utils: raspberrypi: ctt: Fix pycodestyle E225
E225 missing whitespace around operator Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: David Plowman <david.plowman@raspberrypi.com>
This commit is contained in:
parent
23f9f46c8a
commit
641c6ebe9b
6 changed files with 34 additions and 33 deletions
|
@ -71,7 +71,7 @@ class Camera:
|
|||
self.path = ''
|
||||
self.imgs = []
|
||||
self.imgs_alsc = []
|
||||
self.log = 'Log created : '+ time.asctime(time.localtime(time.time()))
|
||||
self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
|
||||
self.log_separator = '\n'+'-'*70+'\n'
|
||||
self.jf = jfile
|
||||
"""
|
||||
|
@ -227,7 +227,7 @@ class Camera:
|
|||
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
||||
self.log += '\nALSC tables found successfully'
|
||||
except KeyError:
|
||||
cal_cr_list, cal_cb_list=None, None
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
print('WARNING! No ALSC tables found for CCM!')
|
||||
print('Performing CCM calibrations without ALSC correction...')
|
||||
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
||||
|
@ -236,7 +236,7 @@ class Camera:
|
|||
"""
|
||||
case where config options result in CCM done without ALSC colour tables
|
||||
"""
|
||||
cal_cr_list, cal_cb_list=None, None
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
|
||||
|
@ -292,13 +292,13 @@ class Camera:
|
|||
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
|
||||
self.log += '\nALSC tables found successfully'
|
||||
except KeyError:
|
||||
cal_cr_list, cal_cb_list=None, None
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
print('ERROR, no ALSC calibrations found for AWB')
|
||||
print('Performing AWB without ALSC tables')
|
||||
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
else:
|
||||
cal_cr_list, cal_cb_list=None, None
|
||||
cal_cr_list, cal_cb_list = None, None
|
||||
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
|
||||
self.log += 'performed without ALSC correction...'
|
||||
"""
|
||||
|
@ -502,9 +502,9 @@ class Camera:
|
|||
for key in disable:
|
||||
try:
|
||||
del self.json[key]
|
||||
self.log += '\nDisabled: '+key
|
||||
self.log += '\nDisabled: ' + key
|
||||
except KeyError:
|
||||
self.log += '\nERROR: '+key +' not found!'
|
||||
self.log += '\nERROR: ' + key + ' not found!'
|
||||
"""
|
||||
writes the json dictionary to the raw json file then make pretty
|
||||
"""
|
||||
|
@ -685,7 +685,8 @@ class Camera:
|
|||
blacklevels = list(set([Img.blacklevel_16 for Img in all_imgs]))
|
||||
sizes = list(set([(Img.w, Img.h) for Img in all_imgs]))
|
||||
|
||||
if len(camNames)==1 and len(patterns)==1 and len(sigbitss)==1 and len(blacklevels) ==1 and len(sizes)== 1:
|
||||
if len(camNames) == 1 and len(patterns) == 1 and len(sigbitss) == 1 and \
|
||||
len(blacklevels) == 1 and len(sizes) == 1:
|
||||
self.grey = (patterns[0] == 128)
|
||||
self.blacklevel_16 = blacklevels[0]
|
||||
self.log += '\nName: {}'.format(camNames[0])
|
||||
|
|
|
@ -61,10 +61,10 @@ def alsc_all(Cam, do_alsc_colour, plot):
|
|||
"""
|
||||
force numbers to be stored to 3dp.... :(
|
||||
"""
|
||||
t_r = np.where((100*t_r)%1<=0.05, t_r+0.001, t_r)
|
||||
t_b = np.where((100*t_b)%1<=0.05, t_b+0.001, t_b)
|
||||
t_r = np.where((100*t_r)%1>=0.95, t_r-0.001, t_r)
|
||||
t_b = np.where((100*t_b)%1>=0.95, t_b-0.001, t_b)
|
||||
t_r = np.where((100*t_r)%1 <= 0.05, t_r+0.001, t_r)
|
||||
t_b = np.where((100*t_b)%1 <= 0.05, t_b+0.001, t_b)
|
||||
t_r = np.where((100*t_r)%1 >= 0.95, t_r-0.001, t_r)
|
||||
t_b = np.where((100*t_b)%1 >= 0.95, t_b-0.001, t_b)
|
||||
t_r = np.round(t_r, 3)
|
||||
t_b = np.round(t_b, 3)
|
||||
r_corners = (t_r[0], t_r[15], t_r[-1], t_r[-16])
|
||||
|
@ -95,8 +95,8 @@ def alsc_all(Cam, do_alsc_colour, plot):
|
|||
average all values for luminance shading and return one table for all temperatures
|
||||
"""
|
||||
lum_lut = np.mean(list_cg, axis=0)
|
||||
lum_lut = np.where((100*lum_lut)%1<=0.05, lum_lut+0.001, lum_lut)
|
||||
lum_lut = np.where((100*lum_lut)%1>=0.95, lum_lut-0.001, lum_lut)
|
||||
lum_lut = np.where((100*lum_lut)%1 <= 0.05, lum_lut+0.001, lum_lut)
|
||||
lum_lut = np.where((100*lum_lut)%1 >= 0.95, lum_lut-0.001, lum_lut)
|
||||
lum_lut = list(np.round(lum_lut, 3))
|
||||
|
||||
"""
|
||||
|
|
|
@ -27,8 +27,8 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
|
|||
"""
|
||||
normalise tables so min value is 1
|
||||
"""
|
||||
cr_tab= cr_tab/np.min(cr_tab)
|
||||
cb_tab= cb_tab/np.min(cb_tab)
|
||||
cr_tab = cr_tab/np.min(cr_tab)
|
||||
cb_tab = cb_tab/np.min(cb_tab)
|
||||
colour_cals[cr['ct']] = [cr_tab, cb_tab]
|
||||
"""
|
||||
obtain data from greyscale macbeth patches
|
||||
|
@ -183,10 +183,10 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
|
|||
"""
|
||||
round to 4dp
|
||||
"""
|
||||
r_fit = np.where((1000*r_fit)%1<=0.05, r_fit+0.0001, r_fit)
|
||||
r_fit = np.where((1000*r_fit)%1>=0.95, r_fit-0.0001, r_fit)
|
||||
b_fit = np.where((1000*b_fit)%1<=0.05, b_fit+0.0001, b_fit)
|
||||
b_fit = np.where((1000*b_fit)%1>=0.95, b_fit-0.0001, b_fit)
|
||||
r_fit = np.where((1000*r_fit)%1 <= 0.05, r_fit+0.0001, r_fit)
|
||||
r_fit = np.where((1000*r_fit)%1 >= 0.95, r_fit-0.0001, r_fit)
|
||||
b_fit = np.where((1000*b_fit)%1 <= 0.05, b_fit+0.0001, b_fit)
|
||||
b_fit = np.where((1000*b_fit)%1 >= 0.95, b_fit-0.0001, b_fit)
|
||||
r_fit = np.round(r_fit, 4)
|
||||
b_fit = np.round(b_fit, 4)
|
||||
"""
|
||||
|
@ -215,7 +215,7 @@ def awb(Cam, cal_cr_list, cal_cb_list, plot):
|
|||
find bad index
|
||||
note that in python false = 0 and true = 1
|
||||
"""
|
||||
bad = i - (error_1<error_2)
|
||||
bad = i - (error_1 < error_2)
|
||||
Cam.log += '\nPoint at {} K deleted as '.format(c_fit[bad])
|
||||
Cam.log += 'it is furthest from fit'
|
||||
"""
|
||||
|
|
|
@ -74,8 +74,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
"""
|
||||
normalise tables so min value is 1
|
||||
"""
|
||||
cr_tab= cr_tab/np.min(cr_tab)
|
||||
cb_tab= cb_tab/np.min(cb_tab)
|
||||
cr_tab = cr_tab/np.min(cr_tab)
|
||||
cb_tab = cb_tab/np.min(cb_tab)
|
||||
colour_cals[cr['ct']] = [cr_tab, cb_tab]
|
||||
|
||||
"""
|
||||
|
@ -135,8 +135,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list):
|
|||
"""
|
||||
for k, v in ccm_tab.items():
|
||||
tab = np.mean(v, axis=0)
|
||||
tab = np.where((10000*tab)%1<=0.05, tab+0.00001, tab)
|
||||
tab = np.where((10000*tab)%1>=0.95, tab-0.00001, tab)
|
||||
tab = np.where((10000*tab)%1 <= 0.05, tab+0.00001, tab)
|
||||
tab = np.where((10000*tab)%1 >= 0.95, tab-0.00001, tab)
|
||||
ccm_tab[k] = list(np.round(tab, 5))
|
||||
Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k)
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ def find_macbeth(Cam, img, mac_config=(0, 0)):
|
|||
Reference macbeth chart is created that will be correlated with the located
|
||||
macbeth chart guess to produce a confidence value for the match.
|
||||
"""
|
||||
ref = cv2.imread(Cam.path +'ctt_ref.pgm', flags=cv2.IMREAD_GRAYSCALE)
|
||||
ref = cv2.imread(Cam.path + 'ctt_ref.pgm', flags=cv2.IMREAD_GRAYSCALE)
|
||||
ref_w = 120
|
||||
ref_h = 80
|
||||
rc1 = (0, 0)
|
||||
|
@ -328,7 +328,7 @@ def get_macbeth_chart(img, ref_data):
|
|||
"""
|
||||
src = img
|
||||
src, factor = reshape(src, 200)
|
||||
original=src.copy()
|
||||
original = src.copy()
|
||||
a = 125/np.average(src)
|
||||
src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0)
|
||||
"""
|
||||
|
@ -349,7 +349,7 @@ def get_macbeth_chart(img, ref_data):
|
|||
"""
|
||||
obtain image edges
|
||||
"""
|
||||
sigma=2
|
||||
sigma = 2
|
||||
src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma)
|
||||
t1, t2 = 50, 100
|
||||
edges = cv2.Canny(src_bw, t1, t2)
|
||||
|
@ -490,7 +490,7 @@ def get_macbeth_chart(img, ref_data):
|
|||
)
|
||||
mac_mids_list = [x[0] for x in mac_mids]
|
||||
|
||||
if len(mac_mids_list)==1:
|
||||
if len(mac_mids_list) == 1:
|
||||
"""
|
||||
special case of only one valid centre found (probably not needed)
|
||||
"""
|
||||
|
@ -508,7 +508,7 @@ def get_macbeth_chart(img, ref_data):
|
|||
create list of all clusters
|
||||
"""
|
||||
clus_list = []
|
||||
if clustering.n_clusters_ >1:
|
||||
if clustering.n_clusters_ > 1:
|
||||
for i in range(clustering.labels_.max()+1):
|
||||
indices = [j for j, x in enumerate(clustering.labels_) if x == i]
|
||||
clus = []
|
||||
|
@ -535,7 +535,7 @@ def get_macbeth_chart(img, ref_data):
|
|||
keep only clusters with enough votes
|
||||
"""
|
||||
clus_len_max = clus_list[0][1]
|
||||
clus_tol= 0.7
|
||||
clus_tol = 0.7
|
||||
for i in range(len(clus_list)):
|
||||
if clus_list[i][1] < clus_len_max * clus_tol:
|
||||
clus_list = clus_list[:i]
|
||||
|
|
|
@ -42,8 +42,8 @@ def get_square_verts(c_err=0.05, scale=scale):
|
|||
for i in range(6):
|
||||
shift_i = np.array(((i*side, 0), (i*side, 0),
|
||||
(i*side, 0), (i*side, 0)), np.float32)
|
||||
shift_bord =np.array(((i*s_bord, 0), (i*s_bord, 0),
|
||||
(i*s_bord, 0), (i*s_bord, 0)), np.float32)
|
||||
shift_bord = np.array(((i*s_bord, 0), (i*s_bord, 0),
|
||||
(i*s_bord, 0), (i*s_bord, 0)), np.float32)
|
||||
square_i = square_0 + shift_i + shift_bord
|
||||
for j in range(4):
|
||||
shift_j = np.array(((0, j*side), (0, j*side),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue