libcamera: libipa: camera_sensor: Add onsemi AR0144 sensor properties
Provide the onsemi AR0144 camera sensor properties and registration with libipa for the gain code helpers. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
This commit is contained in:
parent
83b3141178
commit
74513c3987
2 changed files with 103 additions and 0 deletions
|
@ -8,6 +8,7 @@
|
|||
#include "camera_sensor_helper.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
#include <libcamera/base/log.h>
|
||||
|
||||
|
@ -398,6 +399,99 @@ static constexpr double expGainDb(double step)
|
|||
return log2_10 * step / 20;
|
||||
}
|
||||
|
||||
class CameraSensorHelperAr0144 : public CameraSensorHelper
|
||||
{
|
||||
public:
|
||||
CameraSensorHelperAr0144()
|
||||
{
|
||||
/* Power-on default value: 168 at 12bits. */
|
||||
blackLevel_ = 2688;
|
||||
}
|
||||
|
||||
uint32_t gainCode(double gain) const override
|
||||
{
|
||||
/* The recommended minimum gain is 1.6842 to avoid artifacts. */
|
||||
gain = std::clamp(gain, 1.0 / (1.0 - 13.0 / 32.0), 18.45);
|
||||
|
||||
/*
|
||||
* The analogue gain is made of a coarse exponential gain in
|
||||
* the range [2^0, 2^4] and a fine inversely linear gain in the
|
||||
* range [1.0, 2.0[. There is an additional fixed 1.153125
|
||||
* multiplier when the coarse gain reaches 2^2.
|
||||
*/
|
||||
|
||||
if (gain > 4.0)
|
||||
gain /= 1.153125;
|
||||
|
||||
unsigned int coarse = std::log2(gain);
|
||||
unsigned int fine = (1 - (1 << coarse) / gain) * 32;
|
||||
|
||||
/* The fine gain rounding depends on the coarse gain. */
|
||||
if (coarse == 1 || coarse == 3)
|
||||
fine &= ~1;
|
||||
else if (coarse == 4)
|
||||
fine &= ~3;
|
||||
|
||||
return (coarse << 4) | (fine & 0xf);
|
||||
}
|
||||
|
||||
double gain(uint32_t gainCode) const override
|
||||
{
|
||||
unsigned int coarse = gainCode >> 4;
|
||||
unsigned int fine = gainCode & 0xf;
|
||||
unsigned int d1;
|
||||
double d2, m;
|
||||
|
||||
switch (coarse) {
|
||||
default:
|
||||
case 0:
|
||||
d1 = 1;
|
||||
d2 = 32.0;
|
||||
m = 1.0;
|
||||
break;
|
||||
case 1:
|
||||
d1 = 2;
|
||||
d2 = 16.0;
|
||||
m = 1.0;
|
||||
break;
|
||||
case 2:
|
||||
d1 = 1;
|
||||
d2 = 32.0;
|
||||
m = 1.153125;
|
||||
break;
|
||||
case 3:
|
||||
d1 = 2;
|
||||
d2 = 16.0;
|
||||
m = 1.153125;
|
||||
break;
|
||||
case 4:
|
||||
d1 = 4;
|
||||
d2 = 8.0;
|
||||
m = 1.153125;
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* With infinite precision, the calculated gain would be exact,
|
||||
* and the reverse conversion with gainCode() would produce the
|
||||
* same gain code. In the real world, rounding errors may cause
|
||||
* the calculated gain to be lower by an amount negligible for
|
||||
* all purposes, except for the reverse conversion. Converting
|
||||
* the gain to a gain code could then return the quantized value
|
||||
* just lower than the original gain code. To avoid this, tests
|
||||
* showed that adding the machine epsilon to the multiplier m is
|
||||
* sufficient.
|
||||
*/
|
||||
m += std::numeric_limits<decltype(m)>::epsilon();
|
||||
|
||||
return m * (1 << coarse) / (1.0 - (fine / d1) / d2);
|
||||
}
|
||||
|
||||
private:
|
||||
static constexpr double kStep_ = 16;
|
||||
};
|
||||
REGISTER_CAMERA_SENSOR_HELPER("ar0144", CameraSensorHelperAr0144)
|
||||
|
||||
class CameraSensorHelperAr0521 : public CameraSensorHelper
|
||||
{
|
||||
public:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue