Documentation: Remove libcamera architecture from introduction.rst

The libcamera Architecture section of the introduction is largely a
duplicate of the section broken out from docs.rst. Remove it from the
introduction.rst file and consolidate anything that wasn't duplicated
into libcamera_architecture.rst and feature_requirements.rst. Take the
opportunity to also expand the list of Platform Support which is now a
bit out of date.

Signed-off-by: Daniel Scally <dan.scally@ideasonboard.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
This commit is contained in:
Daniel Scally 2024-08-20 14:07:36 +01:00 committed by Laurent Pinchart
parent c01dfb3650
commit 3fe819eecf
3 changed files with 140 additions and 257 deletions

View file

@ -26,10 +26,8 @@ desirable results from the camera.
.. _Media Controller: https://www.linuxtv.org/downloads/v4l-dvb-apis-new/userspace-api/mediactl/media-controller.html
In this developers guide, we will explore the internal `Architecture`_ of
the libcamera library with its components. The current `Platform Support`_ is
detailed, as well as an overview of the `Licensing`_ requirements of the
project.
In this developers guide the `Licensing`_ requirements of the project are
detailed.
This introduction is followed by a walkthrough tutorial to newcomers wishing to
support a new platform with the `Pipeline Handler Writers Guide`_ and for those
@ -41,156 +39,6 @@ provides a tutorial of the key APIs exposed by libcamera.
.. TODO: Correctly link to the other articles of the guide
Architecture
------------
While offering a unified API towards upper layers, and presenting itself as a
single library, libcamera isn't monolithic. It exposes multiple components
through its public API and is built around a set of separate helpers internally.
Hardware abstractions are handled through the use of device-specific components
where required and dynamically loadable plugins are used to separate image
processing algorithms from the core libcamera codebase.
::
--------------------------< libcamera Public API >---------------------------
^ ^
| |
v v
+-------------+ +---------------------------------------------------+
| Camera | | Camera Device |
| Manager | | +-----------------------------------------------+ |
+-------------+ | | Device-Agnostic | |
^ | | | |
| | | +--------------------------+ |
| | | | ~~~~~~~~~~~~~~~~~~~~~~~ |
| | | | { +-----------------+ } |
| | | | } | //// Image //// | { |
| | | | <-> | / Processing // | } |
| | | | } | / Algorithms // | { |
| | | | { +-----------------+ } |
| | | | ~~~~~~~~~~~~~~~~~~~~~~~ |
| | | | ========================== |
| | | | +-----------------+ |
| | | | | // Pipeline /// | |
| | | | <-> | /// Handler /// | |
| | | | | /////////////// | |
| | +--------------------+ +-----------------+ |
| | Device-Specific |
| +---------------------------------------------------+
| ^ ^
| | |
v v v
+--------------------------------------------------------------------+
| Helpers and Support Classes |
| +-------------+ +-------------+ +-------------+ +-------------+ |
| | MC & V4L2 | | Buffers | | Sandboxing | | Plugins | |
| | Support | | Allocator | | IPC | | Manager | |
| +-------------+ +-------------+ +-------------+ +-------------+ |
| +-------------+ +-------------+ |
| | Pipeline | | ... | |
| | Runner | | | |
| +-------------+ +-------------+ |
+--------------------------------------------------------------------+
/// Device-Specific Components
~~~ Sandboxing
Camera Manager
The Camera Manager enumerates cameras and instantiates Pipeline Handlers to
manage each Camera that libcamera supports. The Camera Manager supports
hotplug detection and notification events when supported by the underlying
kernel devices.
There is only ever one instance of the Camera Manager running per application.
Each application's instance of the Camera Manager ensures that only a single
application can take control of a camera device at once.
Read the `Camera Manager API`_ documentation for more details.
.. _Camera Manager API: https://libcamera.org/api-html/classlibcamera_1_1CameraManager.html
Camera Device
The Camera class represents a single item of camera hardware that is capable
of producing one or more image streams, and provides the API to interact with
the underlying device.
If a system has multiple instances of the same hardware attached, each has its
own instance of the camera class.
The API exposes full control of the device to upper layers of libcamera through
the public API, making it the highest level object libcamera exposes, and the
object that all other API operations interact with from configuration to
capture.
Read the `Camera API`_ documentation for more details.
.. _Camera API: https://libcamera.org/api-html/classlibcamera_1_1Camera.html
Pipeline Handler
The Pipeline Handler manages the complex pipelines exposed by the kernel
drivers through the Media Controller and V4L2 APIs. It abstracts pipeline
handling to hide device-specific details from the rest of the library, and
implements both pipeline configuration based on stream configuration, and
pipeline runtime execution and scheduling when needed by the device.
The Pipeline Handler lives in the same process as the rest of the library, and
has access to all helpers and kernel camera-related devices.
Hardware abstraction is handled by device specific Pipeline Handlers which are
derived from the Pipeline Handler base class allowing commonality to be shared
among the implementations.
Derived pipeline handlers create Camera device instances based on the devices
they detect and support on the running system, and are responsible for
managing the interactions with a camera device.
More details can be found in the `PipelineHandler API`_ documentation, and the
`Pipeline Handler Writers Guide`_.
.. _PipelineHandler API: https://libcamera.org/api-html/classlibcamera_1_1PipelineHandler.html
Image Processing Algorithms
An image processing algorithm (IPA) component is a loadable plugin that
implements 3A (Auto-Exposure, Auto-White Balance, and Auto-Focus) and other
algorithms.
The algorithms run on the CPU and interact with the camera devices through the
Pipeline Handler to control hardware image processing based on the parameters
supplied by upper layers, maintaining state and closing the control loop
of the ISP.
The component is sandboxed and can only interact with libcamera through the
API provided by the Pipeline Handler and an IPA has no direct access to kernel
camera devices.
Open source IPA modules built with libcamera can be run in the same process
space as libcamera, however external IPA modules are run in a separate process
from the main libcamera process. IPA modules have a restricted view of the
system, including no access to networking APIs and limited access to file
systems.
IPA modules are only required for platforms and devices with an ISP controlled
by the host CPU. Camera sensors which have an integrated ISP are not
controlled through the IPA module.
Platform Support
----------------
The library currently supports the following hardware platforms specifically
with dedicated pipeline handlers:
- Intel IPU3 (ipu3)
- Rockchip RK3399 (rkisp1)
- RaspberryPi 3 and 4 (rpi/vc4)
Furthermore, generic platform support is provided for the following:
- USB video device class cameras (uvcvideo)
- iMX7, Allwinner Sun6i (simple)
- Virtual media controller driver for test use cases (vimc)
Licensing
---------