libcamera: matrix: Add inverse() function
For calculations in upcoming algorithm patches, the inverse of a matrix is required. Add an implementation of the inverse() function for square matrices. Signed-off-by: Stefan Klug <stefan.klug@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: Paul Elder <paul.elder@ideasonboard.com>
This commit is contained in:
parent
bcba580546
commit
6287ceff5a
2 changed files with 189 additions and 0 deletions
|
@ -19,6 +19,12 @@ namespace libcamera {
|
|||
|
||||
LOG_DECLARE_CATEGORY(Matrix)
|
||||
|
||||
#ifndef __DOXYGEN__
|
||||
template<typename T>
|
||||
bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim,
|
||||
Span<T> scratchBuffer, Span<unsigned int> swapBuffer);
|
||||
#endif /* __DOXYGEN__ */
|
||||
|
||||
template<typename T, unsigned int Rows, unsigned int Cols>
|
||||
class Matrix
|
||||
{
|
||||
|
@ -91,6 +97,23 @@ public:
|
|||
return *this;
|
||||
}
|
||||
|
||||
Matrix<T, Rows, Cols> inverse(bool *ok = nullptr) const
|
||||
{
|
||||
static_assert(Rows == Cols, "Matrix must be square");
|
||||
|
||||
Matrix<T, Rows, Cols> inverse;
|
||||
std::array<T, Rows * Cols * 2> scratchBuffer;
|
||||
std::array<unsigned int, Rows> swapBuffer;
|
||||
bool res = matrixInvert(Span<const T>(data_),
|
||||
Span<T>(inverse.data_),
|
||||
Rows,
|
||||
Span<T>(scratchBuffer),
|
||||
Span<unsigned int>(swapBuffer));
|
||||
if (ok)
|
||||
*ok = res;
|
||||
return inverse;
|
||||
}
|
||||
|
||||
private:
|
||||
/*
|
||||
* \todo The initializer is only necessary for the constructor to be
|
||||
|
|
|
@ -7,6 +7,12 @@
|
|||
|
||||
#include "libcamera/internal/matrix.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
|
||||
#include <libcamera/base/log.h>
|
||||
|
||||
/**
|
||||
|
@ -87,6 +93,20 @@ LOG_DEFINE_CATEGORY(Matrix)
|
|||
* \return Row \a i from the matrix, as a Span
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn Matrix::inverse(bool *ok) const
|
||||
* \param[out] ok Indicate if the matrix was successfully inverted
|
||||
* \brief Compute the inverse of the matrix
|
||||
*
|
||||
* This function computes the inverse of the matrix. It is only implemented for
|
||||
* matrices of float and double types. If \a ok is provided it will be set to a
|
||||
* boolean value to indicate of the inversion was successful. This can be used
|
||||
* to check if the matrix is singular, in which case the function will return
|
||||
* an identity matrix.
|
||||
*
|
||||
* \return The inverse of the matrix
|
||||
*/
|
||||
|
||||
/**
|
||||
* \fn Matrix::operator[](size_t i)
|
||||
* \copydoc Matrix::operator[](size_t i) const
|
||||
|
@ -142,6 +162,152 @@ LOG_DEFINE_CATEGORY(Matrix)
|
|||
*/
|
||||
|
||||
#ifndef __DOXYGEN__
|
||||
template<typename T>
|
||||
bool matrixInvert(Span<const T> dataIn, Span<T> dataOut, unsigned int dim,
|
||||
Span<T> scratchBuffer, Span<unsigned int> swapBuffer)
|
||||
{
|
||||
/*
|
||||
* Convenience class to access matrix data, providing a row-major (i,j)
|
||||
* element accessor through the call operator, and the ability to swap
|
||||
* rows without modifying the backing storage.
|
||||
*/
|
||||
class MatrixAccessor
|
||||
{
|
||||
public:
|
||||
MatrixAccessor(Span<T> data, Span<unsigned int> swapBuffer, unsigned int rows, unsigned int cols)
|
||||
: data_(data), swap_(swapBuffer), rows_(rows), cols_(cols)
|
||||
{
|
||||
ASSERT(swap_.size() == rows);
|
||||
std::iota(swap_.begin(), swap_.end(), T{ 0 });
|
||||
}
|
||||
|
||||
T &operator()(unsigned int row, unsigned int col)
|
||||
{
|
||||
assert(row < rows_ && col < cols_);
|
||||
return data_[index(row, col)];
|
||||
}
|
||||
|
||||
void swap(unsigned int a, unsigned int b)
|
||||
{
|
||||
assert(a < rows_ && a < cols_);
|
||||
std::swap(swap_[a], swap_[b]);
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int index(unsigned int row, unsigned int col) const
|
||||
{
|
||||
return swap_[row] * cols_ + col;
|
||||
}
|
||||
|
||||
Span<T> data_;
|
||||
Span<unsigned int> swap_;
|
||||
unsigned int rows_;
|
||||
unsigned int cols_;
|
||||
};
|
||||
|
||||
/*
|
||||
* Matrix inversion using Gaussian elimination.
