = gain_r;
|
||||
async_results_.gain_g = 1.0;
|
||||
async_results_.gain_b = gain_b;
|
||||
int discard = derivsR.size() / 4;
|
||||
RGB sumR(0, 0, 0), sumB(0, 0, 0);
|
||||
for (auto ri = derivsR.begin() + discard,
|
||||
bi = derivsB.begin() + discard;
|
||||
ri != derivsR.end() - discard; ri++, bi++)
|
||||
sumR += *ri, sumB += *bi;
|
||||
double gainR = sumR.G / (sumR.R + 1),
|
||||
gainB = sumB.G / (sumB.B + 1);
|
||||
asyncResults_.temperatureK = 4500; // don't know what it is
|
||||
asyncResults_.gainR = gainR;
|
||||
asyncResults_.gainG = 1.0;
|
||||
asyncResults_.gainB = gainB;
|
||||
}
|
||||
|
||||
void Awb::doAwb()
|
||||
{
|
||||
prepareStats();
|
||||
LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size();
|
||||
if (zones_.size() > config_.min_regions) {
|
||||
if (zones_.size() > config_.minRegions) {
|
||||
if (config_.bayes)
|
||||
awbBayes();
|
||||
else
|
||||
awbGrey();
|
||||
LOG(RPiAwb, Debug)
|
||||
<< "CT found is "
|
||||
<< async_results_.temperature_K
|
||||
<< " with gains r " << async_results_.gain_r
|
||||
<< " and b " << async_results_.gain_b;
|
||||
<< asyncResults_.temperatureK
|
||||
<< " with gains r " << asyncResults_.gainR
|
||||
<< " and b " << asyncResults_.gainB;
|
||||
}
|
||||
}
|
||||
|
||||
// Register algorithm with the system.
|
||||
static Algorithm *Create(Controller *controller)
|
||||
static Algorithm *create(Controller *controller)
|
||||
{
|
||||
return (Algorithm *)new Awb(controller);
|
||||
}
|
||||
static RegisterAlgorithm reg(NAME, &Create);
|
||||
static RegisterAlgorithm reg(NAME, &create);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue