utils: raspberrypi: ctt: Fix pycodestyle E231
E231 missing whitespace after ',' E231 missing whitespace after ':' Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: David Plowman <david.plowman@raspberrypi.com>
This commit is contained in:
parent
7a653369cb
commit
93a133fb17
11 changed files with 493 additions and 493 deletions
|
@ -12,7 +12,7 @@ Find noise standard deviation and fit to model:
|
|||
|
||||
noise std = a + b*sqrt(pixel mean)
|
||||
"""
|
||||
def noise(Cam,Img,plot):
|
||||
def noise(Cam, Img, plot):
|
||||
Cam.log += '\nProcessing image: {}'.format(Img.name)
|
||||
stds = []
|
||||
means = []
|
||||
|
@ -36,14 +36,14 @@ def noise(Cam,Img,plot):
|
|||
"""
|
||||
stds = np.array(stds)
|
||||
means = np.array(means)
|
||||
means = np.clip(np.array(means),0,None)
|
||||
means = np.clip(np.array(means), 0, None)
|
||||
sq_means = np.sqrt(means)
|
||||
|
||||
|
||||
"""
|
||||
least squares fit model
|
||||
"""
|
||||
fit = np.polyfit(sq_means,stds,1)
|
||||
fit = np.polyfit(sq_means, stds, 1)
|
||||
Cam.log += '\nBlack level = {}'.format(Img.blacklevel_16)
|
||||
Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
|
||||
Cam.log += ' slope = {:.3f}'.format(fit[0])
|
||||
|
@ -59,8 +59,8 @@ def noise(Cam,Img,plot):
|
|||
fit_score_norm = fit_score - fit_std
|
||||
anom_ind = np.where(fit_score_norm > 1)
|
||||
fit_score_norm.sort()
|
||||
sq_means_clean = np.delete(sq_means,anom_ind)
|
||||
stds_clean = np.delete(stds,anom_ind)
|
||||
sq_means_clean = np.delete(sq_means, anom_ind)
|
||||
stds_clean = np.delete(stds, anom_ind)
|
||||
removed = len(stds) - len(stds_clean)
|
||||
if removed != 0:
|
||||
Cam.log += '\nIdentified and removed {} anomalies.'.format(removed)
|
||||
|
@ -68,7 +68,7 @@ def noise(Cam,Img,plot):
|
|||
"""
|
||||
recalculate fit with outliers removed
|
||||
"""
|
||||
fit = np.polyfit(sq_means_clean,stds_clean,1)
|
||||
fit = np.polyfit(sq_means_clean, stds_clean, 1)
|
||||
Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1]))
|
||||
Cam.log += ' slope = {:.3f}'.format(fit[0])
|
||||
|
||||
|
@ -81,7 +81,7 @@ def noise(Cam,Img,plot):
|
|||
corrected = 1
|
||||
ones = np.ones(len(means))
|
||||
y_data = stds/sq_means
|
||||
fit2 = np.polyfit(ones,y_data,0)
|
||||
fit2 = np.polyfit(ones, y_data, 0)
|
||||
Cam.log += '\nOffset below zero. Fit recalculated with zero offset'
|
||||
Cam.log += '\nNoise profile: offset = 0'
|
||||
Cam.log += ' slope = {:.3f}'.format(fit2[0])
|
||||
|
@ -94,13 +94,13 @@ def noise(Cam,Img,plot):
|
|||
if plot:
|
||||
x = np.arange(sq_means.max()//0.88)
|
||||
fit_plot = x*fit[0] + fit[1]
|
||||
plt.scatter(sq_means,stds,label='data',color='blue')
|
||||
plt.scatter(sq_means[anom_ind],stds[anom_ind],color='orange',label='anomalies')
|
||||
plt.plot(x,fit_plot,label='fit',color='red',ls=':')
|
||||
plt.scatter(sq_means, stds, label='data', color='blue')
|
||||
plt.scatter(sq_means[anom_ind], stds[anom_ind], color='orange', label='anomalies')
|
||||
plt.plot(x, fit_plot, label='fit', color='red', ls=':')
|
||||
if fit[1] < 0:
|
||||
fit_plot_2 = x*fit2[0]
|
||||
plt.plot(x,fit_plot_2,label='fit 0 intercept',color='green',ls='--')
|
||||
plt.plot(0,0)
|
||||
plt.plot(x, fit_plot_2, label='fit 0 intercept', color='green', ls='--')
|
||||
plt.plot(0, 0)
|
||||
plt.title('Noise Plot\nImg: {}'.format(Img.str))
|
||||
plt.legend(loc = 'upper left')
|
||||
plt.xlabel('Sqrt Pixel Value')
|
||||
|
@ -116,7 +116,7 @@ def noise(Cam,Img,plot):
|
|||
"""
|
||||
Cam.log += '\n'
|
||||
if corrected:
|
||||
fit = [fit2[0],0]
|
||||
fit = [fit2[0], 0]
|
||||
return fit
|
||||
|
||||
else:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue