ipa: raspberrypi: Code refactoring to match style guidelines

Refactor all the source files in src/ipa/raspberrypi/ to match the recommended
formatting guidelines for the libcamera project. The vast majority of changes
in this commit comprise of switching from snake_case to CamelCase, and starting
class member functions with a lower case character.

Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Naushir Patuck 2022-07-27 09:55:17 +01:00 committed by Laurent Pinchart
parent b4a3eb6b98
commit 177df04d2b
63 changed files with 2093 additions and 2161 deletions

View file

@ -24,33 +24,33 @@ LOG_DEFINE_CATEGORY(RPiAwb)
// todo - the locking in this algorithm needs some tidying up as has been done
// elsewhere (ALSC and AGC).
void AwbMode::Read(boost::property_tree::ptree const &params)
void AwbMode::read(boost::property_tree::ptree const &params)
{
ct_lo = params.get<double>("lo");
ct_hi = params.get<double>("hi");
ctLo = params.get<double>("lo");
ctHi = params.get<double>("hi");
}
void AwbPrior::Read(boost::property_tree::ptree const &params)
void AwbPrior::read(boost::property_tree::ptree const &params)
{
lux = params.get<double>("lux");
prior.Read(params.get_child("prior"));
prior.read(params.get_child("prior"));
}
static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
boost::property_tree::ptree const &params)
static void readCtCurve(Pwl &ctR, Pwl &ctB,
boost::property_tree::ptree const &params)
{
int num = 0;
for (auto it = params.begin(); it != params.end(); it++) {
double ct = it->second.get_value<double>();
assert(it == params.begin() || ct != ct_r.Domain().end);
assert(it == params.begin() || ct != ctR.domain().end);
if (++it == params.end())
throw std::runtime_error(
"AwbConfig: incomplete CT curve entry");
ct_r.Append(ct, it->second.get_value<double>());
ctR.append(ct, it->second.get_value<double>());
if (++it == params.end())
throw std::runtime_error(
"AwbConfig: incomplete CT curve entry");
ct_b.Append(ct, it->second.get_value<double>());
ctB.append(ct, it->second.get_value<double>());
num++;
}
if (num < 2)
@ -58,22 +58,21 @@ static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
"AwbConfig: insufficient points in CT curve");
}
void AwbConfig::Read(boost::property_tree::ptree const &params)
void AwbConfig::read(boost::property_tree::ptree const &params)
{
bayes = params.get<int>("bayes", 1);
frame_period = params.get<uint16_t>("frame_period", 10);
startup_frames = params.get<uint16_t>("startup_frames", 10);
convergence_frames = params.get<unsigned int>("convergence_frames", 3);
framePeriod = params.get<uint16_t>("framePeriod", 10);
startupFrames = params.get<uint16_t>("startupFrames", 10);
convergenceFrames = params.get<unsigned int>("convergence_frames", 3);
speed = params.get<double>("speed", 0.05);
if (params.get_child_optional("ct_curve"))
read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
readCtCurve(ctR, ctB, params.get_child("ct_curve"));
if (params.get_child_optional("priors")) {
for (auto &p : params.get_child("priors")) {
AwbPrior prior;
prior.Read(p.second);
prior.read(p.second);
if (!priors.empty() && prior.lux <= priors.back().lux)
throw std::runtime_error(
"AwbConfig: Prior must be ordered in increasing lux value");
throw std::runtime_error("AwbConfig: Prior must be ordered in increasing lux value");
priors.push_back(prior);
}
if (priors.empty())
@ -82,177 +81,170 @@ void AwbConfig::Read(boost::property_tree::ptree const &params)
}
if (params.get_child_optional("modes")) {
for (auto &p : params.get_child("modes")) {
modes[p.first].Read(p.second);
if (default_mode == nullptr)
default_mode = &modes[p.first];
modes[p.first].read(p.second);
if (defaultMode == nullptr)
defaultMode = &modes[p.first];
}
if (default_mode == nullptr)
throw std::runtime_error(
"AwbConfig: no AWB modes configured");
if (defaultMode == nullptr)
throw std::runtime_error("AwbConfig: no AWB modes configured");
}
min_pixels = params.get<double>("min_pixels", 16.0);
min_G = params.get<uint16_t>("min_G", 32);
min_regions = params.get<uint32_t>("min_regions", 10);
delta_limit = params.get<double>("delta_limit", 0.2);
coarse_step = params.get<double>("coarse_step", 0.2);
transverse_pos = params.get<double>("transverse_pos", 0.01);
transverse_neg = params.get<double>("transverse_neg", 0.01);
if (transverse_pos <= 0 || transverse_neg <= 0)
throw std::runtime_error(
"AwbConfig: transverse_pos/neg must be > 0");
sensitivity_r = params.get<double>("sensitivity_r", 1.0);
sensitivity_b = params.get<double>("sensitivity_b", 1.0);
minPixels = params.get<double>("min_pixels", 16.0);
minG = params.get<uint16_t>("min_G", 32);
minRegions = params.get<uint32_t>("min_regions", 10);
deltaLimit = params.get<double>("delta_limit", 0.2);
coarseStep = params.get<double>("coarse_step", 0.2);
transversePos = params.get<double>("transverse_pos", 0.01);
transverseNeg = params.get<double>("transverse_neg", 0.01);
if (transversePos <= 0 || transverseNeg <= 0)
throw std::runtime_error("AwbConfig: transverse_pos/neg must be > 0");
sensitivityR = params.get<double>("sensitivity_r", 1.0);
sensitivityB = params.get<double>("sensitivity_b", 1.0);
if (bayes) {
if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
default_mode == nullptr) {
if (ctR.empty() || ctB.empty() || priors.empty() ||
defaultMode == nullptr) {
LOG(RPiAwb, Warning)
<< "Bayesian AWB mis-configured - switch to Grey method";
bayes = false;
}
}
fast = params.get<int>(
"fast", bayes); // default to fast for Bayesian, otherwise slow
whitepoint_r = params.get<double>("whitepoint_r", 0.0);
whitepoint_b = params.get<double>("whitepoint_b", 0.0);
fast = params.get<int>("fast", bayes); // default to fast for Bayesian, otherwise slow
whitepointR = params.get<double>("whitepoint_r", 0.0);
whitepointB = params.get<double>("whitepoint_b", 0.0);
if (bayes == false)
sensitivity_r = sensitivity_b =
1.0; // nor do sensitivities make any sense
sensitivityR = sensitivityB = 1.0; // nor do sensitivities make any sense
}
Awb::Awb(Controller *controller)
: AwbAlgorithm(controller)
{
async_abort_ = async_start_ = async_started_ = async_finished_ = false;
asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false;
mode_ = nullptr;
manual_r_ = manual_b_ = 0.0;
first_switch_mode_ = true;
async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
manualR_ = manualB_ = 0.0;
firstSwitchMode_ = true;
asyncThread_ = std::thread(std::bind(&Awb::asyncFunc, this));
}
Awb::~Awb()
{
{
std::lock_guard<std::mutex> lock(mutex_);
async_abort_ = true;
asyncAbort_ = true;
}
async_signal_.notify_one();
async_thread_.join();
asyncSignal_.notify_one();
asyncThread_.join();
}
char const *Awb::Name() const
char const *Awb::name() const
{
return NAME;
}
void Awb::Read(boost::property_tree::ptree const &params)
void Awb::read(boost::property_tree::ptree const &params)
{
config_.Read(params);
config_.read(params);
}
void Awb::Initialise()
void Awb::initialise()
{
frame_count_ = frame_phase_ = 0;
frameCount_ = framePhase_ = 0;
// Put something sane into the status that we are filtering towards,
// just in case the first few frames don't have anything meaningful in
// them.
if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
sync_results_.gain_r =
1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
sync_results_.gain_g = 1.0;
sync_results_.gain_b =
1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
if (!config_.ctR.empty() && !config_.ctB.empty()) {
syncResults_.temperatureK = config_.ctR.domain().clip(4000);
syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK);
syncResults_.gainG = 1.0;
syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK);
} else {
// random values just to stop the world blowing up
sync_results_.temperature_K = 4500;
sync_results_.gain_r = sync_results_.gain_g =
sync_results_.gain_b = 1.0;
syncResults_.temperatureK = 4500;
syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0;
}
prev_sync_results_ = sync_results_;
async_results_ = sync_results_;
prevSyncResults_ = syncResults_;
asyncResults_ = syncResults_;
}
bool Awb::IsPaused() const
bool Awb::isPaused() const
{
return false;
}
void Awb::Pause()
void Awb::pause()
{
// "Pause" by fixing everything to the most recent values.
manual_r_ = sync_results_.gain_r = prev_sync_results_.gain_r;
manual_b_ = sync_results_.gain_b = prev_sync_results_.gain_b;
sync_results_.gain_g = prev_sync_results_.gain_g;
sync_results_.temperature_K = prev_sync_results_.temperature_K;
manualR_ = syncResults_.gainR = prevSyncResults_.gainR;
manualB_ = syncResults_.gainB = prevSyncResults_.gainB;
syncResults_.gainG = prevSyncResults_.gainG;
syncResults_.temperatureK = prevSyncResults_.temperatureK;
}
void Awb::Resume()
void Awb::resume()
{
manual_r_ = 0.0;
manual_b_ = 0.0;
manualR_ = 0.0;
manualB_ = 0.0;
}
unsigned int Awb::GetConvergenceFrames() const
unsigned int Awb::getConvergenceFrames() const
{
// If not in auto mode, there is no convergence
// to happen, so no need to drop any frames - return zero.
if (!isAutoEnabled())
return 0;
else
return config_.convergence_frames;
return config_.convergenceFrames;
}
void Awb::SetMode(std::string const &mode_name)
void Awb::setMode(std::string const &modeName)
{
mode_name_ = mode_name;
modeName_ = modeName;
}
void Awb::SetManualGains(double manual_r, double manual_b)
void Awb::setManualGains(double manualR, double manualB)
{
// If any of these are 0.0, we swich back to auto.
manual_r_ = manual_r;
manual_b_ = manual_b;
// If not in auto mode, set these values into the sync_results which
manualR_ = manualR;
manualB_ = manualB;
// If not in auto mode, set these values into the syncResults which
// means that Prepare() will adopt them immediately.
if (!isAutoEnabled()) {
sync_results_.gain_r = prev_sync_results_.gain_r = manual_r_;
sync_results_.gain_g = prev_sync_results_.gain_g = 1.0;
sync_results_.gain_b = prev_sync_results_.gain_b = manual_b_;
syncResults_.gainR = prevSyncResults_.gainR = manualR_;
syncResults_.gainG = prevSyncResults_.gainG = 1.0;
syncResults_.gainB = prevSyncResults_.gainB = manualB_;
}
}
void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode,
Metadata *metadata)
{
// On the first mode switch we'll have no meaningful colour
// temperature, so try to dead reckon one if in manual mode.
if (!isAutoEnabled() && first_switch_mode_ && config_.bayes) {
Pwl ct_r_inverse = config_.ct_r.Inverse();
Pwl ct_b_inverse = config_.ct_b.Inverse();
double ct_r = ct_r_inverse.Eval(ct_r_inverse.Domain().Clip(1 / manual_r_));
double ct_b = ct_b_inverse.Eval(ct_b_inverse.Domain().Clip(1 / manual_b_));
prev_sync_results_.temperature_K = (ct_r + ct_b) / 2;
sync_results_.temperature_K = prev_sync_results_.temperature_K;
if (!isAutoEnabled() && firstSwitchMode_ && config_.bayes) {
Pwl ctRInverse = config_.ctR.inverse();
Pwl ctBInverse = config_.ctB.inverse();
double ctR = ctRInverse.eval(ctRInverse.domain().clip(1 / manualR_));
double ctB = ctBInverse.eval(ctBInverse.domain().clip(1 / manualB_));
prevSyncResults_.temperatureK = (ctR + ctB) / 2;
syncResults_.temperatureK = prevSyncResults_.temperatureK;
}
// Let other algorithms know the current white balance values.
metadata->Set("awb.status", prev_sync_results_);
first_switch_mode_ = false;
metadata->set("awb.status", prevSyncResults_);
firstSwitchMode_ = false;
}
bool Awb::isAutoEnabled() const
{
return manual_r_ == 0.0 || manual_b_ == 0.0;
return manualR_ == 0.0 || manualB_ == 0.0;
}
void Awb::fetchAsyncResults()
{
LOG(RPiAwb, Debug) << "Fetch AWB results";
async_finished_ = false;
async_started_ = false;
asyncFinished_ = false;
asyncStarted_ = false;
// It's possible manual gains could be set even while the async
// thread was running, so only copy the results if still in auto mode.
if (isAutoEnabled())
sync_results_ = async_results_;
syncResults_ = asyncResults_;
}
void Awb::restartAsync(StatisticsPtr &stats, double lux)
@ -261,75 +253,74 @@ void Awb::restartAsync(StatisticsPtr &stats, double lux)
// this makes a new reference which belongs to the asynchronous thread
statistics_ = stats;
// store the mode as it could technically change
auto m = config_.modes.find(mode_name_);
auto m = config_.modes.find(modeName_);
mode_ = m != config_.modes.end()
? &m->second
: (mode_ == nullptr ? config_.default_mode : mode_);
: (mode_ == nullptr ? config_.defaultMode : mode_);
lux_ = lux;
frame_phase_ = 0;
async_started_ = true;
size_t len = mode_name_.copy(async_results_.mode,
sizeof(async_results_.mode) - 1);
async_results_.mode[len] = '\0';
framePhase_ = 0;
asyncStarted_ = true;
size_t len = modeName_.copy(asyncResults_.mode,
sizeof(asyncResults_.mode) - 1);
asyncResults_.mode[len] = '\0';
{
std::lock_guard<std::mutex> lock(mutex_);
async_start_ = true;
asyncStart_ = true;
}
async_signal_.notify_one();
asyncSignal_.notify_one();
}
void Awb::Prepare(Metadata *image_metadata)
void Awb::prepare(Metadata *imageMetadata)
{
if (frame_count_ < (int)config_.startup_frames)
frame_count_++;
double speed = frame_count_ < (int)config_.startup_frames
if (frameCount_ < (int)config_.startupFrames)
frameCount_++;
double speed = frameCount_ < (int)config_.startupFrames
? 1.0
: config_.speed;
LOG(RPiAwb, Debug)
<< "frame_count " << frame_count_ << " speed " << speed;
<< "frame_count " << frameCount_ << " speed " << speed;
{
std::unique_lock<std::mutex> lock(mutex_);
if (async_started_ && async_finished_)
if (asyncStarted_ && asyncFinished_)
fetchAsyncResults();
}
// Finally apply IIR filter to results and put into metadata.
memcpy(prev_sync_results_.mode, sync_results_.mode,
sizeof(prev_sync_results_.mode));
prev_sync_results_.temperature_K =
speed * sync_results_.temperature_K +
(1.0 - speed) * prev_sync_results_.temperature_K;
prev_sync_results_.gain_r = speed * sync_results_.gain_r +
(1.0 - speed) * prev_sync_results_.gain_r;
prev_sync_results_.gain_g = speed * sync_results_.gain_g +
(1.0 - speed) * prev_sync_results_.gain_g;
prev_sync_results_.gain_b = speed * sync_results_.gain_b +
(1.0 - speed) * prev_sync_results_.gain_b;
image_metadata->Set("awb.status", prev_sync_results_);
memcpy(prevSyncResults_.mode, syncResults_.mode,
sizeof(prevSyncResults_.mode));
prevSyncResults_.temperatureK = speed * syncResults_.temperatureK +
(1.0 - speed) * prevSyncResults_.temperatureK;
prevSyncResults_.gainR = speed * syncResults_.gainR +
(1.0 - speed) * prevSyncResults_.gainR;
prevSyncResults_.gainG = speed * syncResults_.gainG +
(1.0 - speed) * prevSyncResults_.gainG;
prevSyncResults_.gainB = speed * syncResults_.gainB +
(1.0 - speed) * prevSyncResults_.gainB;
imageMetadata->set("awb.status", prevSyncResults_);
LOG(RPiAwb, Debug)
<< "Using AWB gains r " << prev_sync_results_.gain_r << " g "
<< prev_sync_results_.gain_g << " b "
<< prev_sync_results_.gain_b;
<< "Using AWB gains r " << prevSyncResults_.gainR << " g "
<< prevSyncResults_.gainG << " b "
<< prevSyncResults_.gainB;
}
void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata)
{
// Count frames since we last poked the async thread.
if (frame_phase_ < (int)config_.frame_period)
frame_phase_++;
LOG(RPiAwb, Debug) << "frame_phase " << frame_phase_;
if (framePhase_ < (int)config_.framePeriod)
framePhase_++;
LOG(RPiAwb, Debug) << "frame_phase " << framePhase_;
// We do not restart the async thread if we're not in auto mode.
if (isAutoEnabled() &&
(frame_phase_ >= (int)config_.frame_period ||
frame_count_ < (int)config_.startup_frames)) {
(framePhase_ >= (int)config_.framePeriod ||
frameCount_ < (int)config_.startupFrames)) {
// Update any settings and any image metadata that we need.
struct LuxStatus lux_status = {};
lux_status.lux = 400; // in case no metadata
if (image_metadata->Get("lux.status", lux_status) != 0)
struct LuxStatus luxStatus = {};
luxStatus.lux = 400; // in case no metadata
if (imageMetadata->get("lux.status", luxStatus) != 0)
LOG(RPiAwb, Debug) << "No lux metadata found";
LOG(RPiAwb, Debug) << "Awb lux value is " << lux_status.lux;
LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux;
if (async_started_ == false)
restartAsync(stats, lux_status.lux);
if (asyncStarted_ == false)
restartAsync(stats, luxStatus.lux);
}
}
@ -338,32 +329,32 @@ void Awb::asyncFunc()
while (true) {
{
std::unique_lock<std::mutex> lock(mutex_);
async_signal_.wait(lock, [&] {
return async_start_ || async_abort_;
asyncSignal_.wait(lock, [&] {
return asyncStart_ || asyncAbort_;
});
async_start_ = false;
if (async_abort_)
asyncStart_ = false;
if (asyncAbort_)
break;
}
doAwb();
{
std::lock_guard<std::mutex> lock(mutex_);
async_finished_ = true;
asyncFinished_ = true;
}
sync_signal_.notify_one();
syncSignal_.notify_one();
}
}
static void generate_stats(std::vector<Awb::RGB> &zones,
bcm2835_isp_stats_region *stats, double min_pixels,
double min_G)
static void generateStats(std::vector<Awb::RGB> &zones,
bcm2835_isp_stats_region *stats, double minPixels,
double minG)
{
for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
Awb::RGB zone;
double counted = stats[i].counted;
if (counted >= min_pixels) {
if (counted >= minPixels) {
zone.G = stats[i].g_sum / counted;
if (zone.G >= min_G) {
if (zone.G >= minG) {
zone.R = stats[i].r_sum / counted;
zone.B = stats[i].b_sum / counted;
zones.push_back(zone);
@ -377,32 +368,33 @@ void Awb::prepareStats()
zones_.clear();
// LSC has already been applied to the stats in this pipeline, so stop
// any LSC compensation. We also ignore config_.fast in this version.
generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
config_.min_G);
generateStats(zones_, statistics_->awb_stats, config_.minPixels,
config_.minG);
// we're done with these; we may as well relinquish our hold on the
// pointer.
statistics_.reset();
// apply sensitivities, so values appear to come from our "canonical"
// sensor.
for (auto &zone : zones_)
zone.R *= config_.sensitivity_r,
zone.B *= config_.sensitivity_b;
for (auto &zone : zones_) {
zone.R *= config_.sensitivityR;
zone.B *= config_.sensitivityB;
}
}
double Awb::computeDelta2Sum(double gain_r, double gain_b)
double Awb::computeDelta2Sum(double gainR, double gainB)
{
// Compute the sum of the squared colour error (non-greyness) as it
// appears in the log likelihood equation.
double delta2_sum = 0;
double delta2Sum = 0;
for (auto &z : zones_) {
double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
double delta2 = delta_r * delta_r + delta_b * delta_b;
//LOG(RPiAwb, Debug) << "delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2;
delta2 = std::min(delta2, config_.delta_limit);
delta2_sum += delta2;
double deltaR = gainR * z.R - 1 - config_.whitepointR;
double deltaB = gainB * z.B - 1 - config_.whitepointB;
double delta2 = deltaR * deltaR + deltaB * deltaB;
//LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2;
delta2 = std::min(delta2, config_.deltaLimit);
delta2Sum += delta2;
}
return delta2_sum;
return delta2Sum;
}
Pwl Awb::interpolatePrior()
@ -420,7 +412,7 @@ Pwl Awb::interpolatePrior()
idx++;
double lux0 = config_.priors[idx].lux,
lux1 = config_.priors[idx + 1].lux;
return Pwl::Combine(config_.priors[idx].prior,
return Pwl::combine(config_.priors[idx].prior,
config_.priors[idx + 1].prior,
[&](double /*x*/, double y0, double y1) {
return y0 + (y1 - y0) *
@ -429,62 +421,60 @@ Pwl Awb::interpolatePrior()
}
}
static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
Pwl::Point const &C)
static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b,
Pwl::Point const &c)
{
// Given 3 points on a curve, find the extremum of the function in that
// interval by fitting a quadratic.
const double eps = 1e-3;
Pwl::Point CA = C - A, BA = B - A;
double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
Pwl::Point ca = c - a, ba = b - a;
double denominator = 2 * (ba.y * ca.x - ca.y * ba.x);
if (abs(denominator) > eps) {
double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
double result = numerator / denominator + A.x;
return std::max(A.x, std::min(C.x, result));
double numerator = ba.y * ca.x * ca.x - ca.y * ba.x * ba.x;
double result = numerator / denominator + a.x;
return std::max(a.x, std::min(c.x, result));
}
// has degenerated to straight line segment
return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x);
}
double Awb::coarseSearch(Pwl const &prior)
{
points_.clear(); // assume doesn't deallocate memory
size_t best_point = 0;
double t = mode_->ct_lo;
int span_r = 0, span_b = 0;
size_t bestPoint = 0;
double t = mode_->ctLo;
int spanR = 0, spanB = 0;
// Step down the CT curve evaluating log likelihood.
while (true) {
double r = config_.ct_r.Eval(t, &span_r);
double b = config_.ct_b.Eval(t, &span_b);
double gain_r = 1 / r, gain_b = 1 / b;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
double prior_log_likelihood =
prior.Eval(prior.Domain().Clip(t));
double final_log_likelihood = delta2_sum - prior_log_likelihood;
double r = config_.ctR.eval(t, &spanR);
double b = config_.ctB.eval(t, &spanB);
double gainR = 1 / r, gainB = 1 / b;
double delta2Sum = computeDelta2Sum(gainR, gainB);
double priorLogLikelihood = prior.eval(prior.domain().clip(t));
double finalLogLikelihood = delta2Sum - priorLogLikelihood;
LOG(RPiAwb, Debug)
<< "t: " << t << " gain_r " << gain_r << " gain_b "
<< gain_b << " delta2_sum " << delta2_sum
<< " prior " << prior_log_likelihood << " final "
<< final_log_likelihood;
points_.push_back(Pwl::Point(t, final_log_likelihood));
if (points_.back().y < points_[best_point].y)
best_point = points_.size() - 1;
if (t == mode_->ct_hi)
<< "t: " << t << " gain R " << gainR << " gain B "
<< gainB << " delta2_sum " << delta2Sum
<< " prior " << priorLogLikelihood << " final "
<< finalLogLikelihood;
points_.push_back(Pwl::Point(t, finalLogLikelihood));
if (points_.back().y < points_[bestPoint].y)
bestPoint = points_.size() - 1;
if (t == mode_->ctHi)
break;
// for even steps along the r/b curve scale them by the current t
t = std::min(t + t / 10 * config_.coarse_step,
mode_->ct_hi);
t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi);
}
t = points_[best_point].x;
t = points_[bestPoint].x;
LOG(RPiAwb, Debug) << "Coarse search found CT " << t;
// We have the best point of the search, but refine it with a quadratic
// interpolation around its neighbours.
if (points_.size() > 2) {
unsigned long bp = std::min(best_point, points_.size() - 2);
best_point = std::max(1UL, bp);
t = interpolate_quadatric(points_[best_point - 1],
points_[best_point],
points_[best_point + 1]);
unsigned long bp = std::min(bestPoint, points_.size() - 2);
bestPoint = std::max(1UL, bp);
t = interpolateQuadatric(points_[bestPoint - 1],
points_[bestPoint],
points_[bestPoint + 1]);
LOG(RPiAwb, Debug)
<< "After quadratic refinement, coarse search has CT "
<< t;
@ -494,80 +484,76 @@ double Awb::coarseSearch(Pwl const &prior)
void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
{
int span_r = -1, span_b = -1;
config_.ct_r.Eval(t, &span_r);
config_.ct_b.Eval(t, &span_b);
double step = t / 10 * config_.coarse_step * 0.1;
int spanR = -1, spanB = -1;
config_.ctR.eval(t, &spanR);
config_.ctB.eval(t, &spanB);
double step = t / 10 * config_.coarseStep * 0.1;
int nsteps = 5;
double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
config_.ct_r.Eval(t - nsteps * step, &span_r);
double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
config_.ct_b.Eval(t - nsteps * step, &span_b);
Pwl::Point transverse(b_diff, -r_diff);
if (transverse.Len2() < 1e-6)
double rDiff = config_.ctR.eval(t + nsteps * step, &spanR) -
config_.ctR.eval(t - nsteps * step, &spanR);
double bDiff = config_.ctB.eval(t + nsteps * step, &spanB) -
config_.ctB.eval(t - nsteps * step, &spanB);
Pwl::Point transverse(bDiff, -rDiff);
if (transverse.len2() < 1e-6)
return;
// unit vector orthogonal to the b vs. r function (pointing outwards
// with r and b increasing)
transverse = transverse / transverse.Len();
double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
double transverse_range =
config_.transverse_neg + config_.transverse_pos;
const int MAX_NUM_DELTAS = 12;
transverse = transverse / transverse.len();
double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0;
double transverseRange = config_.transverseNeg + config_.transversePos;
const int maxNumDeltas = 12;
// a transverse step approximately every 0.01 r/b units
int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
num_deltas = num_deltas < 3 ? 3 :
(num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
int numDeltas = floor(transverseRange * 100 + 0.5) + 1;
numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas);
// Step down CT curve. March a bit further if the transverse range is
// large.
nsteps += num_deltas;
nsteps += numDeltas;
for (int i = -nsteps; i <= nsteps; i++) {
double t_test = t + i * step;
double prior_log_likelihood =
prior.Eval(prior.Domain().Clip(t_test));
double r_curve = config_.ct_r.Eval(t_test, &span_r);
double b_curve = config_.ct_b.Eval(t_test, &span_b);
double tTest = t + i * step;
double priorLogLikelihood =
prior.eval(prior.domain().clip(tTest));
double rCurve = config_.ctR.eval(tTest, &spanR);
double bCurve = config_.ctB.eval(tTest, &spanB);
// x will be distance off the curve, y the log likelihood there
Pwl::Point points[MAX_NUM_DELTAS];
int best_point = 0;
Pwl::Point points[maxNumDeltas];
int bestPoint = 0;
// Take some measurements transversely *off* the CT curve.
for (int j = 0; j < num_deltas; j++) {
points[j].x = -config_.transverse_neg +
(transverse_range * j) / (num_deltas - 1);
Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
transverse * points[j].x;
double r_test = rb_test.x, b_test = rb_test.y;
double gain_r = 1 / r_test, gain_b = 1 / b_test;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
points[j].y = delta2_sum - prior_log_likelihood;
for (int j = 0; j < numDeltas; j++) {
points[j].x = -config_.transverseNeg +
(transverseRange * j) / (numDeltas - 1);
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
transverse * points[j].x;
double rTest = rbTest.x, bTest = rbTest.y;
double gainR = 1 / rTest, gainB = 1 / bTest;
double delta2Sum = computeDelta2Sum(gainR, gainB);
points[j].y = delta2Sum - priorLogLikelihood;
LOG(RPiAwb, Debug)
<< "At t " << t_test << " r " << r_test << " b "
<< b_test << ": " << points[j].y;
if (points[j].y < points[best_point].y)
best_point = j;
<< "At t " << tTest << " r " << rTest << " b "
<< bTest << ": " << points[j].y;
if (points[j].y < points[bestPoint].y)
bestPoint = j;
}
// We have NUM_DELTAS points transversely across the CT curve,
// now let's do a quadratic interpolation for the best result.
best_point = std::max(1, std::min(best_point, num_deltas - 2));
Pwl::Point rb_test =
Pwl::Point(r_curve, b_curve) +
transverse *
interpolate_quadatric(points[best_point - 1],
points[best_point],
points[best_point + 1]);
double r_test = rb_test.x, b_test = rb_test.y;
double gain_r = 1 / r_test, gain_b = 1 / b_test;
double delta2_sum = computeDelta2Sum(gain_r, gain_b);
double final_log_likelihood = delta2_sum - prior_log_likelihood;
bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2));
Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) +
transverse * interpolateQuadatric(points[bestPoint - 1],
points[bestPoint],
points[bestPoint + 1]);
double rTest = rbTest.x, bTest = rbTest.y;
double gainR = 1 / rTest, gainB = 1 / bTest;
double delta2Sum = computeDelta2Sum(gainR, gainB);
double finalLogLikelihood = delta2Sum - priorLogLikelihood;
LOG(RPiAwb, Debug)
<< "Finally "
<< t_test << " r " << r_test << " b " << b_test << ": "
<< final_log_likelihood
<< (final_log_likelihood < best_log_likelihood ? " BEST" : "");
if (best_t == 0 || final_log_likelihood < best_log_likelihood)
best_log_likelihood = final_log_likelihood,
best_t = t_test, best_r = r_test, best_b = b_test;
<< tTest << " r " << rTest << " b " << bTest << ": "
<< finalLogLikelihood
<< (finalLogLikelihood < bestLogLikelihood ? " BEST" : "");
if (bestT == 0 || finalLogLikelihood < bestLogLikelihood)
bestLogLikelihood = finalLogLikelihood,
bestT = tTest, bestR = rTest, bestB = bTest;
}
t = best_t, r = best_r, b = best_b;
t = bestT, r = bestR, b = bestB;
LOG(RPiAwb, Debug)
<< "Fine search found t " << t << " r " << r << " b " << b;
}
@ -582,12 +568,12 @@ void Awb::awbBayes()
// valid... not entirely sure about this.
Pwl prior = interpolatePrior();
prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
prior.Map([](double x, double y) {
prior.map([](double x, double y) {
LOG(RPiAwb, Debug) << "(" << x << "," << y << ")";
});
double t = coarseSearch(prior);
double r = config_.ct_r.Eval(t);
double b = config_.ct_b.Eval(t);
double r = config_.ctR.eval(t);
double b = config_.ctB.eval(t);
LOG(RPiAwb, Debug)
<< "After coarse search: r " << r << " b " << b << " (gains r "
<< 1 / r << " b " << 1 / b << ")";
@ -604,10 +590,10 @@ void Awb::awbBayes()
// Write results out for the main thread to pick up. Remember to adjust
// the gains from the ones that the "canonical sensor" would require to
// the ones needed by *this* sensor.
async_results_.temperature_K = t;
async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
async_results_.gain_g = 1.0;
async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
asyncResults_.temperatureK = t;
asyncResults_.gainR = 1.0 / r * config_.sensitivityR;
asyncResults_.gainG = 1.0;
asyncResults_.gainB = 1.0 / b * config_.sensitivityB;
}
void Awb::awbGrey()
@ -617,51 +603,51 @@ void Awb::awbGrey()
// that we can sort them to exclude the extreme gains. We could
// consider some variations, such as normalising all the zones first, or
// doing an L2 average etc.
std::vector<RGB> &derivs_R(zones_);
std::vector<RGB> derivs_B(derivs_R);
std::sort(derivs_R.begin(), derivs_R.end(),
std::vector<RGB> &derivsR(zones_);
std::vector<RGB> derivsB(derivsR);
std::sort(derivsR.begin(), derivsR.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.R < b.G * a.R;
});
std::sort(derivs_B.begin(), derivs_B.end(),
std::sort(derivsB.begin(), derivsB.end(),
[](RGB const &a, RGB const &b) {
return a.G * b.B < b.G * a.B;
});
// Average the middle half of the values.
int discard = derivs_R.size() / 4;
RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
for (auto ri = derivs_R.begin() + discard,
bi = derivs_B.begin() + discard;
ri != derivs_R.end() - discard; ri++, bi++)
sum_R += *ri, sum_B += *bi;
double gain_r = sum_R.G / (sum_R.R + 1),
gain_b = sum_B.G / (sum_B.B + 1);
async_results_.temperature_K = 4500; // don't know what it is
async_results_.gain_r = gain_r;
async_results_.gain_g = 1.0;
async_results_.gain_b = gain_b;
int discard = derivsR.size() / 4;
RGB sumR(0, 0, 0), sumB(0, 0, 0);
for (auto ri = derivsR.begin() + discard,
bi = derivsB.begin() + discard;
ri != derivsR.end() - discard; ri++, bi++)
sumR += *ri, sumB += *bi;
double gainR = sumR.G / (sumR.R + 1),
gainB = sumB.G / (sumB.B + 1);
asyncResults_.temperatureK = 4500; // don't know what it is
asyncResults_.gainR = gainR;
asyncResults_.gainG = 1.0;
asyncResults_.gainB = gainB;
}
void Awb::doAwb()
{
prepareStats();
LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size();
if (zones_.size() > config_.min_regions) {
if (zones_.size() > config_.minRegions) {
if (config_.bayes)
awbBayes();
else
awbGrey();
LOG(RPiAwb, Debug)
<< "CT found is "
<< async_results_.temperature_K
<< " with gains r " << async_results_.gain_r
<< " and b " << async_results_.gain_b;
<< asyncResults_.temperatureK
<< " with gains r " << asyncResults_.gainR
<< " and b " << asyncResults_.gainB;
}
}
// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
static Algorithm *create(Controller *controller)
{
return (Algorithm *)new Awb(controller);
}
static RegisterAlgorithm reg(NAME, &Create);
static RegisterAlgorithm reg(NAME, &create);