|
||||
*
|
||||
* Start by augmenting the original matrix with an identiy matrix of
|
||||
* the same size.
|
||||
*/
|
||||
ASSERT(scratchBuffer.size() == dim * dim * 2);
|
||||
MatrixAccessor matrix(scratchBuffer, swapBuffer, dim, dim * 2);
|
||||
|
||||
for (unsigned int i = 0; i < dim; ++i) {
|
||||
for (unsigned int j = 0; j < dim; ++j) {
|
||||
matrix(i, j) = dataIn[i * dim + j];
|
||||
matrix(i, j + dim) = T{ 0 };
|
||||
}
|
||||
matrix(i, i + dim) = T{ 1 };
|
||||
}
|
||||
|
||||
/* Start by triangularizing the input . */
|
||||
for (unsigned int pivot = 0; pivot < dim; ++pivot) {
|
||||
/*
|
||||
* Locate the next pivot. To improve numerical stability, use
|
||||
* the row with the largest value in the pivot's column.
|
||||
*/
|
||||
unsigned int row;
|
||||
T maxValue{ 0 };
|
||||
|
||||
for (unsigned int i = pivot; i < dim; ++i) {
|
||||
T value = std::abs(matrix(i, pivot));
|
||||
if (maxValue < value) {
|
||||
maxValue = value;
|
||||
row = i;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If no pivot is found in the column, the matrix is not
|
||||
* invertible. Return an identity matrix.
|
||||
*/
|
||||
if (maxValue == 0) {
|
||||
std::fill(dataOut.begin(), dataOut.end(), T{ 0 });
|
||||
for (unsigned int i = 0; i < dim; ++i)
|
||||
dataOut[i * dim + i] = T{ 1 };
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Swap rows to bring the pivot in the right location. */
|
||||
matrix.swap(pivot, row);
|
||||
|
||||
/* Process all rows below the pivot to zero the pivot column. */
|
||||
const T pivotValue = matrix(pivot, pivot);
|
||||
|
||||
for (unsigned int i = pivot + 1; i < dim; ++i) {
|
||||
const T factor = matrix(i, pivot) / pivotValue;
|
||||
|
||||
/*
|
||||
* We know the element in the pivot column will be 0,
|
||||
* hardcode it instead of computing it.
|
||||
*/
|
||||
matrix(i, pivot) = T{ 0 };
|
||||
|
||||
for (unsigned int j = pivot + 1; j < dim * 2; ++j)
|
||||
matrix(i, j) -= matrix(pivot, j) * factor;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Then diagonalize the input, walking the diagonal backwards. There's
|
||||
* no need to update the input matrix, as all the values we would write
|
||||
* in the top-right triangle aren't used in further calculations (and
|
||||
* would all by definition be zero).
|
||||
*/
|
||||
for (unsigned int pivot = dim - 1; pivot > 0; --pivot) {
|
||||
const T pivotValue = matrix(pivot, pivot);
|
||||
|
||||
for (unsigned int i = 0; i < pivot; ++i) {
|
||||
const T factor = matrix(i, pivot) / pivotValue;
|
||||
|
||||
for (unsigned int j = dim; j < dim * 2; ++j)
|
||||
matrix(i, j) -= matrix(pivot, j) * factor;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Finally, normalize the diagonal and store the result in the output
|
||||
* data.
|
||||
*/
|
||||
for (unsigned int i = 0; i < dim; ++i) {
|
||||
const T factor = matrix(i, i);
|
||||
|
||||
for (unsigned int j = 0; j < dim; ++j)
|
||||
dataOut[i * dim + j] = matrix(i, j + dim) / factor;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template bool matrixInvert<float>(Span<const float> dataIn, Span<float> dataOut,
|
||||
unsigned int dim, Span<float> scratchBuffer,
|
||||
Span<unsigned int> swapBuffer);
|
||||
template bool matrixInvert<double>(Span<const double> data, Span<double> dataOut,
|
||||
unsigned int dim, Span<double> scratchBuffer,
|
||||
Span<unsigned int> swapBuffer);
|
||||
|
||||
/*
|
||||
* The YAML data shall be a list of numerical values. Its size shall be equal
|
||||
* to the product of the number of rows and columns of the matrix (Rows x
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue